APELLIDOS Y NOMBRES: C.I.: NOTA: III- ASIGNATURA: Matemática II -

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APELLIDOS Y NOMBRES: C.I.: NOTA: III- ASIGNATURA: Matemática II -"

Transcripción

1 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES 1. Llene todos los datos en letra imprenta.. Espere que el profesor de la orden de comenzar la prueba. 3. Lea cuidadosamente cada una de las preguntas antes de contestar. 4. Deberá formular cualquier pregunta durante los primeros 10 minutos del eamen, que tenga relación con la prueba que se está aplicando, en voz alta para beneficio del grupo. 5. Usted tendrá para responder un tiempo comprendido entre las las horas. 6. Absténgase de consultar a sus compañeros, a que esto es una falta grave establecida en el Artículo 45 Numeral 10 del Reglamento Disciplinario de la UNEFA. 7. Cuide su redacción ortografía. APELLIDOS Y NOMBRES: C.I.: NOTA: DEPARTAMENTO: Ingeniería de petróleo PRUEBA: Versión 01 (ponderación 15%) ASIGNATURA: Matemática II - SEMESTRE: III- Desarrollo. lim (ptos) 1) Evaluar (, ) (1, ) SECCIÓN: F NOMBRE DEL DOCENTE: Lcdo. Eliezer Montoa ) Sea f (, ) e + ln calcular la derivadas parciales f (, ), f (, ), f (, ), f (, ) f (, ) f (, ), (5Ptos) e 3) Supongamos que z dz dz demostrar que. 0 (3 ptos) + d d 4) Calcule el valor de la derivada direccional en el punto P 0 (1,3,) para la función f (,, z) ln ( + + z ) en dirección del vector Unitariou i j k -Problema 0 capitulo 1.6 de Lehithold (3ptos) 5) Obtenga la ecuación de la recta normal el plano tangente a la superficie 1/ + 1/ + z 1/ 4 en el punto P 0 (4,1,1) --Problema 9 capitulo 1.7 de Lehithold (3 pts) 6) Si las dos superficies f(,,z) g(,,z) es decir + z 8 z la recta tangente a la curva de intersección en el punto (,-,0) (Problema 13 capitulo 1.7 de Lehithold (4 pts) + se interceptan en una curva, determine la ecuaciones de FECHA 16/07/010

2 Solución: 1) Evaluar ( ) lim (1) + 3(1)( ) ( ptos) (, ) (1, ) ) Sea f (, ) e + ln calcular la derivadas parciales f (, ), f (, ), f (, ), f (, ) f (, ) f (, ), (5Ptos) Tenemos: 1 f1(, ) f (, ) e + e + (, ) (, ) f ln f e + d f (, ) f (, ) e + 0 d 11 d 1 f1(, ) f (, ) e + e + d d 1 f1(, ) f (, ) ( e + ln ) e + f1 (, ) d (, ) (, ) d f f ( ln ) 0 e + e + e d 3) Supongamos que z e + + dz dz demostrar que. 0 (3 ptos) d d + e z aplicando la derivada de un cociente de funciones + ( ) dz e. +. e e + 1 d + +

3 Usando un cambio de variable dt d t + dt d t du t u e e dt dv v t 1 dt du dt dv dt t +. v u u e e dz z dt d dt d v t + d t Llegamos a la respuesta anterior; verifícalo. + e z aplicando la derivada de un cociente de funciones + sacando un factor común nos queda: ( ) dz e. +. e e + 1 d + + dz dz Queremos demostrar que. 0 d d Multiplicando fraciones algebraicas simplificando: + ( + ) + + e + 1 e e + 1 ( + ) + e + 1 0

