Representaciones gráficas

Documentos relacionados
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

Estudio de funciones mediante límites y derivadas

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES

dada por c(x) = donde x indica el tamaño de los pedidos para renovar existencias

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

Estudio de funciones mediante límites y derivadas

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

Aplicaciones de la integral definida al cálculo de áreas

COL LECCIÓ DE PROBLEMES RESOLTS

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

REPRESENTACIÓN GRÁFICA DE FUNCIONES

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

Cálculo de derivadas

Ejercicios de representación de funciones

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

APLICACIONES DE LA DERIVADA

«La derivada de una función en un punto representa geométricamente la pendiente de la recta tangente a la función en dicho punto»

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

PROBLEMAS DE OPTIMIZACIÓN

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

Análisis de funciones y representación de curvas

TEMA 11 REPRESENTACIÓN DE FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

representación gráfica de funciones

x + x 2 +1 = 1 1 = 0 = lím

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

APLICACIONES DEL CÁLCULO DIFERENCIAL-II

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

APLICACIONES DE LA DERIVACIÓN DE FUNCIONES A LA GRÁFICA DE UNA FUNCIÓN

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

Ejercicios de representación de funciones

MURCIA JUNIO = 95, y lo transformamos 2

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

APLICACIONES DE LA DERIVADA

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

Apuntes de dibujo de curvas

= y. [Estudio y representación de funciones] Matemáticas 1º y 2º BACHILLERATO. Pasos a seguir para estudiar una función:

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

APLICACIONES DE LAS DERIVADAS

1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6

EJERCICIOS Y PROBLEMAS PROPUESTOS (ANÁLISIS) x +

TEMA 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

Grado en Química Bloque 1 Funciones de una variable

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN

x = 0, la recta tangente a la gráfica de f (x)

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

a) PAR: Una función es simétrica con respecto al eje Y cuando se verifica:

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Página Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Unidad 6 Estudio gráfico de funciones

CARACTERÍSTICAS DE UNA FUNCIÓN

Selectividad Septiembre 2006 SEPTIEMBRE 2006

Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2013) Selectividad-Opción A Tiempo: 90 minutos

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

Ejercicios de Análisis propuestos en Selectividad

JUNIO Opción A Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

Estudio Gráfico de Funciones

REPRESENTACIÓN DE FUNCIONES

1. JUNIO OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

Completa esta parábola y señala sus elementos y sus propiedades. 1 X. El dominio de la función es todos los números reales:.

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

MATEMÁTICAS 2º DE ESO

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Selectividad Septiembre 2008 SEPTIEMBRE 2008

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

TEMA 3. Funciones. Cálculo diferencial

Transcripción:

1 MAJ99 Representaciones gráficas 1. Se considera la función 3 f ( ) 1 60 3 (a) Hállense sus máimos y mínimos. (b) Determínense sus intervalos de crecimiento y decrecimiento. (c) Represéntese gráficamente. (a) f ( ) 6 4 60 0 = o = 5. Son los posibles máimos o mínimos. Como f ( ) 1 4, f () = 18 y f (5) = 18, en = se da un máimo, mientras que en = 5 se da un mínimo. El máimo relativo vale f() = 0. El mínimo relativo vale f(5) = 7. (b) Para <, f () >0: la función es creciente. Para < < 5, f () <0: la función es decreciente Para > 5, f () >0: la función es creciente. (c) Algunos valores: 0 1 4 5 6 f () 3 9 0 (má) 0 7 (mín) 4 Con la información obtenida se puede hacer la gráfica siguiente..

