TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS



Documentos relacionados
Tema 2 Algebra. Expresiones algebraicas Índice

Expresiones algebraicas

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

1. Expresiones polinómicas con una indeterminada

POLINOMIOS Y FRACCIONES ALGEBRAICAS

1. EXPRESIONES ALGEBRAICAS.

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL

TEMA: 5 ÁLGEBRA 3º ESO

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

TEMA: 5 ÁLGEBRA 3º ESO

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.

5 REPASO Y APOYO OBJETIVO 1

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

Expresiones algebraicas

EXPRESIÓN ALGEBRAICA Monomios, Polinomios

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

Tema 3: Expresiones algebraicas

, 5m2 + n 1 son expresiones algebraicas. Hay diversidad de situaciones que se pueden expresar mediante expresiones algebraicas.

2. Calcula cociente y resto en la siguiente división de polinomios: (x 5 32) : (x 1)

TEMA 4. POLINOMIOS. Los números reales son polinomios de grado 0.

Unidad 2: Ecuaciones, inecuaciones y sistemas.

TEMA: 5 ÁLGEBRA 2º ESO

Tema 3. Polinomios y fracciones algebraicas

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

UNIDAD 2.- Polinomios (tema 2 del libro)

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

6. Usa el teorema del resto para comprobar si los siguientes polinomios son divisibles por (x 2)

4 ESO. Mat B. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas

EJERCICIOS DE POLINOMIOS

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS

UNIDAD 2 ÁLGEBRA. Definiciones, Operaciones algebraicas, MCM, MCD. Dr. Daniel Tapia Sánchez

5 DIVISIÓN DE POLINOMIOS. RAÍCES

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n a n - 2 x n

Tema 2. Polinomios y fracciones algebraicas

Expresiones algebraicas

TEMA 5: ÁLGEBRA EXPRESIONES ALGEBRAICAS

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

3.1 Polinomios Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios.

Tema 3: Expresiones algebraicas

POLINOMIOS En esta unidad aprenderás a:

Ejercicios de Polinomios y Fracciones Algebráicas

Expresiones algebraicas

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

POLINOMIOS Y FRACCIONES ALGEBRAICAS

5 REPASO Y APOYO OBJETIVO 1

5 Polinomios. 1. Expresión algebraica. Valor numérico Monomios y polinomios Operaciones con monomios y polinomios 30

CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO

I.E.S. ANTONIO DOMÍNGUEZ ORTIZ

Polinomios y Fracciones Algebraicas

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

Bloque 1. Aritmética y Álgebra

Hallar las raíces enteras de los siguientes polinomios:

5 REPASO Y APOYO OBJETIVO 1

Tema 5. Factorización de Polinomios y fracciones algebraicas.

MONOMIOS Y POLINOMIOS

CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO

EXPRESIONES ALGEBRAICAS

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

Tema 2 Polinomios y fracciones algebraicas 1

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

Tema 4. Polinomios Operaciones

Tema 3: Expresiones algebraicas

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

2. EXPRESIONES ALGEBRAICAS

Partes de un monomio

Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto.

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

Tema 3 División entera. Factorización 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Llamamos expresión algebraica a toda combinación de letras y números relacionados entre sí a través de las operaciones matemáticas

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

S2: Polinomios complejos

TEMA 3: Polinomios. Tema 3: Polinomios 1

Tema 2: Polinomios, ecuaciones y sistemas de ecuaciones.

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 3. Algebra. Teoría. Matemáticas

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

EJE N 3 : ECUACION LINEAL, CUADRATICA Y SISTEMA DE ECUACIONES

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?

