INDICE. Presentación 4. Tema No.1. Límite de una función. 6. Tema No. 2. Límites trigonométricos.. 8. Tema No. 3. Continuidad de una función 10

Documentos relacionados
UNELLEZ Ejercicios de Cálculo Diferencial para estudiantes de Ingeniería Petróleo

CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA

Las funciones. 1. Constantes y variables.- Constante es una letra o símbolo que representa un número fijo y determinado.

UNIVERSIDAD NACIONAL DE ITAPÚA FACULTAD DE HUMANIDADES, CIENCIAS SOCIALES Y CULTURA GUARANÍ Encarnación Paraguay

PROGRAMA DE ASIGNATURA

DERIVADA DE UNA FUNCIÓN

CÁLCULO DIFERENCIAL E INTEGRAL

Capítulo 4: Derivada de una función

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

Guía 3 Del estudiante Modalidad a distancia. Modulo CÁLCULO UNIVARIADO INGENIERÍA DE SISTEMAS II SEMESTRE

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011

DERIV. DE UNA FUNC. EN UN PUNTO

x 1,9 1,99 1,999 2,001 2,01 2,1 f(x) i) lim j) lim k) lim l) lim m) lim n) lim o) lim p) lim

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TÁCHIRA VICE RECTORADO ACADÉMICO DECANATO DE DOCENCIA DEPARTAMENTO DE MATEMÁTICA Y FÍSICA

Facultad de Ciencias Exactas y Tecnología Universidad Autónoma Gabriel René Moreno CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS CONTABLES

Matemáticas 2 Agosto 2015

Nombre de la asignatura: Cálculo Diferencial e Integral INGENIERÍA MECATRÓNICA. ASIGNATURAS TEMAS ASIGNATURAS TEMAS Calculo Vectorial

01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.

Ejercicios de Funciones: derivadas y derivabilidad

PROYECTO MATEM CÁLCULO I PLANEAMIENTO ANUAL

Asignatura: Horas: Total (horas): Obligatoria X Teóricas 4.5 Semana 4.5 Optativa Prácticas Semanas 72.0

EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES

CÁLCULO CON SCILAB. Jorge Antonio Polanía Puentes

INSTRUCCIONES GENERALES Y VALORACIÓN

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

Derivadas e integrales

ESCUELA PREPARATORIA OFICIAL NÚM. 11

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

Cálculo Integral Enero 2015

CONCEPTOS QUE DEBES DOMINAR

Dirección de Desarrollo Curricular Secretaría Académica

SÍLABO PROGRAMA DE ESTUDIOS GENERALES DEPARTAMENTO ACADÉMICO DE CIENCIAS Y HUMANIDADES MATEMÁTICA APLICADA A LOS NEGOCIOS ASIGNATURA

Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE CIENCIAS BÁSICAS

DERIVADAS PARCIALES Y APLICACIONES

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID. PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS (LOGSE) MODELO DE EXAMEN (Curso )

Toda función es una relación, pero no toda relación es una función. Las relaciones multiformes NO son funciones. Relación uno a uno (biunívoca)

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Estudio de las funciones RACIONALES

02. Resolver sistemas de ecuaciones lineales por el método de Gauss.

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: MATEMÁTICAS II

Derivadas e integrales

DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CÀLCULO DIFERENCIAL LÍMITES Y CONTINUIDAD

UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA PROGRAMAS MODULO I MATEMÁTICA

CBC. Matemática (51) universoexacto.com 1

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

Objetivos de la materia:

Universidad de Guanajuato Tronco Común de Ingnierías

3. Funciones de varias variables

TEMA 10. CÁLCULO DIFERENCIAL

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

El proceso de calcular la derivada se denomina derivación. Se dice que es derivable en c si existe, es decir, existe

Tema 6: Derivada de una función

NOMBRE DEL CURSO: CALCULO DIFERENCIAL CÓDIGO UNIDAD ACADÉMICA NIVEL ACADÉMICO CICLOS DE FORMACIÓN FACULTAD INGENIERIA TÉCNICO PROFESIONAL

1. Identificación de la asignatura. 2. Descripción de la asignatura.

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMATICAS

Tema Contenido Contenidos Mínimos

DERIVADAS. Para hallar la pendiente de una curva en algún punto hacemos uso de la recta tangente de una curva en un punto.

