Distribuciones de probabilidad más usuales



Documentos relacionados
Part VI. Distribuciones notables. Estadística I. Mario Francisco. Principales distribuciones unidimensionales. discretas. Principales distribuciones

Tema 6: Modelos de probabilidad.

Modelos de distribuciones discretas y continuas

Tema 4: Variables aleatorias. Tema 4: Variables Aleatorias. Tema 4: Variables aleatorias. Objetivos del tema:

Cálculo de probabilidad. Tema 3: Variables aleatorias continuas

Definición 4.1 Diremos que una variable aleatoria discreta X tiene una distribución Uniforme de parámetro N, N 1, si. rg(x) = {1, 2,...

TEMA 2.- VARIABLES ALEATORIAS UNIDIMENSIONALES.- CURSO 17/18

Procesos de Poisson. 21 de marzo, FaMAF 1 / 25

Técnicas Cuantitativas para el Management y los Negocios I

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos Básicos de Distribuciones Discretas y Continuas

Modelos de distribuciones discretas y continuas

Cuando la distribución viene dada por una tabla: 2. DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA.

Variables aleatorias

Estadística Grupo V. Tema 10: Modelos de Probabilidad

1.1. Distribución exponencial. Definición y propiedades

Tema 4: Probabilidad y Teoría de Muestras

Tema 2 Modelos de probabilidad

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 4. Distribuciones comunes

Valeri Makarov: Estadística Aplicada y Cálculo Numérico (Grado en Química)

VARIABLES ALEATORIAS

TEMA 3.- MODELOS DISCRETOS

Procesos estocásticos

Estadística I Tema 5: Modelos probabiĺısticos

6.3. Distribuciones continuas

Métodos Matemá6cos en la Ingeniería Tema 8. Distribuciones comunes

MODELOS DISCRETOS DE PROBABILIDAD

Distribuciones habituales

Algunas Distribuciones Discretas de Probabilidad. UCR ECCI CI-1352 Investigación de Operaciones I Prof. M.Sc. Kryscia Daviana Ramírez Benavides

9 APROXIMACIONES DE LA BINOMIAL

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

Tema 12: Distribuciones de probabilidad

Distribuciones de probabilidad

Introducción al Tema 7. Tema 6. Variables aleatorias unidimensionales Distribución. Características: media, varianza, etc. Transformaciones.

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Tema 5: Modelos probabilísticos

Probabilidad II Algunas distribuciones notables. Antonio Cuevas Departamento de Matemáticas Universidad Autónoma de Madrid

Estadística Grado en Nutrición Humana y Dietética

contablemente infinito.

PROBABILIDAD Y ESTADÍSTICA

Apuntes de Clases. Modelos de Probabilidad Discretos

Cálculo y EstadísTICa. Primer Semestre.

Juan Carlos Colonia DISTRIBUCIONES DISCRETAS IMPORTANTES

VARIABLES ALEATORIAS CONTINUAS

Probabilidad y Estadística

Tema 5 Algunas distribuciones importantes

Tema 5 Modelos de distribuciones de Probabilidad

Funciones generadoras de probabilidad

Resumen de Probabilidad

Introducción al Diseño de Experimentos.

Variables aleatorias continuas, TCL y Esperanza Condicional

Universidad Nacional de La Plata

Esperanza Condicional

Principales leyes de distribución de variables aleatorias

Probabilidad y Estadística

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Distribución de Probabilidad

Tema 6 Algunas distribuciones importantes Hugo S. Salinas

El momento k-ésimo para una variable aleatoria discreta respecto del origen, es. n = esperanza matemática de X

Percentiles. El percentil p de una variable aleatoria X es número más pequeño, que denominaremos x u que cumple:

Variables aleatorias continuas y Teorema Central del Limite

TEMA 3: Probabilidad. Modelos. Probabilidad

Definición de variable aleatoria

PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA

UNIVERSIDAD DE MANAGUA Al más alto nivel

Estadística Modelos probabilísticos discretos

Cálculo de Probabilidades y Estadística. Segunda prueba. 1

TEMA 3. Algunos modelos de probabilidad de tipo discreto. 3.1 Al finalizar el tema el alumno debe conocer...