Expresiones Algebraicas Racionales en los Números Reales

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

Transcripción:

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplos de monomios son x y Pero no serán monomios las expresiones De un monomio cabe destacar: o 1 a b 5 x y o 5 x Coeficiente: el número que multiplica (o divide) a las variables Parte literal: las letras y sus exponentes Grado: la suma de todos los exponentes de las letras o variables Así, en el monomio x y z, el coeficiente es, la parte literal x y z y tiene grado 6 Dos monomios son semejantes si tienen exactamente la misma parte literal: Un monomio semejante al x y z es el monomio 5x y z. Recordemos también que sólo se pueden sumar o restar monomios semejantes: Así: 7x yz x z y x yz 8x yz 4x y xy 5xy x y x y xy Para multiplicar o dividir monomios basta con aplicar las propiedades de potencias: x y x y 6 x y 4 6 4 1a b c abc 4 4a bc Un polinomio es una expresión algebraica formada por la suma o resta de dos o más monomios no semejantes. Por ejemplo x y x y x y El grado de un polinomio es el grado del monomio de mayor grado. Así, en el polinomio anterior, es grado corresponde al del segundo término que tiene grado 5. Trabajaremos en general con polinomios de una sola variable, del tipo: n n 1 P( x) a x a x a x a x a n n1 1 0 1

El grado del polinomio anterior es n, mientras que a acompaña al monomio de mayor grado) y a a0 monomio de grado 0) an se le llama coeficiente principal (el que se le llama término independiente (el coeficiente del En el polinomio P(x) = 5x 4 6x + 7x 8x + 10, el grado es 4, el coeficiente principal 5 y el término independiente 10. Normalmente trabajaremos con los polinomios ordenados puesto que todas las operaciones posteriores resultan más sencillas. Ejercicios: 4 5 1.- Dado el polinomio Px x 5x x x 1 x x a) Agrupa los términos semejantes y ordénalo b) Indica su grado, coeficiente principal y término independiente.- Ordena el polinomio 5 independiente P x x x x e indica su grado, coeficiente principal y término Recordemos también que el valor numérico de un polinomio es el que se obtiene al sustituir la variable (o variables, en su caso) por un número concreto y realizar las operaciones indicadas Así, el valor numérico del polinomio P( ) 4 8 4 P( x) 4x x x 4 para x = es Como ejercicio, calcular los valores numéricos de polinomio anterior para x = -1, x = 0 y x = 1.- OPERACIONES CON POLINOMIOS a) Suma y diferencia Para sumar o restar polinomios se suman o restan los términos semejantes (recordar que conviene tener los polinomios ordenados): Ejemplo: Dados los polinomios 4 P( x) 5x x x 1 ; Calcular Px Qx ; Qx Px 5 Q( x) x x x x Solución:

4 5 5 4 P x Q x 5x x x 1 x x x x x 5x x x x 5 4 5 4 P x Q x x x x x 5x x x 1 x x x x 5x x x 1 5 4 x 5x x x 4x 4 b) Producto Para multiplicar dos polinomios, se multiplican todos los monomios del primero por todos los monomios del segundo, y se agrupan términos semejantes (de nuevo ordenados). Ejemplo: Multiplicar los polinomios P( x) x x 1 y Q( x) x x 4 Solución: 5 4 4 P x Q x x x 1 x x 4 x x 4x x 6 x 8x x x 4 5 4 x x 10x 9x x 4 Ejercicio: Sean los polinomios: P(x) x 4x 8 ; Q(x) 5x 6x 9 R(x) x 5x x 8 ; S(x) x 6x 9x Efectuar las siguientes operaciones: a) P(x) Q(x) b) P(x) R(x) c) R(x) S(x) d) Q(x) S(x) e) P(x) Q(x) f) P(x) R x S x g) Q(x) S(x) R(x) 1 c) Productos Notables Como caso particular del producto de polinomios, aparecen los llamados productos notables, desarrollos que aparecen mucho en el álgebra y conviene memoriza y dominar. Vamos a ver tres de ellos: a b a b ab a b a b ab a ba b a b Ejemplo: x 4x 9 1x 4x 1x 9 4 4 x y x 9 y 6 xy 9 y 6 xy x a b a b 9a 4b