Capítulo 2: Cálculo diferencial de una y varias variables

Matemáticas CÁLCULO DE DERIVADAS

CÁLCULO I. Módulo I: Números Reales, Relación de Orden y Valor Absoluto. Tiempo: Dos (2) Semanas. Valor: 10%

MATERIA: MATEMÁTICAS II

Propedéutico de Matemáticas

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

Asignatura(s) Cálculo Integral. Ecuaciones Diferenciales. Cálculo Vectorial. Tema(s) Todos. 1-1 II PROFESIONAL ASOCIADO Y LICENCIATURA

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

SILABO MATEMÁTICA II 1. DATOS INFORMATIVOS

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

Si se pueden obtener las imágenes de x por simple sustitución.

Pontificia Universidad Católica del Ecuador

MATEMÁTICAS I aplicadas a las Ciencias Sociales

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

Límite de funciones. Por otra parte se dice que una función es discontínua si para algún (os) valor (es) de x no existe valor de y.

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA MANUFACTURA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE CÁLCULO DIFERENCIAL

Calculo.I Tema 2 Derivadas

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

Pontificia Universidad Católica del Ecuador

Pontificia Universidad Católica del Ecuador

GALO RAZA DÁVILA, Licenciado en Ciencias de la Educación (Magister en Docencia Universitaria). Cálculo

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

Expresión decimal. Aproximación y estimación. Notación científica. Polinomios. Divisibilidad de polinomios. Regla de Ruffini.

UNIDAD DE APRENDIZAJE II

DPTO. DE AMTEMÁTICAS I.E.S. GALLICUM CURSO 2012/13

Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas

CRITERIOS DE EVALUACIÓN 1º BACH. C. N. S. MATEMÁTICAS I

UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática

PROGRAMA INSTRUCCIONAL MATEMÁTICA

Nombre de la asignatura Cálculo Diferencial (461)

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE TECNOLOGÍAS ESCUELA DE TECNOLOGÍA MECÁNICA

en su construcción sea mínima. Sol: r = 3, h =

Sucesiones y Series. Capítulo O.

TEMA 0: REPASO DE FUNCIONES

(Álgebra de complejos, Geometría analítica, Trigonometría, Cálculo diferencial) Código:

Transcripción:

Cuaderno de apuntes INDICE Presentación 4 Tema No.1. Límite de una función. 6 Ejercicios 7 Tema No. 2. Límites trigonométricos.. 8 Ejercicios 9 Tema No. 3. Continuidad de una función 10 Ejercicios.11 Tema No. 4 Puntos de discontinuidad en funciones algebraicas racionales.12 Ejercicios..13 Tema No. 5. Incrementos.14 Ejercicios..14 Tema No. 6. La derivada de una función.15 Ejercicios..16 Tema No. 7. Teoremas para el cálculo de derivadas 17 Ejercicios..18 Tema No. 8. Derivada de las funciones trigonométricas directas 20 Ejercicios 21 Tema No. 9. Derivada de las funciones trigonométricas inversas..22 Ejercicios 23 Tema No. 10. Derivada de las funciones logarítmicas..24 Ejercicios 25 Tema No. 11. Derivada de las funciones exponenciales 26

Ejercicios.27 Tema No.12. Derivación logarítmica 28 Ejercicios...29 Tema No. 13. Derivadas sucesivas de una función.30 Ejercicios 31 Tema No. 14. Derivación de funciones implícitas.32 Ejercicios 33 Tema No.15. Ecuación de las rectas tangente y normal a una curva.34 Ejercicios 35 Tema No. 16 Máximos y mínimos de una función 36 Ejercicios..38 Tema No. 17. Problemas de aplicación de máximos y mínimos..39 Ejercicios..40 GLOSARIO.42 BIBLIOGRAFIA 45 2