PAS05. Un dirigente de cierto partido político afirma que dimitirá si el porcentaje de votantes al partido no alcanza el 0 %. Se estima que el porcentaje de participación en la consulta será al menos el 40 % y que el porcentaje de votantes al partido dependerá del porcentaje de participación según esta función (P indica el porcentaje de votantes al partido y el de participación): 3 P ( ) 0,0005 0,045,4 50, (40 100) (a) Indica cuándo crece el porcentaje de votantes al partido y cuándo decrece. Según la función, es posible que el dirigente no tenga que dimitir? (b) Dibuja la gráfica de la función. (a) Hay que estudiar el signo de la derivada de P() P ( ) 0,00075 0,090,4 P () = 0 si = 40 o = 80 P ( ) 0,00075( 40)( 80) Luego: si 40 < < 80, P () > 0 P() crece si 80 < 100, P () < 0 P() decrece. El porcentaje de votantes al partido aumentará cuando lo hace la participación desde el 40 al 80 %. Para = 40 % se da el mínimo relativo de P() y para = 80 %el máimo. Como este máimo vale P(80) = 18, menos del 0 % prometido, el dirigente político dimitirá. ( Lo hará?) (b) Dando algunos valores: {(40, 10); (50, 11,5); (60, 14); (70, 16,75); (80, 18); (90, 16,5}; otros puntos fuera de rango: (0, 14); (30, 11,75). Representando esos puntos y uniéndolos se obtiene la gráfica pedida.

3 PAS04 3. Una cadena de televisión ha presentado un nuevo programa para la franja de las 11 a las 15 horas. El share o porcentaje de audiencia de la primera emisión vino dado por la siguiente función, donde S(t) representa el share en el tiempo t, en horas. Para que el programa siga emitiéndose el share ha tenido que alcanzar en algún momento el 30 % 3 S ( t) t 36t 40t 1596. 11 t 15 (a) Indica cuándo creció el share y cuándo decreció. El programa seguirá emitiéndose? (b) Dibuja la gráfica del share. (a) Hay que estudiar el signo de la derivada de S(t) Luego: S ( t) 3t 7t 40 P ( ) 0,00075( 40)( 80) S (t) = 0 si t = 10 o t = 14 (La solución t = 10 no interesa.) si 11 t < 14, S (t) > 0 S(t) crece si 14 < t < 15, S (t) < 0 S(t) decrece. En consecuencia, en t = 14 se alcanza el máimo del share. Como este máimo vale S(14) = 8 < 30, el programa no seguirá emitiéndose. (b) Dando algunos valores, {(11, 0); (1, 1); (13, 3); (14, 8); (15, 1)}, puede trazarse la gráfica pedida.

4 PAS03 4. La gráfica de velocidad de un autobús en los 6 minutos previos a un accidente quedó recogida en el tacómetro, y se ajusta bastante bien a la siguiente función. V(t) es la velocidad en el tiempo t (t en minutos, de 0 a 6): 3 V ( t) 4t 15t t 100 0 t 6 (a) Especifica los intervalos de tiempo en que la velocidad aumentó y aquéllos en que disminuyó. (b) Dibuja la gráfica de velocidad, especificando, si los hay, los puntos de infleión. En qué momentos se alcanza la mayor y menor velocidad? (c) Especifica (si los hay) los máimos y mínimos relativos y absolutos. Solución (a) Hay que estudiar el signo de la derivada de V(T) Luego: V ( t) 4 30t 6t V (t) = 0 si t = 1 o t = 4 si 0 t < 1, V (t) > 0 V(t) crece si 1 < t < 4, V (t) < 0 V(t) decrece. si 4 < t < 6, V (t) > 0 V(t) crece (b) La derivada segunda es: V ( t) 30 1t se anula si t = 30/1 =,5. En el minuto t =,5 la velocidad tiene un punto de infleión. Como V (1) < 0, en t = 1 se da un máimo relativo. Como V (4) > 0, en t = 3 se da un mínimo relativo. Dando algunos valores,{(0, 100); (1, 113); (, 104); (3, 91); (4, 84); (5, 95); (6,136)}, puede trazarse la gráfica pedida. La velocidad máima absoluta se da en el instante del accidente, y es de 136 km/h.