Ejercicio: Desarrollar los siguientes productos notables: a) x 1 b) x y c) m m d) x e) g) a 1 x y x h) x x 6 j) x k) 4 5 4 4 f) x y x y i) 5x 5x l) x x d) División Recordamos con un ejemplo cómo se realiza la división de polinomios (el pasar multiplicando se cambia el signo): 6 Vamos a dividir el polinomio Px x x x entre Completamos los huecos y dividimos cada monomio: 6 x x x x 6 4 4 x x x x x 9 Cociente. 4 x x -x - 4 x 9x x 9x x x x 9x 6x 9x 7 6 x 4 Re sto. Q x x Ejercicio: Realizar las siguientes divisiones: 5 4 a) 8x 14x 5x x 5x 6 b) x x x x x c) 4x 19x 4x x 5 d) x x 4 4

e) Ruffini El método de Ruffini sirve para dividir polinomios cuando el divisor es del tipo x a 4 Así por ejemplo, para dividir Px x 8x 5x 1 entre x : 0 8 5 1 6 1 8 6 6 4 1 5 Y el resto será 5 y el cociente el polinomio C x x 6 x 4x 1 Ejercicios: 1.- Realizar las siguientes divisiones: 4 a) x 5x 6x x b) x x 7 x 4 5 1 1 d) x x x x x 4 5 c) x 4x 6x 8 x 1.- Calcular el valor de m para que las siguientes divisiones tengan de resto -: 4 4 a) x x mx 9 x b) x x m x 1 c) x x mx x 1 x.- Calcular el valor de m para que el polinomio Px x x mx sea divisible entre x + 1. Cuál será el cociente en ese caso?.- TEOREMA DEL RESTO El Teorema del resto permite calcular el resto de una división entre un binomio del tipo x a sin necesidad de hacer la división: El dividir un polinomio P(x) entre otro del tipo x a, el resto coincide con el valor numérico de P(x) en a, es decir, R = P(a) Así, por ejemplo, para calcular el resto de la división x x x 4 x hacer la división por Ruffini, sino que basta sustituir: R P 8 8 6 4 6 (comprobarlo haciendo la división), no hace falta ni siquiera 5

Ejercicios: (usando el Teorema del Resto) 1.- Calcula el resto de las siguientes divisiones: 4 10 5 101 a) x x x b) x x x x 1 x 1 c) x x 5 x 1 d) x x 1.- Comprobar si los siguientes polinomios son divisibles entre los binomios que se indican: 4 a) x 1 entre x 1 b) x x x entre x 10 5 c) x x 4x entre x 1 d) x x entre x 1 e)x x 9x entre x f)1 x entre x 1.- Calcular en cada caso el valor de k para que se verifique la afirmación: a) El resto de dividir el polinomio Px x 7x kx 6 entre x 1 es 0 4 b) Px x x kx 10x es divisible por x + c) x + 5 es un factor del polinomio Px x kx 15 4.- RAÍCES Y FACTORES DE UN POLINOMIO Se dice que a es una raíz del polinomio P(x) si P(a) = 0 Nota: a las raíces de un polinomio también se les llaman ceros o soluciones del polinomio, puesto que son las soluciones de resolver la ecuación P(x)=0 Por ejemplo: a = 1 es una raíz de P x x x ya que P(1) = 0 a = es una raíz de Px x x x 4 ya que P() = 0 a = - es una raíz de Px x x 6 ya que P(-) = 0 Si a es una raíz del polinomio P(x), entonces P(a) = 0, y por el Teorema del Resto se obtiene que la división de P(x) entre x a es exacta (resto 0), lo que significa que P(x) es divisible entre x a, o lo que es lo mismo, que x-a es un factor del polinomio P(x). Es decir: Si a es una raíz de P(x) x a es un factor de P(x) Así, de los ejemplos anteriores, se obtiene que: P x x x x 1 es un factor de x es un factor de Px x x x 4 x + es un factor de Px x x 6 6