PRESENTACION El presente Cuaderno de ejercicios de Cálculo Diferencial pretende apoyar los objetivos de aprendizaje y contenidos de esta asignatura presentando ejercicios resueltos y proponiendo al alumno ejercicios por resolver de uso más frecuente en los temas a tratar. El alumno al hacer uso frecuente de este cuaderno de ejercicios encuentra un apoyo académico, ya que los ejemplos presentados le permitirán hacer más comprensibles e interesantes la resolución de los ejercicios en el la aplicación a los diferentes tipos de problemas. Así, los ejercicios que resuelva le proveerán de un conocimiento básico del Cálculo, comprendiendo la materia de un modo más completo. El cuaderno contiene ejemplos de funciones, límites, derivadas y ecuaciones de las rectas tangente y normal a una curva, así como aplicación de los conocimientos adquiridos en la resolución de problemas prácticos. De esta manera, se pretende apoyar la asesoría a los estudiantes e ir consolidando materiales de sustento académico para el Núcleo de Formación de Matemáticas, por lo que este cuaderno de ejercicios se entrega a los alumnos al inicio del semestre haciendo una revisión 3

personalizada como parte de la clase o en el cubículo como asesoría disciplinaría. Con la elaboración y uso de este material por parte del alumno se busca desarrollar el razonamiento y la habilidad matemática en el alumno y ampliar la comprensión y utilización del lenguaje básico de las ciencias, lo cual es el propósito del programa de esta asignatura. 4

Tema No. 1. Límite de una función. Examen Diagnóstico para la clase Definición de función: Decir que lim x 0 f(x) = L significa que cuando x está cerca, pero difiere de c, f(x) está cerca de L. Ejemplo: Encuentre el lim x 3 x 2 x 6 x 3 Solución. Note que (x 2 x 6)/(x 3) no está definido para x=3, pero todo está bien. Para tener idea de lo que sucede cuando x tiende a 3 se puede usar una calculadora para evaluar la expresión dada; por ejemplo, para 3.1, 3.01, 3.001, etc. Pero es mucho mejor usar un poco de álgebra para simplificar el problema. x 2 x 6 (x 3)(x + 2) lim = lim = lim(x + 2) = 3 + 2 = 5 x 3 x 3 x 3 x 3 x 3 La cancelación de x-3 en el segundo paso es legítima, ya que la definición pasa por alto el comportamiento preciso de x=3. Por lo tanto, no se ha dividido entre cero. Ejercicios: Encontrar los siguientes límites: 1. lim x 3 (2x 8) Respuesta: -2 2. lim x 3 ( 2 x + 1) 5

3. lim x 2 (x 2 3x + 1) Respuesta: 11 4. lim x 4 9+x 2 x 3 5. lim x 1 x 2 +3x 4 x 1 Respuesta: 5 3 6. lim x 4 5x + 7 7. lim x 1 5x 5 1 x 8. lim x 2 3 4x+1 x 2 2x Respuesta: -1/3 Calcule el límite por la derecha de la siguiente función: f(x) = 2x 2 + 3 Calcule el siguiente límite, obteniendo sus límites laterales: lim x 4 x x Respuesta: -1 6

Tema No. 2. Límites trigonométricos. Examen Diagnóstico para la clase El límite de una función trigonométrica se obtiene utilizando los teoremas correspondientes, en los cuales se considera que u=f(x) Ejemplo: Hallar el valor del límite lim x 2 (3x 6) cos(x 2) x 2 En este tipo de límites formados por una parte algebraica y una parte trigonométrica, se considera para la trigonométrica que si x 2 entonces x 2 0, así que al aplicar el teorema del límite de un producto de dos funciones, se tiene: lim x 2 (3x 6) cos(x 2) x 2 = lim x 2 3x 6 x 2. lim x 2 cos(x 2) En la parte algebraica, el límite del cociente resulta la indeterminación cero entre cero, por lo que la expresión primero se simplifica y después se obtiene el valor del límite. En la parte trigonométrica, el límite es de la forma lim u 0 cos u = 1, donde u=x-2, entonces = lim x 2 3(x 2) x 2. lim cos(x 2) x 2 0 = lim x 2 3 lim cos (x 2) x 2 0 = (3) (1) 7