5 PVS04 5. Sabiendo que la gráfica de la derivada de la función f es la parábola con vértice en (0, 1) que pasa por los puntos (1, 0) y (1, 0), estudiar razonadamente el crecimiento, la concavidad, los máimos, los mínimos y los puntos de infleión de f. La función f es aproimadamente como sigue: Crecimiento. Como f < 0 en el intervalo (1, 1) f decrece en ese intervalo (1, 1). Como f > 0 en los intervalos (, 1) y (1, +) f crece en esos intervalos. En esquema, f sería así: Los etremos relativos se dan en los puntos con derivada 0, que son = 1 y = 1. Como la función es creciente a la izquierda de = 1 y decreciente a su derecha, en = 1 se da un máimo. Igualmente, la función es decreciente a la izquierda de = 1 y creciente a su derecha; en consecuencia, en = 1 se da un mínimo. Concavidad. Como f decrece en el intervalo (, 0) f < 0 en ese intervalo f será cóncava () en el intervalo (, 0). Como f crece en el intervalo (0, +) f > 0 en ese intervalo f será convea () en el intervalo (0, +). En esquema, f será así: Como la función cambia de curvatura en = 0, para ese valor se da el punto de infleión. (Puede verse también que en = 0, la función derivada, f, tiene un mínimo. Por tanto, su derivada, (f ), valdrá cero: f (0) = 0.)

6 PAJ03 6. El peso que una plancha de cierto material es capaz de soportar depende de la edad de la misma según la siguiente función (el peso P en toneladas; t representa la edad en años de la plancha): 50 t 0 t 3 P ( t) 0t 56 t 3 t 1 (a) Es el peso una función continua de la edad? Según vaya pasando el tiempo la plancha cada vez aguantará menos peso? (b) Dicen que por mucho tiempo que transcurra, la plancha siempre aguantará más de 40 toneladas. Estás de acuerdo? (c) Esboza un dibujo de la gráfica de P(t) cuidando la concavidad y conveidad de la función. Solución (a) Es una función continua pues los límites laterales en el punto t = 3, único en discordia, coinciden. En efecto: si t 3, P( t) 50 t 41 si t 3 + 0t, P ( t) 56 41 t 1 La función es siempre decreciente pues su derivada, salvo en t = 3 en donde no es derivable, tiene signo negativo para t > 0. En efecto: t 0 t 3 P ( t) 0 t 3 ( t 1) Por tanto, la plancha cada vez aguantará menos peso. (b) No es verdad que la plancha aguantará siempre más de 40 toneladas pues su límite, cuando t, vale 36. En efecto: 0t lím P( t) lím56 56 0 36 t t t 1 (c) Hacemos la derivada segunda: 0 t 3 P ( t) 40 t 3 3 ( t 1) Si 0 < t < 3, P (t) < 0 P(t) es cóncava (). Si t > 3, P (t) > 0 P(t) es convea (). En t = 3 la función tiene un punto de infleión: aunque no sea derivable, en ese punto la función pasa de cóncava a convea. Dando algunos valores: {(0, 50), (, 46), (3, 41), (4, 40), (9, 38), }; y teniendo en cuenta que la recta y = 36 (P = 36) es una asíntota horizontal, se obtiene la gráfica adjunta.

7 PAJ04 7. El servicio de traumatología de un hospital va a implantar un nuevo sistema que pretende reducir a corto plazo las listas de espera. Se prevé que a partir de ahora la siguiente función indicará en cada momento (t, en meses) el porcentaje de pacientes que podrá ser operado sin necesidad de entrar en lista de espera: t 8t 50 0 t 10 P ( t) 38t 100 t 10 0,4t (a) A partir de qué momento crecerá este porcentaje? Por mucho tiempo que pase, a qué porcentaje no llegará nunca? (b) Haz un esbozo de la gráfica de P a lo largo del tiempo. Solución La función de porcentaje es continua en t = 10, pero no es derivable en ese punto. En efecto: si t 10, P ( t) t 8t 50 70 si t 3 + 38t 100, P( t) 70 es continua. 0,4t Sin embargo, t 8 0 t 10 P ( t) 100 t 10 0,4t siendo P (10 ) = 1 y P (10 + ) =,5. (a) Para ver el crecimiento estudiamos el signo de la derivada: P (t) = 0 si t = 4. Si 0 < t < 4, P (t) < 0 P(t) decrece. Si 4 < t < 10, P (t) > 0 P(t) crece. Si t > 10, P (t) > 0 P(t) crece. Por tanto, el porcentaje crecer a partir de t = 4. Cuando t, el porcentaje se acerca a 95, aunque nunca lo alcanza, pues: 38t 10 38 lím P( t) lím 95 t 0,4t 0,4 t (b) Dando algunos valores: {(0, 50), (, 38), (4, 34), (8, 50), (10, 70), (1, 74,), (0, 8,5), }; y teniendo en cuenta que la recta y = 95 (P = 95) es una asíntota horizontal, se obtiene la siguiente gráfica.