Tema 4: Modelos probabilísticos

Tema 3. Probabilidad y variables aleatorias

Distribuciones de probabilidad

El primer momento centrado en el origen (k=1) es la esperanza matemática de X

Tema 7: Modelos de variables aleatorias discretas y absolutamente continuas

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

UNIDAD III VARIABLEA ALEATORIAS Y DISTRIBUCIONES DE PROBABILIDADES

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

Distribución de Probabilidad

TEMA 4. MODELOS DE PROBABILIDAD DISCRETOS

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Estadística Clase 2. Maestría en Finanzas Universidad del CEMA. Profesor: Alberto Landro Asistente: Julián R. Siri

Tema 4. MODELOS DE DISTRIBUCIONES DISCRETOS.

RESUMEN CONTENIDOS TERCERA EVALUACIÓN PROBABILIDAD DISTRIBUCIÓN BINOMIAL DISTRIBUCIÓN NORMAL

Métodos Estadísticos de la Ingeniería Práctica 5: Distribuciones de Probabilidad y el Teorema Central del

10/04/2015. Ángel Serrano Sánchez de León

Variables aleatorias discretas

Variables aleatorias. Tema Introducción Variable aleatoria. Contenido

8 Resolución de algunos ejemplos y ejercicios del tema 8.

Distribuciones de Probabilidad

Curso de Probabilidad y Estadística

Variables aleatorias continuas

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES

Teoría Estadística Elemental I Teoría (resumida) del 2 do Tema

M. Wiper Estadística 1 / 17. Variables discretas. Michael Wiper Departamento de Estadística Universidad Carlos III de Madrid

Repaso de Teoría de la Probabilidad

2 Modelos de probabilidad discretos sobre R

Momentos de Funciones de Vectores Aleatorios

Transcripción:

Tema 5 Distribuciones de probabilidad más usuales En este tema se estudiarán algunas de las distribuciones discretas y continuas más comunes, que se pueden aplicar a una gran diversidad de problemas y campos científicos. Contenido 5.1. Distribuciones discretas más usuales................. 19 5.1.1. Distribución de Bernoulli........................ 19 5.1.2. Distribución binomial.......................... 20 5.1.3. Distribución geométrica......................... 21 5.1.4. Distribución de Poisson......................... 21 5.2. Distribuciones continuas más usuales................ 22 5.2.1. Distribución uniforme.......................... 22 5.2.2. Distribución normal........................... 23 5.2.3. Distribución exponencial......................... 23 5.3. Teorema del Límite Central...................... 25 Comentarios bibliográficos.......................... 25 Ejercicios..................................... 26 5.1. Distribuciones discretas más usuales 5.1.1. Distribución de Bernoulli Un experimento aleatorio se dice que es de Bernoulli cuando únicamente puede tener dos resultados mutuamente excluyentes; uno de ellos se denomina éxito y el otro fracaso. Los resultados cara o cruz en el lanzamiento de una moneda. Las piezas defectuosa o no defectuosa en el control de calidad de un producto. 19

Resultado exitoso o fallido de la petición a un servidor. Sea X una v. a. asociada a un experimento de Bernoulli y que toma los valores: X(éxito) = 1 X(fracaso) = 0 entonces se dice que X sigue una distribución de Bernoulli X B(1, p). Su función de probabilidad viene dada por: Pr(X = 1) = p Pr(X = 0) = 1 p = q 1. µ = E(X) = 0 q + 1 p = p. 2. 2 = Var(X) = E(X 2 ) E 2 (X) = p p 2 = pq. 5.1.2. Distribución binomial Una sucesión de n pruebas se dice que es de Bernoulli cuando los experimentos individuales verifican las siguientes condiciones: 1. Las n pruebas son independientes. 2. Cada prueba es de Bernoulli. 3. La probabilidad p de éxito es igual en todas las pruebas. La variable aleatoria definida como número de éxitos en n pruebas, X B(n,p), se dice que sigue una distribución binomial de parámetros n, p. La variable puede tomar los valores {0,1,2,...,k,...,n} y su función de probabilidad es la siguiente: ( ) n Pr(X = k) = Pr(k éxitos en n pruebas) = p k q n k k donde ( ) n = número resultados posibles con k éxitos k p k q n k = P(cada resultado con k éxitos) Número de veces que aparece el resultado cara al lanzar una moneda diez veces. Número de éxitos en la recepción de un mensaje enviado a 100 destinatarios. Número de ordenadores en una subred que han sido infectados por un virus. Dpto. Estadística e I.O. y D.M. 20