= 3 Ejercicios: Calcular el valor de los siguientes límites. 1. lim x 0 sen 5x Respuesta: 0 2. lim x 1 6 cos(x 1) 3. lim x 0 [ 2x 1 ] Respuesta: -1 cos x 4. lim x 3 [ 3sen2 (x 3) x 2 6x+9 ] 5. lim x 2 [ 5x sen (x 2) x 2 +2x ] Respuesta: 5 6. lim x 2 [ x 4 ] (x 2 6x+8) cot(x 2) 7. lim x 2 [ x 2 +3x+2 (x+2) sec(x+2) ] Respuesta: -1 8. lim x 0 sen 5x cos 2x 9. lim x 2 [ 7 sen(x 2)sec (x 2) tan(x 2) ] Respuesta: 8

10. lim x 0 [ 2 secx csc x ] Respuesta: 0 Tema No. 3. Continuidad de una función. Existen tres tipos de discontinuidad de una función, los cuales son: discontinuidad evitable o restringible, discontinuidad infinita o asintótica y discontinuidad de salto. Ejemplo: Analizar la continuidad de la función f(x) = x2 4 x+2 en x= -2, en caso de que la función sea discontinua, indique a qué tipo de discontinuidad corresponde. Analizando la condición de continuidad a) f( 2) = ( 2)2 4 2+2 = 0 0 No está definido en los números reales. b) lim x 2 x 2 4 x+2 = lim x 2 (x+2)(x 2) x+2 = lim x 2 (x 2) = 4 Existe en los números reales. x Por lo tanto f( 2) lim 2 4 x 2 No se cumple la condición de x+2 continuidad, se presenta una discontinuidad evitable o restringible. 9

Ejercicios: Analizar si las funciones siguientes son continuas o no en 2; si no lo es, explique por qué. 1. f(x) = 4x 2 2x + 12 Respuesta: si 2. f(x) = 8 x 2 3. g(x) = 3x2 x 2 Respuesta: no, porque g (2) no existe. 4. g(x) = x 1 5. h(x) = x 3 Respuesta: no, porque h (2) no existe. 6. h(x) = 3 5x 2 7. g(t) = t3 8 t 2 Respuesta: no, porque g (2) no existe. 8. g(t) = 4t 8 t 2 10

Tema No. 4. Puntos de discontinuidad en funciones algebraicas racionales. Para encontrar las abscisas de los puntos de discontinuidad de una función algebraica racional se resuelve la ecuación obtenida al igualar con cero el denominador. Ejemplo: Encuentre los puntos de discontinuidad de la función f(x) = 2x x 2 3x Igualando con cero el denominador: x 2 3x = 0 Resolviendo por factorización: x(x 3) = 0 x = 0 x = 3 Por lo tanto, la función es discontinua en x=0 y en x=3. Calculando el límite de la función en estos dos puntos a) Para x=0 lim x 0 2x x 2 3x = lim x 0 2x x(x 3) =lim x 0 2 x 3 =-2 3 La función f(x) presenta una discontinuidad evitable en el punto (0,-2/3) 11

Ejercicios: Halle los puntos de discontinuidad de las siguientes funciones, trace la gráfica e indique el tipo de discontinuidad que se presenta. 1.f(x) = 3x 4 x 2 Respuesta: Disc. evitable x=2 2. f(x) = 5 x 3 3. f(x) = 2x+1 x 2 4x+3 Respuesta: Disc. infinita x=1 y x=3 4. f(x) = 8 x 2 5. f(x) = 6x+3 x 3 +5x 2 6x Resp: Disc., infinita x=-6, x=0, x=1 6.f(x) = x3 5x x 2 4 7. f(x) = 2x x 2 +1 Respuesta: Continua 12

Tema No. 5. Incrementos. Se llama incremento de la función f(x) a la diferencia del valor final con el valor inicial y se denota por f(x), eso es: f(x) = f(x 2 ) f(x 1 ) Ejemplo: Dada la función f(x) = x 2 4x + 3, obtenga el incremento de la función. El incremento de la función se obtiene con: Como f(x) = x 2 4x + 3 f(x) = f(x + x) f(x) Entonces f(x + x) = (x + x) 2 4(x + x) + 3 = x 2 + 2x x + ( x) 2 4x 4 x + 3 Al efectuar la diferencia se obtiene el incremento de la función, esto es f(x) = (x 2 + 2x x + ( x) 2 4x 4 x + 3) (x 2 4x + 3) = (2x + x 4) x Ejercicios: Determine el incremento de las siguientes funciones 1. f(x) = 2x 1 2. f(x) = 3x 2 4x + 5 3. f(x) = x 2 + 5x 7 13