Ejercicio: Indicar si las siguientes afirmaciones son verdaderas o falsas: a) a = - es una raíz de x 4 P x x 7x 7x 15 b) x es un factor de c) x 6 x 1 tiene como factor a x + d) a = - es un cero del polinomio x 4x 4 P x x x x e) x 1, x + 1, x son factores del polinomio Es importante tener en cuenta que las raíces enteras de un polinomio se encuentran entre los divisores de su término independiente. Además también conviene tener en cuenta que un polinomio de grado n puede tener como mucho n raíces reales. Así, las posibles raíces enteras del polinomio Px x 7x 6 son 1,,, 6 Como es de grado, como mucho tendrá raíces reales Queda como ejercicio encontrar las raíces del polinomio anterior. 5.- FACTORIZACIÓN DE POLINOMIOS Factorizar un polinomio es descomponerlo en producto de polinomios (factores) del menor grado posible. Así por ejemplo el polinomio Px x 1 se puede descomponer, usando los productos notables, en dos factores: Px x 1 x 1x 1 x 1 Si un polinomio no se puede descomponer se dice que es irreducible. Por ejemplo, el polinomio es irreducible. A la hora de factorizar un polinomio conviene seguir los siguientes pasos: 1) Si se puede, sacar factor común x x x x x 6 x ) Usar, si se ven, los productos notables: x 9 x x x x x x x x 1 x x 1 7

) Intentar obtener la primera raíz del polinomio usando el Teorema del Resto y probando con los divisores del término independiente. Una vez encontrada, podemos usar Ruffini para ir calculando los sucesivos cocientes y hallar así todos los posibles factores del tipo x a Vemos esto con ejemplos: Ejemplo 1: Solución: P x x x 8x x 6 Descomponer 4 Los divisores del término independiente (posibles raíces) son 1,,, 6 Buscamos la primera raíz usando el Teorema del Resto. Para ello sustituimos en el polinomio las posibles raíces (por orden, que es más fácil): Como P1 1 8 1 6 0, hemos encontrado la primera raíz, lo que significa que el polinomio es divisible por x 1. Ya tenemos por tanto un primer factor. Si hacemos Ruffini obtendremos el cociente que a su vez podremos intentar seguir descomponiendo: 1-8 -1 6 1-5 -6-5 -6 0 Esto significa que P x x 4 x 8 x x 6 x 1 x x 5x 6 Que sería una primera descomposición. Seguimos probando (ya con Ruffini) para encontrar la siguiente raíz. Conviene ir por orden y repetir con el mismo número por si saliesen varios factores iguales. En este caso: 1-8 -1 6 1-5 -6-5 -6 0-1 - -1 6 1-6 0 - -4 6-0 8

El último cociente ya es un factor de polinomio, en este caso de grado 1, y por tanto, la descomposición de este polinomio será: 4 P x x x 8x x 6 x 1 x 1 x x Además de descomponer el polinomio, hemos obtenido en el proceso las distintas raíces o soluciones del mismo, que son las soluciones de igualar cada uno de los factores anteriores a 0, es decir: x 1,x 1,x,x Ejemplo : Solución: P x x 9x 4x 0 Descomponer Los divisores del término independiente (posibles raíces) son 1,, 4, 5, 10, 0 Probando por el Teorema del Resto (aunque se puede probar directamente por Ruffini) obtenemos como primera raíz el, ya que P 8 6 48 0 0 Hacemos Ruffini. 1-9 4-0 -14 0 1-7 10 0 El cociente es un polinomio de segundo grado. En este momento decidimos si seguimos haciendo Ruffini (algunas posibles raíces como el 4 y el 0 ya no servirían) o descomponer el polinomio resolviendo la ecuación de segundo grado correspondiente. Si seguimos con Ruffini obtenemos: 1-9 4-0 -14 0 1-7 10 0-10 1-5 0 9