8 CTS04 1 8. Sea la función f ( ). 1 a) Encuentra las ecuaciones de las asíntotas de f(). b) Estudia el signo de la función. c) Estudia el crecimiento y decrecimiento de la función e indica cuales son sus máimos y mínimos. d) Haz un esbozo de la gráfica de f(). a) El dominio de la función dada es R {1, 1}. Por tanto, en los puntos = 1 y = 1 pueden darse asíntotas verticales. Así es, pues: lím 1 1 1 0 y lím 1 1 1 0 En consecuencia, las rectas = 1 y = 1 son asíntotas verticales de la curva dada. Igualmente hay una asíntota horizontal, la recta y = 1, pues lím 1 1 1 b) Como el numerador es siempre positivo el signo de la función depende del denominador. Como 1 0 cuando 1 < < 1, la función será negativa en ese intervalo; y positiva en R [1, 1]. c) Derivando: ( 1) ( 1) 4 f ( ), que se anula si = 0. ( 1) ( 1) Por tanto: si < 0, 1, f () > 0 la función es creciente en el intervalo < 0. si > 0, 1, f () < 0 la función es decreciente en el intervalo > 0. En consecuencia, al crecer a la izquierda de = 0 y decrecer a su derecha, en ese punto (en = 0) la función tiene un máimo. d) Estudiando los limites laterales se determina que: si 1, f () +; si 1 +, f () ; si +1, f () ; si +1 +, f () ; si, f () 1 + ; si +, f () 1 + Algunos puntos de la función son: (0, 1); (, 5/3); (3, 10/8)

9 También puede observarse que la función es par. Con todo esto se obtiene la representación gráfica siguiente.

10 LRJ04 9. Sea la función: ( 1)( ) f ( ). a) Calcula la ecuación de la recta tangente a la curva en = 3. b) Calcula sus asíntotas, máimos, mínimos y puntos de infleión. c) Represéntala gráficamente. a) La ecuación de la recta tangente a f() en el punto (a, f(a)) es: y f ( a) f ( a)( a) ( 1)( ) f ( ) f(3) = 0/9 (( ) ( 1)) ( 1)( ) 3 4 f ( ) f (3) = 13/7 4 4 0 13 La tangente será: y ( 3) 9 7 13 11 y 7 3 b) La recta = 0 es una asíntota vertical de f(), pues: ( 1)( ) lím 0 ( 1)( ) 3 Como lím lím 1, la recta y = 1 es asíntota horizontal de la curva. Máimos y mínimos: 3 4 La derivada primera, f ( ) 0 si = 4/3; que puede ser máimo o mínimo. 3 3 3 3 (3 4) 3 1 6 6 ( ) La derivada segunda, f ( ). 6 6 6 Esta derivada se anula si =. Para ese valor se tiene un punto de infleión. Como f ( 4/ 3) 0, = 4/3 hay un mínimo. c) Para representar, hay que dar algunos valores (por ejemplo, el mínimo, (4/3, 1/8) y el punto de infleión, (, 0)), y debe observarse que: si < 0, f () > 0 f () es creciente. si 0 < < 4/3, f () < 0 f () es decreciente. si > 4/3, f () > 0 f () es creciente.

11 Además: hacia la curva va por encima de la asíntota: 3 3 f ( ) 1 1 + 0 + (para valores de negativos y grandes, el termino hacia + la curva va por debajo de la asíntota: 3 3 f ( ) 1 1 + 0 3 es pequeño pero positivo) Por otra parte, la curva corta al eje OX si f() = 0 = 1 o =. Con todo lo dicho se obtiene la gráfica siguiente.