Tema No. 6. La derivada de una función. Examen Diagnóstico para la clase La derivada de una función en cualquiera de sus puntos, geométricamente representa la pendiente de la recta tangente a la curva en ese punto. Ejemplo: Obtenga la derivada de la función f(x) = 3x 2 + 4x 5 Aplicando la definición de derivada: Resulta: D x f(x) = lim h 0 f(x + h) f(x) h 3(x + h) 2 + 4(x + h) 5 (3x 2 + 4x 5) = lim h 0 h Elevando el binomio (x+h) al cuadrado y realizando los productos indicados, se tiene: Simplificando = lim h 0 3(x 2 + 2xh + h 2 ) + 4x + 4h 5 3x 2 4x + 5 h = lim h 0 3x 2 + 6xh + 3h 2 + 4x + 4h 5 3x 2 4x + 5 h = lim h 0 6xh + 3h 2 + 4h h Realizando la división 14

= lim h 0 (6x + 3h + 4) Finalmente, calculando el límite cuando h 0 se obtiene la derivada de la función D x f(x) = 6x + 4 Ejercicios: Utilizando la definición, calcule la derivada de las siguientes funciones. 1. f(x) = 2x 3 Respuesta: 6x 2 2. f(x) = 3x 4 + 7 3. f(x) = x 2 + x + 6 Respuesta: 2x + 1 4. f(x) = 2 x 5 5. f(x) = 2 x 4 Respuesta: 8x 5 6. f(x) = 2x 4 3x 7. f(x) = 9 3x 2x 2 Respuesta: -3-4x 8. f(x) = 5 x 3 9.f(x) = 1 x+3 Respuesta: 1 (x+3) 2 10. f(x) = 3 4 x + 1 3 15

Tema No. 7. Teoremas para el cálculo de derivadas. Una forma más simple que la aplicación de la definición para calcular la derivada de una función real de variable real, es mediante el uso de teoremas, los cuales se obtienen a partir de la definición y que pueden ser consultados en el libro de texto y en el formulario o prontuario de cálculo. Ejemplo: Calcular la derivada de la función f(x) = 2 Transformando la función a la forma de potencia f(x) = 2 3 x 2 Aplicando el teorema y simplificando, se tiene la derivada de la función. D x f(x) = 2 3 ( 2x 3 ) 3x 2 = 4 3 x 3 = 4 3x 3 Ejercicios: Calcule la derivada de las siguientes funciones. 1. f(x) = 3x 3 Respuesta: 9x 4 2. f(x) = 5x 7 +2x 6 3. f(x) = 8 x 10 Respuesta: -80x 11 16

4.f(x) = 5x 4 2x 3 + 6x 2 5. f(x) = 3 5x 5 Respuesta: 6x 6 6. f(x) = 4x 10 + 12x 7 5x 4 + 8 6 7. f(x) = x Respuesta: 1 6 6 x 5 8. f(x) = 1 x + 1 x 2-1 x 3 9. f(x) = 3x 5 + 2x 3 Respuesta: 15x 6 6x 4 10. f(x) = 3x 3 3 3 x + 3 x 3 3 Ejemplo: Obtenga la derivada de la función f(x) = 3x2 2x 3x Se desea calcular la derivada de un cociente de la forma: D x [ f(x) g(x) ] = g(x)d xf(x) f(x)d x g(x) [g(x)] 2 Aplicando el teorema correspondiente = 3x(6x 2) (3x2 2x)(3) (3x) 2 = 9x2 9x 2 = 1 = 18x2 6x 9x 2 + 6x 9x 2 Ejercicios: Calcular la derivada de las siguientes funciones. 1. f(x) = (x 2 + 2)(x 3 + 1) Respuesta: 5x 4 + 6x 2 + 2x 2. f(x) = (x 4 1)(x 2 + 1) 17