Con lo que el polinomio descompuesto sería: P x x 9 x 4 x 0 x x 5 Sus raíces son x =, (solución doble porque se repite dos veces) y x = 5 Si hubiéramos optado por resolver la ecuación de segundo grado: 7 x 5 x x 7x 10 0 x Que son precisamente las raíces que nos han salido por Ruffini. Ejemplo : Solución: P x x x x 5x x 8x Descomponer 6 5 4 En primer lugar sacamos factor común: P x x 6 x 5 x 4 5x x 8 x x x 5 x 4 x 5x x 8 Los divisores del término independiente son ahora: 1,, 4, 8 Probando con el Teorema del Resto (o directamente Ruffini) obtenemos: 1 - - -5 8 1 1. -5-10 -8 1 - -5-10 -8 0-1 -1 8 1 - - -8 0 4 4 4 8 1 1 0 El último cociente de grado ya es irreducible, pues ya no sirve ningún divisor de. También se puede ver resolviendo la ecuación de segundo grado correspondiente y comprobando que no tiene soluciones. Por tanto, el polinomio queda descompuesto como: P x x 6 x 5 x 4 5x x 8 x x x 1 x 1 x 4 x x Y sus raíces son: x = 0, x = 1, x = -1 y x = 4 10

Ejercicio: Descomponer en factores los polinomios e indicar cuáles son sus raíces: ) ) ) 4 4 a )) P x x x 7 x 8x 1 b P x x 8x 11x x 60 4 c )) P x x x d P x x x 5x e )) P x x 5x x 9 f P x x x x 5 4 g ) P x x 6 x 1x 14x 1x 8 h P x x x 5x 5 4 4 i ) P x x 10x 9 j P x x 6 x 1x 8x k ) P x x x 5x x 4 l 4 P x x 7x 8x 0 m )) P x x 8x 8x n P x x x 16 x 15 6.- MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO DE POLINOMIOS El proceso para calcular el M.c.d y el m.c.m. de varios polinomios es exactamente el mismo que con números: 1) Descomponer los polinomios en factores ) El M.c.d. es el producto de todos los factores comunes con el menor exponente ) El m.c.m. es el producto de todos los factores comunes y no comunes con el mayor exponente Así, si tenemos dos polinomios descompuestos como: P x x 1 x Q x x 1 x x El máximo común divisor será: M. c. d. x 1 x Mientras que el mínimo común múltiplo será: m. c. m. x 1 x x En la práctica no calcularemos dichos polinomios, sino que simplemente los dejaremos indicados como en el ejemplo anterior, pues su cálculo (salvo en casos particulares) resulta pesado y poco útil. Ejercicio: Calcular el M.c.d. y el m.c.m. de los siguientes polinomios: a ) P x x 4x ; Q x x 4x 4x b ) P x x 4x 5x ; Q x x 5x 8x 4 11

x 4 ; 5 4 x 6 c ) P x 7x 6 x Q x x x x d ) P x x 1 ; Q x x x ; R x x x x 4 e ) P x x x x 1 ; Q x x x x f ) P x 4x 64 ; Q x x 4x 8x 16 g ) P x x 9 ; Q x x 7.- FRACCIONES ALGEBRAICAS Una fracción algebraica es el cociente de dos polinomios, es decir, una expresión del tipo Así por ejemplo, son fracciones algebraicas: x x x 4,, x x x 1 x 8 P x Q x Las fracciones algebraicas se comportan de manera similar a las fracciones numéricas, y sus operaciones son las mismas: 7.1.- Simplificación Si al descomponer el numerador y el denominador tienen factores comunes, se pueden simplificar: x 1 x x 6 x x 1 x x 1 x 1 x x x x x x x 1 x 1 x x 1 x Ejercicio: Simplificar las siguientes fracciones: 4 x x x x x x 5x 7 x 5x 6 a ))) b c 4 x x x x x 1 x 4x 5x 4x 4 7..- Reducción a común denominador Al igual que con las fracciones numéricas, basta calcular el m.c.m. de los denominadores y luego dividirlo por cada denominador y multiplicar por cada numerador. 1