1. X = X 1 + X 2 + + X n, donde X 1,...,X n son variables independientes todas ellas con distribución B(1,p). 2. µ = E(X) = np. 3. 2 = Var(X) = n p q. 4. Dadas X 1 B(n 1,p) y X 2 B(n 2,p) v.a. independientes, entonces X 1 +X 2 B(n 1 + n 2,p). 5.1.3. Distribución geométrica Sea X la variable aleatoria definida como el número de pruebas realizadas hasta que aparece por primera vez el resultado éxito, en pruebas de Bernoulli; entonces se dice que X G(p) sigue una distribución geométrica de parámetro p. Los valores que puede tomar esta variable son {1, 2,..., k,... } con probabilidades: Pr(X = k) = Pr(F 1 F 2... F k E) = q k 1 p Número de veces que ha sido necesario ejecutar un programa hasta que falla por primera vez. Número de veces que ha sido necesario enviar un mensaje hasta que fue recibido por el destinatario. 1. µ = E(X) = 1 p si p > 0. 2. 2 = Var(X) = q p 2. Una forma alternativa de representar este experimento es considerar la variable Y que cuenta el número de fracasos obtenidos hasta que aparece el primer éxito; es evidente que la relación entre las dos variables viene dada por la expresión X = Y + 1. La esperanza de Y es E(Y ) = q. La varianza, obviamente, es la misma. p 5.1.4. Distribución de Poisson La distribución de Poisson suele emplearse para representar experimentos en los que se analiza el número de veces que ocurre cierto suceso en un intervalo (en general de tiempo). Los requisitos que deben verificar estas experiencias son las siguientes: 1. Las condiciones experimentales deben ser constantes a lo largo de todo el intervalo. 2. Los resultados del experimento deben ser independientes cuando se refieren a intervalos disjuntos. Dpto. Estadística e I.O. y D.M. 21

3. La tasa media de aparición del suceso, en cualquier intervalo de longitud uno, es constante y se representa por λ. 4. La probabilidad de que el suceso ocurra una sola vez en un intervalo de amplitud h suficientemente pequeña, debe ser aproximadamente λh. 5. La probabilidad de dos o más ocurrencias del suceso, en un intervalo suficientemente pequeño, debe ser prácticamente cero. Bajo las anteriores condiciones la variable X = número de veces que ocurre el suceso, se dice que sigue una distribución de Poisson de parámetro λ, X P(λ). Los valores de la variable son {0,1,2,... k...} con probabilidades: Pr(X = k) = e λλk k! si k = 0,1,2,... El número de partículas emitidas por una substancia radiactiva en una hora. El número de mensajes que llegan a un servidor de correo durante una hora. 1. µ = E(X) = λ. 2. 2 = Var(X) = λ. 3. Sean X 1 P(λ 1 ) y X 2 P(λ 2 ) v.a. independientes, entonces X 1 + X 2 P(λ 1 + λ 2 ). 5.2. Distribuciones continuas más usuales 5.2.1. Distribución uniforme Una variable aleatoria X se dice que sigue una distribución uniforme en [a, b], donde a b son números reales, X U(a,b), si tiene la siguiente función de densidad: 1 si a x b, 1 f(x) = b a b a 0 en otro caso. a b Esta distribución se puede emplear en problemas en los que la probabilidad se reparte por igual en todo el intervalo. 1. µ = E(X) = b + a 2 (punto medio del intervalo [a,b]). 2. 2 = Var(X) = (b a)2. 12 Dpto. Estadística e I.O. y D.M. 22

5.2.2. Distribución normal Es la más importante de las distribuciones continuas ya que permite describir un número muy grande de fenómenos aleatorios, como por ejemplo aquellos en los que intervienen un número elevado de factores no controlables, que actúan de manera independiente y con efectos pequeños. Una v.a. se dice que sigue una distribución normal X N(µ;), si su función de densidad es: f(x) = [ ] 1 exp (x µ)2 2π 2 2 2 x R 1. E(X) = µ. 2. Var(X) = 2. 3. Si X 1 N(µ 1 ; 1 ) y X 2 N(µ 2 ; 2 ) son v.a. independientes, entonces se verifica que: X = X 1 + X 2 N(µ 1 + µ 2 ; 2 1 + 2 2 ). 4. Sea X N(µ;) entonces Y = a + bx, con b 0, sigue una distribución normal N(a + bµ; b ). 5. La función de distribución de cualquier distribución N(µ; ) se puede calcular utilizando la distribución N(0;1) o normal tipificada. se denomina puntuación tipifi- donde Z = X µ cada. ( X µ P(X x) = P es la normal tipificada y z = x µ x µ ) = P(Z z) 6. La función de densidad de la normal no admite primitiva y su función de distribución se calcula de manera aproximada. En lugar de tener que realizar esos cálculos aproximados para cada par de valores µ y, la propiedad anterior permite emplear las tablas de la N(0;1) para obtener la función de distribución de cualquier normal. 5.2.3. Distribución exponencial En un experimento de Poisson en el que se observa la ocurrencia de un suceso E en un intervalo de tiempo, donde λ > 0 representa el número medio de sucesos que ocurren por unidad de tiempo, puede ser de interés el tiempo que transcurre entre dos sucesos consecutivos. Dpto. Estadística e I.O. y D.M. 23