3.f(x) = 1 3x 2 +1 4. f(x) = 2 5x 2 1 Respuesta: 6x (3x 2 +1) 2 5. f(x) = x 1 x+1 Respuesta: 2 (x+1) 2 6. f(x) = 2x 1 x 1 7. f(x) = (1 x) 2 Respuesta: 2x-2 8.f(x) = (5x 2 3 x) 5 5 9.f(x) = (2x 2 3x + 1) 3 10. f(x) = (2x 5)7 2x Respuesta: 12x 9 5 5 (2x 2 3x+1) 2 Tema No. 8. Derivada de las funciones trigonométricas directas. La derivada de las seis funciones trigonométricas directas se obtienen aplicando los teoremas correspondientes que pueden ser consultados en el texto o en el prontuario o formulario. Ejemplo: Hallar la derivada de la función f(x) = tan 4x 3 2 cot x 2 + sec (2x 1) Se tiene la derivada de una suma de tres funciones, aplicando los teoremas correspondientes para obtener la derivada de cada término y simplificando, se tiene: 18

D x f(x) = sec 2 4x 3 D x (4x 3 ) + 2 csc 2 x 2 D x (x 2 ) + sec(2x 1) tan(2x 1)D x (2x 1) = 12x 2 sec 2 4x 3 + 4x csc 2 x 2 + 2 sec(2x 1) tan(2x 1) Ejercicios: Obtenga la derivada de las siguientes funciones 1. f(x) = sen (3x 1) Respuesta: 3 cos (3x-1) 2. f(x) = cos 2x 7 3 3. f(x) = tan x Respuesta: sec2 3 x 3 3 x 2 4. f(x) = sec (1 2x x 3 ) 5. f(x) = sen 5x + cos 5x Respuesta: 5 cos 5x- 5 sen 5x 3 6. f(x) = cot x csc x 7. f(x) = tan 5 x 5 Repuesta:25x 4 tan 4 x 5 sec 2 x 5 8. f(x) = sen 2 2x 9. f(x) = 2x 1 tan 5x 10. f(x) = cos (tan 3x) Respuesta: 3 sec 2 3x sen(tan 3x) 19

Tema No. 9. Derivada de las funciones trigonométricas inversas. Para calcular la derivada de las funciones trigonométricas inversas, se aplican los teoremas correspondientes que pueden consultarse en el texto o en el prontuario o formulario. Ejemplo: Calcule la derivada de la función f(x) = arc sen (4 5x 3 ) Sí u= 4-5x 3, utilizando el teorema D x arc sen u = 1 1 u 2 D xu se tiene: D x f(x) = 1 1 (4 5x 3 ) 2 D x(4 5x 3 ) 15x 2 = 1 (4 5x 3 ) 2 Ejercicios: Derive las siguientes funciones: 1. f(x) = arc sen (2x 1) Respuesta: 2 1 (2x 1) 2 2. f(x) = arc cos(x 2 + 3) 3.f(x) = arc tan (1 + x + x 2 ) Respuesta: 1+2x 1+(1+x+x 2 ) 2 20

4. f(x) = arc cot(3x 2 1) 5. f(x) = arc sec(5 x) Respuesta: 1 (5 x) (5 x) 2 1 3 6. f(x) = arc csc x 7. f(x) = arc cot x Respuesta: 1 2 x (1 + x) 1 8. f(x) = arc sen 2x 9. f(x) = arc tan 5x cot 7x 10. f(x) = ( arc sen 3x) 5 15(arc sen 3x)4 Respuesta: 1 9x 2 Tema No. 10. Derivada de las funciones logarítmicas. Para calcular la derivada de una función logarítmica, se aplican los teoremas correspondientes que pueden ser consultados en el texto o en el prontuario o formulario. Ejemplo: Calcule la derivada de la función log 3 (x 3 x 2 + 1) Considerando u= x 3 x 2 + 1, aplicando el teorema 21