4 4) Calcule el valor de la derivada direccional en el punto P 0 (1,3,) para la función f (,, z) ln ( + + z ) en dirección del vector Unitariou i j k (3 ptos) Solución: 1º.Calculemos el gradiente: f (,, z) f (,, z)i + f (,, z) j + f (,, z)k z las derivadas parciales de la función vienen dadas por: f (,, z) + + z Si f (,, z) ln ( + + z ) f (,, z) + + z z f z (,, z) + + z z f (,, z) i + j+ k + + z + + z + + z Al evaluar el gradiente en el punto P 0 1,3, obtenemos el vector: (1) (3) () f (1,3, ) i + j+ k (1) + (3) + () (1) + (3) + () (1) + (3) + () i + j+ k i + j+ k i + 3j+ k Ahora podemos calcular la derivada direccional del vector unitario u con respecto a el vector gradiente encontrado: Du. f (,, z) ( i j k ). ( i + 3j+ k) ( 1 3 ) ) Obtenga la ecuación de la recta normal el plano tangente a la superficie 1/ + 1/ + z 1/ 4 en el punto P 0 (4,1,1) (3pts) 1º.Calculemos el gradiente:

5 f (,, z) f (,, z)i + f (,, z)j + f (,, z)k z las derivadas parciales de la función vienen dadas por: 1 f (,, z) 1/ 1 f z + + z f z 1/ 1 f z (,, z) 1/ z f (,, z) i + j+ k i + j+ k 1/ 1/ 1/ z z 1/ 1/ 1/ Si (,, ) 4 (,, ) Al evaluar el gradiente en el punto P0 4,1,1 obtenemos el vector normal : N f (4,1,1) i + j + k i + j + k ( i + j + k) º.La ecuación del plano tangente viene dado por el producto interno o punto de: f (,, z ). ( )i + ( ) j + ( z z )k 0 [ ] ( f 0 0 z0 f 0 0 z0 f z 0 0 z0 ) [ 0 0 z z0 ] (,, )i + (,, )j + (,, )k. ( )i + ( ) j + ( )k 0 f (,, z )( ) + f (,, z )( ) + f (,, z )( z z ) z Nos quedaría así: f [ + + z ] [ z ] (4,1,1). ( 4)i ( 1) j ( 1)k 0 i + j+ k. ( 4)i + ( 1) j + ( 1)k 0 ( 4) + ( 1) + ( z 1) z z 8 [ ] f (4,1,1). ( 4)i + ( 1)j + ( z 1)k 0 1 ( i + j + k ). [ ( 4)i + ( 1)j + ( z 1)k ] ( 4) + ( 1) + ( z 1) z 1 0 mc.. m.(4,,1) z z z 8

6 3º -La ecuación de la recta Normal al plano en el punto P 0 (X 0, Y 0, Z 0 ) viene dada por : ( 0 ) ( 0) ( z z0) f (,, z ) f (,, z ) f (,, z ) z ( 4) ( 1) ( z 1) 1 6) Si las dos superficies f(,,z) g(,,z) es decir z + 8 z recta tangente a la curva de intersección en el punto (,-,0) (4pts) + se interceptan en una curva, determine la ecuaciones de la Vea el a ejemplo Número 3 de la pagina de Lehithold. Louis (1998) El calculo 7ed.Vamos a generalizar para este problema Sean f (,, z) + z 8 g(,, z) + z + Entonces f (,, z) i + j k g(,, z) i j + zk Por tanto: N1 f (,, 0) 4i 4 j k N g(,, 0) i + 4 j+ 0k Calculemos el Producto Cruz o Eterno (Producto Vectorial) de los vectores Normales, para obtener asi un nuevo vector:

7 i j k N N i j + k i j k i j+ 0k En consecuencia, un conjunto de números directores de la recta tangente es (4,-1,0), Asi las ecuaciones de las rectas tangentes son: ( ) ( + ) ( z 0) ( ) ( + ) z Visualicemos en el espacio R 3 (usando el graficador derive 6.0); tenemos: + z 8 z + 8

8 z z + Ambas superficies.vemos que se cortan

9 El plano Tangente seria 4-+0z 10 Con un nuevo acercamiento

10

APELLIDOS Y NOMBRES: C.I.: NOTA:

APELLIDOS Y NOMBRES: C.I.: NOTA: INSTRUCCIONES. Llene todos los datos en letra imprenta.. Espere que el profesor de la orden de comenzar la prueba. 3. Lea cuidadosamente cada una de las preguntas antes de contestar.. Deberá formular cualquier