Ejemplo: x 7 x 1 x x 1 x 7 x x 1 x,, m. c. m. x x 1,, x x x x 1 x x 1 x x 1 x x 1 x 8x 7 x x x,, x x 1 x x 1 x x 1 x 1 x x x 1 x x 1 x,, m. c. m. x 1 x 1,, x 1 x x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 4x x x x 4,, x 1 x 1 x 1 x 1 x 1 x 1 7..- Suma y Diferencia Al igual que con las fracciones numéricas, se reducen a común denominador y se opera con los numeradores Ejemplo 1: x 1 x x x 1 x x Primero descomponemos los denominadores y calculamos el m.c.m.: x x x 1 x x x 1 x 1 m.c.m. x 1 x Luego: x 1 x x 1 x x 1 x x x 1 x x 1 x x x 1 x 1 x x 1 x x 9x x x x x 11x x 1 x x 1 x Si la fracción resultante se pudiera simplificar se haría Ejemplo : 1 x 1 x 1 x 1 x 1 Claramente el m.c.m. es x 1 x 1x 1, y por lo tanto: 1

1 x 1 x 1 x x 1 x 1 x x 1 x x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 x 1 Ejercicio: Opera y simplifica si es posible: 1 x 1 x x x 5x 6 1 x x x x a) b) c) x 1 x 1 x x x x 6 x x x x 6 7.4.- Producto y Cociente Al igual que en las fracciones numéricas, para multiplicar dos fracciones algebraicas se multiplican los numeradores y los denominadores, mientras que para dividir se multiplica el numerador de la primera por el denominador de la segunda y el denominador de la primera por el numerador de la segunda (es decir, se multiplican en cruz). Ejemplos: Antes de multiplicar o dividir, conviene descomponer los polinomios para poder simplificar x x 1 x 4 x 1 x x x x 1 x x 1 x 5x x x x 5 x x 5 : x 4 x x x x 1 x Como podemos ver, no haremos realmente las multiplicaciones, pues lo que queremos es simplificar lo más posible Ejercicio: Opera y simplifica si es posible: x 6 x 9 x 5x 6 x x 1 a) : b) : x 9x x 9x x 1 x 1 x 4 x 8x 15 x 1 1 x 1 c) d) 1 x 9 x 7 x 10 x 1 x 1 x x 14

EJERCICIOS 1.- Calcula y simplifica: 6 6 4 5 4 1 7 4 5 4 1 1 5 4 1 6 15 1 5 1 7 5 a ) x x x x x x x x x b) x x x x c) x x x x x x x d ) x x x : x x.- Dados los polinomios: P( x) x x x 1, Q( x) x x, R(x)= x - x Calcular: a) P( x) xq( x) R( x) b) P( x) 4Q( x) R( x) 1. Desarrolla los siguientes productos notables: a) (x+1) b) (x-4) c) (x-) d) (x+) e) x - g) x - y 1 j) x - x x y h) + x k) + x f) + x i) - x x l) - y 4 4. Transforma en diferencia de cuadrados: 1 1 a) x +. x - b)(x +1).(x a a -1) c) + b. - b x x d) (x-a).(x+a) e) -. + f) (a-b).(a+b) 5.- Opera y simplifica (usando productos notables): a) b ) x 4 x 4x 4 4 x 1x1x x 1 4x1x 15