En este caso, la v.a. T = tiempo entre dos sucesos consecutivos es continua y su distribución se calcula de la siguiente manera: P(T t) = 1 P(T > t) = 1 P(X = 0) = 1 e λt ya que el suceso (T > t) significa que en el intervalo (0,t] no apareció en ninguna ocasión el suceso E. Se dice entonces que T tiene distribución exponencial de parámetro λ, que se denotará por T Exp(λ) y su función de distribución viene dada por: y su función de densidad es: F T (t) = { 1 e λt si t > 0, 0 en otro caso, f(t) = { λe λt si t > 0, 0 en otro caso. Ejemplo: Tiempo que tarda una cierta cantidad de una substancia radiactiva en reducir su masa a la mitad. Tiempo transcurrido entre la llegada de dos clientes consecutivos a una tienda. 1. E(T) = 1 λ. 2. Var(T) = 1 λ 2. 3. Pr[T > (t + h) T t] = Pr[T > h]. Esta probabilidad solo depende de la amplitud del intervalo [t,t + h), pero no del valor concreto de t y nos referiremos a ella diciendo que la distribución exponencial no tiene memoria. Para comprender el significado intuitivo de esta propiedad supongamos que estamos analizando una variable que representa el tiempo transcurrido hasta que un sistema falla, como por ejemplo el tiempo de semi-desintegración de una materia radiactiva o la vida de una persona. Si esta variable se ajustase a una distribución exponencial, significaría que la probabilidad de que el sistema dure diez años más, es independiente de lo antiguo que sea. Esto puede ser cierto para una materia radiactiva, pero suele resultar falso para una persona. Dpto. Estadística e I.O. y D.M. 24

5.3. Teorema del Límite Central Sean X 1,X 2,...,X n variables aleatorias independientes e idénticamente distribuidas tales que E(X i ) = µ y Var(X i ) = 2 para todo i. Entonces, aprox. S n = X 1 + + X n N(µn, n). o equivalentemente X = X 1 + + X n n aprox. N ( ) µ,. n La aproximación se considera válida para valores grandes de n. Es importante recordar que según este resultado la suma de un número suficientemente grande de variables independientes del mismo tipo sigue una distribución normal, incluso en el caso de que se desconozca la distribución que siguen los sumandos X i. Como consecuencia del Teorema del Límite Central, se obtienen las aproximaciones de las distribuciones binomial y de Poisson por la distribución normal. Si X B(n,p) entonces X = n i=1 X i donde cada X i B(1,p). Por tanto, el TLC permite aproximar la distribución de esta variable por la distribución N(np; npq) cuando n es suficientemente grande y p un valor ni próximo a 0 ni próximo a 1. En general se suele trabajar con la aproximación para n 30 y 0,1 < p < 0,9. Teniendo en cuenta la propiedad de reproductividad de la variable de Poisson, el TLC permite aproximar la distribución de Poisson de parámetro λ mediante la distribución N(λ, λ), para valores grandes de λ. En la práctica, se considera que si λ > 5 la aproximación a la normal es buena. Comentarios bibliográficos El bloque correspondiente al Cálculo de probabilidades, formado por los Temas 3, 4 y 5 del programa de la asignatura es desarrollado en mayor o menor profundidad por la mayoría de los textos de estadística recomendados en la bibliografía. Sirvan como ejemplo los siguientes: Temas 3, 4 y 6 de Introducción a la Estadística y sus aplicaciones. CAO ABAD, R. et al. Ediciones Pirámide, 2001. Tema 2, 3 y 4 de Probabilidad y Estadística para Ingeniería y Ciencias. DE- VORE, J.L. International Thomson Editores, 2002. Temas 4 y 5 de Fundamentos de Estadística. PEÑA SÁNCHEZ DE RIVERA, D. Alianza Editorial, 2001. Temas 2, 3 y 4 de Probabilidad y Estadística para Ingeniería. SCHEAFFER R.L. & McCLAVE J. Grupo Editorial Iberoamericano, 1993. Dpto. Estadística e I.O. y D.M. 25