Más detalles

APELLIDOS Y NOMBRES: C.I.: NOTA: III-

APELLIDOS Y NOMBRES: C.I.: NOTA: III- INSTRUCCIONES REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS. Llene todos los datos en

Más detalles

1. Calcular la integral definida de: x e xdx. sin 5

1. Calcular la integral definida de: x e xdx. sin 5 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES. Lln todos los datos n ltra

Más detalles

2 1 x y 5. Tenemos que hallar la matriz inversa de A. Para hallar la matriz inversa de A

2 1 x y 5. Tenemos que hallar la matriz inversa de A. Para hallar la matriz inversa de A Prueba corta Unidad II - 5 pts Fecha 10/12/2010 Recuperando horas pérdidas I- Resolver los sistemas siguientes: a) 2x y 5 x 2y 5 Use el método de matriz Inversa (2 ptos ) Solución: Planteamiento general:

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014 Universidad de Costa Rica Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO Miércoles 3 de setiembre de 04 INSTRUCCIONES Lea cuidadosamente, cada instrucción y pregunta, antes de contestar.

Más detalles

TEMA 8: FUNCIONES COMPUESTAS E IMPLÍCITAS. HOJA 8A

TEMA 8: FUNCIONES COMPUESTAS E IMPLÍCITAS. HOJA 8A ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA Y COMPUTACIÓN TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso

Más detalles

Coordinación de Matemática I (MAT021) Taller 10

Coordinación de Matemática I (MAT021) Taller 10 Coordinación de Matemática I MAT01 Taller 10 Primer semestre de 01 Semana 11: Lunes 0 viernes 08 de junio Ejercicios Ejercicio 1 Calcular las derivadas de las siguientes funciones: 1. cos x ln x. x + x

Más detalles

8 x2 y 3 x 4 ( ) define a y como función

8 x2 y 3 x 4 ( ) define a y como función Universidad de Santiago de Chile Facultad de Ciencia, Depto. de Matemática y C.C. Departamento de Matemática y C.C. Asignatura: Cálculo Anual Ingeniería Civil PEP, Año 0 Problema. 0 pts.) Considere la

Más detalles

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Ejercicios Resueltos Ejercicio : Encontrar la pendiente de la recta

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-0---M-00-0 CURSO: Matemática Intermedia SEMESTRE: Primero CÓDIGO DEL CURSO: 0 TIPO DE EXAMEN: Eamen Final

Más detalles

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h

( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-4-M--00-07 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 07 TIPO DE EXAMEN: Eamen Final FECHA DE EXAMEN: 8

Más detalles

CALCULO 11-M. Primera Parte. Duración 1h 40m. 2y =2x = x 4 2x f 0 (x) =4x 3 2=0. x =2 1/3.

CALCULO 11-M. Primera Parte. Duración 1h 40m. 2y =2x = x 4 2x f 0 (x) =4x 3 2=0. x =2 1/3. CALCULO -M Primera Parte Duración h 4m Ejercicio ( puntos) Encontrar el punto de la curva más cercano al punto P (, ). y x + El cuadrado de la distancia del punto P a un punto genérico X(x, y) de la curva

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 2012 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Septiembre 01 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

Superficies. Primera Forma Fundamental

Superficies. Primera Forma Fundamental Tema Superficies. Primera Forma Fundamental Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 005 006 Tema. Superficies. Primera Forma Fundamental 1. Curvas sobre superficies

Más detalles

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A 5 de noviembre de 1 GRUPO A xy5 si y x x y 1.- Consideremos f(xy)=. Se pide: 1 si y=x a) Existe el límite: lím f(xy)? xy 1 b) Es continua la función en (1)? c) Es diferenciable la función en (1)? ( puntos).-

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS.

UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. INSTITUTO DE CIENCIAS BASICAS. Cálculo III, Examen Final. Semestre Primavera 1 Tiempo: 11 min. Problema 1 [1,5 puntos] La curvatura de una trayectoria

Más detalles

U y j U. z k donde U = U(x, y, z ). a donde a = a1i a2 j a3k y. (, ).cos y. x y

U y j U. z k donde U = U(x, y, z ). a donde a = a1i a2 j a3k y. (, ).cos y. x y Análisis Matemático C T.P. Nº TRABAJO PRACTICO N DIFERENCIALES DE FUNCIONES DE VARIAS VARIABLES. INTERPRETACIONES GEOMETRICAS Y APLICACIONES.DERIVADAS DE FUNCIONES COMPUESTAS E IMPLICITAS. DERIVADA DIRECCIONAL.