6. Divide: a) x 4-4x +4x + : x -x b) x 5-4x +4x +4x- : x - c) x 5 +x 4 -x +5x+ : x -x+1 d) x 4 +x -x -x+ : x -1 e) x 6-4x 4 +x +x +x : x -x f) x 4 +x -5 : x + 7. Divide por el método de Ruffini: a) x 5 -x 4 -x +7x+1 : x- b) x 4 -x -x +x-1 : x+1 c) x -x +4x- : x-1 d) x 4 +x -x -x+: x+ e) -x 4 +4x -x -x+7 : x- f) x 5 +x 4 -x +4x- : x+ 8. Halla el resto de las siguientes divisiones por el Teorema del Resto: a) x 5 -x +x -1 : x- b) x -x+ : x-1 c) x 4 -x +x-1 : x+1 d) -x 6 -x 5 +x - : x+ e) x -x +x+ : x-1 f) x 4 -x -x+1 : x- g) x 4 -x +x : x- h) x 4 -x + : x+1 9. Hallar "a" para que la siguiente división sea exacta (x 5 -x +ax -4) : (x-) a) Por Ruffini b) Por el Teorema del Resto 10. Halla el valor de k para que al dividir el polinomio 4 P() x x kx x 1 entre x, el resto sea 1. 11.- Aplica el Teorema del Resto para calcular a y b de forma que al dividir el polinomio P() x x ax 7 x b entre x se obtenga de resto 9 y sea divisible por x 5 1.- Factoriza los siguientes polinomios e indica cuáles son sus raíces: a) P() x x 5 x x 4 b) P() x x 9 x 15 x 5 c) P() x x 4 x d) P x x x x x 4 e) P() x x x 4 x 5 x f) P() x x 4 x 0 4 g) P() x x 4 x 6 x 8 x 8 h) P() x x 5 x 1 x 6 4 () 7 15 18 1.- Calcula el máximo común divisor y el mínimo común múltiplo de: a) P x x 4x 5x y Q x x 4x 5 4 x 16 y R x 5 4 5 4 b) P x x 4x 5x x y Q x x 7 x 18x 0x 8x c) P x x x x x x y Q x x x 4 d) P x x 8, Q x 4x 16 x 1x 4x 16 16

14.- Opera y simplifica: a) : b) x x 1 x x x x x x x 1 x x x x 1 x 5x x x 1 a 4 a a x 1 x 1 x 1 x a c) d) : a e) : f) 6 x x 6 x x x x 1 x x x x x 1 x x 1 x x x x x x x x x x x g) : h) x 1 x x 1 x 1 x 1 x x 4 x x 7 x 4 x x x x x i) : j) x( x ) x x 1 x x x x 17

Soluciones: a ) 6 4 4x 7 x 1x x 5 b) x 10x 19x 0x c)6 x d) x 1x 16 x x 5 4 4 a ) x 6 x 8x x b) 4 x x 7x 10x.- a) 4x +4x+1 b) x -8x+16 c) 4x -1x+9 d) 9x +1x+4 e) 4x /9-4x+9 f) 4/9+8x/+4x g) x -xy+y h) x /4+xy/+y /9 i) 9-6x +x 4 j) 4x -4+1/x k) x /4+x +x 4 l) x /4-xy/4-9y /16 4.- a) 4x -1/9; b) x 4-1; c) a /9-b ; d) x -a ; e) x /4-9; f) a -9b 5.- a) 64 b) 0 6.- a) cociente: x -x+1, resto: x+ b) Cociente: x -x+4, resto: 5; c) cociente: x +x+1, resto: x+1 d) cociente: x +x-, resto: 0; e) cociente: x -x+1, resto: x f) cociente: x -1, resto: - 7.- a) c: x 4 -x+1, r: b) c: x -x +1, r: - c) c: x -x+, r: 0 d) c: x -x+, r: - e) c: -x +x -, r: 1 f) c: x 4 -x +4, r: -11 8.- a) 19; b) 0; c) -; d) 7; e) ; f) 1; g) -4; h) 8 9.- a = -1 10.- k = 11.- a = 7, b = 15 1.-.- 1.- x x x 4, Raíces,,4 b) x 1 x 5 a), Raíces 1,5 c) x x x, Raíces 0,, d) x 1 x x, Raíces 1,, e) x 1 x x x 1, Raíces 1, f) x x 5, Raíces,5 g) x x, Raíz h) x x 4 x, Raíces,4, 18

a) M.c.d. x 1 ; m.c.m. b) M.c.d. x x 1 x x 1 x x ; m.c.m. x x 1 x x 1 x x x 1 x x 1 c)m.c.d. ; m.c.m. d) M.c.d. x ; m.c.m. 4 x x 1.- 14.- a) b) x x c) 4x 1 1 1 x 1 d) e) f) x 1 a x x 1 x x x 5 x x 5 g) h) i) j) x 1x 1 x x x xx 1 19