1 RMJ04 10. Dada la curva: y, se pide: 1 a) Dominio y asíntotas. b) Simetrías y cortes con los ejes. c) Intervalos de crecimiento y decrecimiento. d) Máimos y mínimos, si los hay. e) Una representación aproimada de la misma. a) El dominio de la función es R {1, 1}. Las rectas = 1 y = 1 son asíntotas verticales. Es obvio que el límite en esos puntos se hace infinito. Si 1, f () Si 1 +, f () Si 1, f () Si 1 +, f () La recta y = 0, el eje OX, es asíntota horizontal, pues lím 0 1 Si, f () 0, luego f() va por debajo del eje OX Si, f () 0, luego f() va por encima de la asíntota. b) La función es impar, pues f ( ) f ( ) ( ) 1 Corte con los ejes: si = 0, y = 0 punto (0, 0). No hay más cortes. 1 1 c) Como f ( ) es siempre ( 1) ( 1) negativa, la función es decreciente en todo punto de su dominio. d) Como siempre es decreciente no hay máimos ni mínimos. (También se podría indicar que la función no tiene puntos con derivada nula.) e) La gráfica aproimada de f() es: Algunos puntos: (, /3); (1,5, 1,); (0,5, /3); (0, 0); (, /3); (1,5, 1,); (0,5, /3).

13 RMS05 11. Dada la función f ( ), se pide: 1 (a) Hallar el dominio y las asíntotas. (b) Hallar los intervalos de crecimiento y decrecimiento. (c) Hacer una representación gráfica aproimada. (a) El dominio de la función es R {1, +1}. Las rectas = 1 y = 1 son asíntotas verticales. Es obvio que el límite en esos puntos se hace infinito. Si 1, Si +1, f () Si 1 +, f () f () Si +1 +, f () La recta y = 0 (el eje OX) es asíntota horizontal de la función, pues lím 0 1 Si, f () 0 la curva va por debajo de la asíntota. Si, f () 0 la curva va por encima de la asíntota. Nota: Puede indicarse que la función es impar. (b) La derivada de la función es: f ( ) ( 1 Como f ( ) es siempre negativa, la función es decreciente en todo punto de su ( 1) dominio. (c) La gráfica aproimada de f() es: Algunos puntos: (3, 3/8); (, /3); (3/, 6/5); (0,5, /3); (0, 0), (0,5, /3), 1 1)

14 RMJ05 1. Dada la función: f ( ), se pide: 1 (a) Calcular su dominio y asíntotas. (b) Determinar sus intervalos de crecimiento y decrecimiento. (c) Hacer su representación gráfica aproimada (a) El dominio de la función es R {1}. La recta = 1 es una asíntota vertical. Es obvio que el límite en ese punto se hace infinito. Si 1, f () Si 1 +, f () La recta y = 1 es asíntota horizontal de la función, pues lím 1 1 Si, f () 1 la curva va por encima de la asíntota. Si, f () 1 la curva va por encima de la asíntota. (b) Como dominio. 1 f ( ) es siempre positiva, la función es creciente en todo punto de su ( 1) (c) La gráfica aproimada de f() es: Algunos puntos: (4, +4/3); (3, 3/); (, ); (0, 0); (1, 1/); (, /3)

15 LRJ05 1 13. Sea la función f ( ) 1 : a) Determina sus asíntotas, máimos, mínimos y puntos de infleión. b) Halla la ecuación de la recta tangente en el punto de abscisa =. c) Represéntala gráficamente. 1 a) lím1 = 0 es una asíntota vertical. 0 1 lím 1 1 y = 1 es una asíntota horizontal. Si +, f () 1 + Si, f () 1 Máimos y mínimos: 1 1 f ( ) 1 3 = 1 es un punto singular. 1 1 1 ( 3) f ( ) 1 3 4 f ( ) 0 si = 3/ Como f ( 1) 0, en = 1 hay un mínimo. No hay máimos. En = 3/ hay un punto de infleión. b) La ecuación de la tangente es: y f ( ) f ()( ) 9 3 9 3 Como f ( ) y f ( ), la recta será: y ( ) 4 4 4 4 c) Damos algunos valores: (, ¼), (1, 0), (1, 4), (, 9/4), (4, 5/16). Con esto y con la información del apartado a) podemos dibujar la curva siguiente.