Más detalles

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.

(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de

Más detalles

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 4 Semestre Académico

PONTIFICIA UNIVERSIDAD CATÓLICA DEL PERÚ ESTUDIOS GENERALES CIENCIAS. Cálculo 3 Práctica N 4 Semestre Académico Práctica N 4 Semestre Académico 014-1 1. Dada la curva : y 0 z y. a. Parametrizar la curva. pts b. Hallar la curvatura kt, la torsión t y la ecuación cartesiana del plano osculador de la curva en el punto

Más detalles

MATE1207 Primer parcial - Tema B MATE-1207

MATE1207 Primer parcial - Tema B MATE-1207 MATE7 Primer parcial - Tema B MATE-7. Si su respuesta y justificación son correctas obtendrá el máximo puntaje. Si su respuesta es incorrecta podrá obtener créditos parciales de acuerdo a su justificación.

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u

ln x dx = x ln x 2x ln x + 2x = (e 2e + 2e) 2 = (e 2) u Tema: Integrales definidas. Áreas Ejercicios PAU - JUNIO GENERAL Ejercicio.- Calcule d + Sea F() = d = + = + d d ln ln + = ln ln ln 5 + ln = A B + = + + = A( + ) + B = = A = = B A =, B = d = ln ln ln 5

Más detalles

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya

Contenido: Integral definida: (1º) Aplicación: Área entre dos curvas. Matemática II Sección F Semestre 2 Lcdo Eliezer Montoya REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS Contenido: Integrl definid: (1º) Aplicción:

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE MATEMÁTICAS CÁLCULO INTEGRAL PRIMER EXAMEN EXTRAORDINARIO Sinodales: M.I. Mayverena Jurado Pineda

Más detalles

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática

Ayudantía Regla de la Cadena. Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemática / 010 Ayudantía 4 1. Regla de la Cadena Proposición 1 Regla de la Cadena - 1. Sea f : U R n R diferenciable y γ : I R R n una curva diferenciable contenida en U. Entonces, la función gt = f γt es derivable

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-103-3-M-2-00-2013 CURSO: Matemática Básica 2 SEMESTRE: Primero CÓDIGO DEL CURSO: 103 TIPO DE EXAMEN: Tercer

Más detalles

Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas

Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas Lcdo. Eliezer Montoya Matemática I 1 Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas Asignatura Matemática I código 114 Primera Versión 14-06-08 Facilitador: Licdo Eliezer

Más detalles

Tema 11: Diferenciabilidad en varias variables.

Tema 11: Diferenciabilidad en varias variables. Tema 11: Diferenciabilidad en varias variables. José M. Salazar Noviembre de 2016 Tema 11: Diferenciabilidad en varias variables. Lección 14. Diferenciabilidad en varias variables. Lección 15. Aplicaciones

Más detalles

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 2 Mínimos cuadrados II Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice general

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52

2 t, y t = 2 sin 2t, z t = 3e 3t. ( 2 sin 2t) + z. t = 0. = f u (2, 3)u s (1, 0) + f v (2, 3)v s (1, 0) = ( 1)( 2) + (10)(5) = 52 TALLER : Regla de la cadena, derivadas direccionales y vector gradiente Cálculo en varias variables Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas 1. Use la regla de la cadena

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

Funciones Implícitas.

Funciones Implícitas. CAPÍTULO 5 Funciones Implícitas. En este capítulo presentamos el concepto de función implícita. Esta idea nos ayuda a obtener derivadas de funciones que no podemos conocer explícitamente, pero su aplicación

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Para calcular B, sustituimos A en la segunda ecuación y despejamos B:

Para calcular B, sustituimos A en la segunda ecuación y despejamos B: Prueba de Acceso a la Universidad. SEPTIEMBRE 014. Matemáticas II. a) Multiplicamos por la segunda ecuación: 9 6A B 7 7 1 1 Sumamos ahora ambas ecuaciones: 7A A 0 7 0 1 Para calcular B, sustituimos A en

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión

Lección 11: Derivadas parciales y direccionales. Gradiente. Introducción al Cálculo Infinitesimal I.T.I. Gestión Lección 11: Derivadas parciales y direccionales. Gradiente Introducción al Cálculo Infinitesimal I.T.I. Gestión Recordar: - Cálculo de ĺımites - Reglas de derivación Derivadas parciales f : R 2 R función

Más detalles

Tema 1: Cálculo diferencial en varias variables ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Tema 1: Cálculo diferencial en varias variables ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO Tema : Cálculo diferencial en varias variables FECHA: 3/3/ TIEMPO RECOMENDADO: / Hora Puntuación/TOTAL:,5/ Sea la función f(,) definida de la siguiente forma en todo (,) de IR : Y RESPUESTA AL EJERCICIO:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

EXAMEN TEMA 2:Funciones de varias variables

EXAMEN TEMA 2:Funciones de varias variables GRUPO 4Mb (16-17) CÁLCULO ETSI Informática (UPM) 8 de Junio - 217 Tiempo: 2 horas Nombre y Apellidos: Nº de Matrícula: Pr 1 Pr 2 Pr3 Pr4 Nota EXAMEN TEMA 2:Funciones de varias variables 2x 3 y 3 +yx 2

Más detalles

Opción A ( ) ( x) ( ) ( ) Examen. 1ª evaluación 4/12/ en su punto de A 1 A 2. 1 x. x El área total será una función en x : A( x) = A1 + A2

Opción A ( ) ( x) ( ) ( ) Examen. 1ª evaluación 4/12/ en su punto de A 1 A 2. 1 x. x El área total será una función en x : A( x) = A1 + A2 Eamen 1ª evaluación /1/7 Opción A Ejercicio 1 (Puntuación máima: puntos Obtener la ecuación de la recta tangente a la gráfica infleión 6 + 6 1 1 1 ; 1 1 1 1 ( 1 1, ( 1, ( 1 ( 1, y 6( 1 y 6 + 6 Calculamos

Más detalles

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016

CAMPOS VECTORIALES. Presenta: M.E.M. Enrique Arenas Sánchez. 21 de septiembre de 2016 Presenta: M.E.M. Enrique Arenas Sánchez 21 de septiembre de 2016 Definición de Campo Escalar. Se llama campo escalar a una función que asocia a cada punto del dominio de una función un valor escalar. Ejemplo:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Junio de 2007 Opción A

Junio de 2007 Opción A Ejercicio º Junio de 7 Opción [ 5 puntos] Determina dos números reales positivos sabiendo que su suma es que el producto de sus cuadrados es máimo. Llamo, a los dos números que ha que calcular Los datos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA LA FUERZA ARMADA

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA LA FUERZA ARMADA REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA Comportamiento DE Organizacional. LA FUERZA ARMADA NACIONAL UNEFA - NUCLEO

Más detalles

APELLIDOS Y NOMBRES: C.I.: NOTA: ASIGNATURA: Matemática II -

APELLIDOS Y NOMBRES: C.I.: NOTA: ASIGNATURA: Matemática II - REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NÚCLEO BARINAS INSTRUCCIONES 1. Lln todos los datos n ltra

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FISICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Introducción Vector de posición

Más detalles

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES

TEMA 3: CÁLCULO DE FUNCIONES DE VARIAS VARIABLES TEMA : CÁLCULO DE FUNCIONES DE AIAS AIABLES. Hallar f,. f, f,. 4 4. Hallar el valor de la función f, en los puntos de la circunferencia.. Calcular los guientes límites: cos lim,, sen lim,, c, lim con,

Más detalles

24 Apuntes de Matemáticas II para preparar el examen de la PAU

24 Apuntes de Matemáticas II para preparar el examen de la PAU Apuntes de Matemáticas II para preparar el eamen de la PAU TEMA 7. INTEGRALES DEFINIDAS. ÁREAS.. Aproimación de áreas bajo una curva. Límite de la definición, integral definida.. Área comprendida por una

Más detalles

Unidad 7. Integrales definidas. Áreas TEMA 7. INTEGRALES DEFINIDAS. ÁREAS.

Unidad 7. Integrales definidas. Áreas TEMA 7. INTEGRALES DEFINIDAS. ÁREAS. Unidad 7. Integrales definidas. Áreas TEMA 7. INTEGRALES DEFINIDAS. ÁREAS.. Aproimación de áreas bajo una curva. Límite de la definición, integral definida.. Área comprendida por una función y el eje OX..

Más detalles

OPCIÓN A. Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo.

OPCIÓN A. Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo. MATEMÁTICAS II 2007 OPCIÓN A Ejercicio 1: Determina dos números reales positivos sabiendo que su suma es 10 y que el producto de sus cuadrados es máximo. Solución: Es un problema de optimización, sean

Más detalles

DIAGNOSIS ALGEBRA LINEAL - (P.A.A.) De acuerdo a la figura, por medio de cuál combinación lineal se obtiene el vector b?

DIAGNOSIS ALGEBRA LINEAL - (P.A.A.) De acuerdo a la figura, por medio de cuál combinación lineal se obtiene el vector b? REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL DE LA FUERZA ARMADA U.N.E.F.A. - NÚCLEO ZULIA DIVISIÓN ACADÉMICA-EXTENSIÓN MARACAIBO DEPARTAMENTO

Más detalles

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016

Primer Examen Parcial Tema A Cálculo Vectorial Marzo 5 de 2016 rimer Examen arcial Tema A Cálculo Vectorial Marzo 5 de 016 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. Recuerde apagar y guardar

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

Guía realizada por: Pimentel Yender.

Guía realizada por: Pimentel Yender. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

6 P x Q x. ( ). ( ). R( x ) 5 ( ). 9 ( ) + 6) 7x y. Q x x x x CIU I) Dados los polinomios: 3 2

6 P x Q x. ( ). ( ). R( x ) 5 ( ). 9 ( ) + 6) 7x y. Q x x x x CIU I) Dados los polinomios: 3 2 CIU-009- REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA 1 Problemas Propuestos para de Evaluar

Más detalles

Coordenadas Polares y graficas polares

Coordenadas Polares y graficas polares REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA Complemento para evaluar parte de la Unidad III

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

Integración por fracción parcial -Caso Lineal

Integración por fracción parcial -Caso Lineal * Método de integración por fracción parcial Caso lineal Recordemos que una función racional h es la forma: Px ( ) hx ( ) Qx ( ) Donde P(x) y Q(x) son polinomios y Q(x) no es el polinomio nulo.pues veremos

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Nombre: Paralelo: Califique cada una de las siguientes proposiciones como verdadera o falsa. Justifique formalmente su respuesta.

Nombre: Paralelo: Califique cada una de las siguientes proposiciones como verdadera o falsa. Justifique formalmente su respuesta. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL Eamen de la Tercera Evaluación I Término 9/septiembre/008 Nombre: Paralelo: TEMA No. (0 PUNTOS Caliique cada

Más detalles

ACTIVIDAD #10 DERIVADA DIRECCIONAL. Nombre: Sección:

ACTIVIDAD #10 DERIVADA DIRECCIONAL. Nombre: Sección: ACTIVIDAD #0 DERIVADA DIRECCIONAL Nombre: Sección: Una derivada direccional es una pendiente, así que se comienza definiendo lo que son pendientes en tres dimensiones Pendiente en una recta en 3D: V Dada

Más detalles

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 206MATEMÁTICAS II. SEPTIEMBRE 2017

EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 206MATEMÁTICAS II. SEPTIEMBRE 2017 EBAU Septiembre 07 Matemáticas II en Murcia EVALUACIÓN DE BACHILLERATO PARA EL ACCESO A LA UNIVERSIDAD 06MATEMÁTICAS II. SEPTIEMBRE 07 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1.

FUNCIONES DE. 1.- Determinar y representar gráficamente el dominio de las siguientes funciones: a) f (x) = x 2 16 b) f (x) = x 2 1. FUNCIONES DE n EN m Nota: se entenderá log log0 = y ln = log e - Determinar y representar gráficamente el dominio de las siguientes funciones: a) f () = 6 b) f () = c) f () = d) f () = e) f () = + + +

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones Universidad de Costa Rica MA005 Ecuaciones Diferenciales Escuela de Matemáticas 6 de Mao de 07. Examen Parcial # Instrucciones Cuenta con 3 horas para realizar el examen. El examen cuenta de 7 preguntas

Más detalles

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad

Función diferenciable Regla de la cadena (2 variables) Regla de la cadena (vectorial) Diferenciabilidad Diferenciabilidad 1 Función diferenciable 2 Regla de la cadena (2 variables) 3 Regla de la cadena (vectorial) OBJETIVO Generalizar el concepto de diferenciabilidad (conocido ya para funciones de una variable)

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA 3: Derivadas parciales y diferenciación. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES ) 3-1. Calcular, para las siguientes funciones. a) fx, y) x cos x sen y b) fx, y) e xy c) fx, y) x + y ) lnx + y )

Más detalles

Se define la derivada de f en el punto c, según el vector u, al ĺımite, que denominamos f (c; u) ó D u f (c), si existe: f (c; u) = D u f (c) = lim

Se define la derivada de f en el punto c, según el vector u, al ĺımite, que denominamos f (c; u) ó D u f (c), si existe: f (c; u) = D u f (c) = lim Derivada direccional (1) Sea f : D Rn R m x = (x 1,, x i,, x n ) y = f (x) = (y 1,, y j,, y m ). Siendo y j = f j (x) = f j (x 1,, x i,, x n ), j = 1, 2,, m f (x) = (f 1 (x),, f j (x),, f m (x)) Sea c

Más detalles

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2

Pruebas. x = x. 7(2x + 1) x 2 + x 6. x 2 CAPÍTULO 10 Pruebas Prueba N o 1 - Tema: Capitulo 1 y 2 1. 1 punto. Se espera que del total de alumnos inscritos en la asignatura, el 20 % obtendrá una nota no menor a 6,0; el 65 % obtendrá una nota no

Más detalles

Unidad 10 Integrales definidas. Aplicaciones

Unidad 10 Integrales definidas. Aplicaciones Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE---M--00-07 CURSO: Matemática Intermedia SEMESTRE: Primero CÓDIGO DEL CURSO: TIPO DE EXAMEN: Primer Examen

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en

Más detalles

Tema 2: Movimiento unidimensional

Tema 2: Movimiento unidimensional Tema 2: Movimiento unidimensional FíSICA I, 1º Grado en Ingeniería Electrónica, Robótica y Mecatrónica Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla

Más detalles

Ejercicios de Funciones: derivadas y derivabilidad

Ejercicios de Funciones: derivadas y derivabilidad Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.

Más detalles

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL

(Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL (Apuntes sin revisión para orientar el aprendizaje) CÁLCULO VECTORIAL EXTREMOS DE FUNCIONES ESCALARES DE VARIABLE VECTORIAL En numerosas aplicaciones de la ingeniería se presentan problemas de optimización,

Más detalles

Funciones Compuestas.

Funciones Compuestas. CAPÍTULO 4 Funciones Compuestas. En este capítulo trabajaremos con funciones compuestas. Aprendemos el equivalente multidimensional de la regla de la cadena que en varias variables adquiere una dimensión

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

Resp x = 72.73, S 2 = 225,8574 => S = 15,0286. Lcdo Eliezer Montoya Estadística III UNEFA -Barinas 1

Resp x = 72.73, S 2 = 225,8574 => S = 15,0286. Lcdo Eliezer Montoya Estadística III UNEFA -Barinas 1 REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DE LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL NÚCLEO BARINAS UNEFA Estadística III Licenciatura en Economía Social.

Más detalles

1. Límites de sucesiones en R n

1. Límites de sucesiones en R n 1. Límites de sucesiones en R n Definición 1 (Límite de una sucesión). Dada {A k } k=1 = {a1 k,... an k } Rn decimos que el límite de A k cuando k tiende a infinito es L si: lím A k = L ε > 0, N N : A

Más detalles