D x log a u = 1 u log a e D x u se tiene: D x f(x) = 1 x 3 x 2 + 1 log 3 e (3x 2 2x) = 3x2 2x x 3 x 2 + 1 log 3 e Ejemplo: Determine la derivada de la función y = ln (6x 2 + 3x) Considerando u = 6x 2 + 3x, aplicando el teorema D x ln u = 1 u D xu, se tiene D x y = 1 6x 2 (12x + 3) + 3x = 12x + 3 6x 2 + 3x Ejercicios: Calcule la derivada de las siguientes funciones. 1. f(x) = log 2 (x 4 4x 2 ) Respuesta: 4x3 8x x 4 4x 2 log 2 e 2. f(x) = ln(2x 2 x) 3. f(x) = tan (ln x 2 ) 4. f(x) = ln(sen x) + ln(tan 3x) 22

5. f(x) = ln(tan 2 3x) Respuesta: 6sec2 3x tan 3x 6. f(x) = cos 4x log 5x 7. f(x) = log 5 (sen 2x) 8. f(x) = log 2 (arc cos(x x 2 )) 9. f(x) = arc cos ( ln x 2 ) 10. f(x) = 1 + ln 3x Respuesta: 1 2x 1+ln 3x Tema No. 11. Derivada de las funciones exponenciales. Para calcular la derivada de una función exponencial, se aplican los teoremas correspondientes, los cuales pueden ser consultados en el libro de texto, en formulario o prontuario. Ejemplo: Obtener la derivada de la función f(x) = 7 x2 +x Considerando u = x 2 + x, aplicando el teorema D x a u = a u ln ad x u, se tiene: D x f(x) = 7 x2 +x ln 7 D x (x 2 + x) 23

Calculando la derivada indicada y ordenando los términos, se tiene la derivada de la función = (2x + 1)7 x2 +x ln 7 cos 2x Ejemplo: Calcular la derivada de la función g(x) = e Considerando u = cos 2x, aplicando el teorema D x e u = e u D x u, se tiene: D x g(x) = e cos 2x D x cos 2x Calculando la derivada y ordenando los términos, se tiene la derivada de la función cos 2x = 2 sen 2x e Ejercicios: Calcule la derivada de las siguientes funciones. 1. f(x) = 2 x 2 Respuesta:2 x 2 ln 2 2. f(x) = 7 4 x sen 3x 3. f(x) = 3 4. f(x) = 4 3x2 +x 5. f(x) = e x2 +3x 8 cos x3 6.f(x) = e Respuesta: 3x 2 sen x 3 cos x3 e 24

Tema No.12. Derivación logarítmica. Examen Diagnóstico para la clase Es un proceso que principalmente se utiliza para calcular la derivada de una función elevada a otra función y para efectuar la demostración de teoremas para el cálculo de derivadas. Para este proceso se utilizan las siguientes propiedades de los logaritmos: a) ln A B = ln A + ln B b) ln A = ln A ln B B c) ln A n = n ln A Ejemplo: Calcular la derivada de la función f(x) = x 5x Igualando la función con y Aplicando el logaritmo natural y = x 5x ln y = ln x 5x Aplicando la propiedad de los logaritmos ln y = 5x ln x Derivando con respecto a x ambos miembros de la igualdad 1 y D x y = 5x D x ln x + ln x D x (5x) = (5x) 1 + 5 ln x = 5 + 5 ln x x Despejando D x y D x y = y(5 + 5 ln x) Sustituyendo y = x 5x D x x 5x = 5x 5x + 5x 5x ln x 25

Ejercicios: Utilizando el proceso de derivación logarítmica, obtenga la derivada de las siguientes funciones. 1. f(x) = (3x) 2x Respuesta: (3x) 2x (2 + 2 ln 3x) 2. f(x) = (3x 2 cos 2x ) 3. f(x) = (cos 3x) x+2 R:(cos 3x) x+2 (( 3x 6)3x + lncos3x) 4. f(x) = (x 5 5x 2 ) 5x 6 5. f(x) = ( sen x 2 ) cot(3x 1) Tema No. 13. Derivadas sucesivas de una función. Al derivar una función real de variable real continua, se obtiene como resultado una nueva función, la cual se puede dividir nuevamente. A la derivada de la derivada de una función se le llama segunda derivada y a las derivadas obtenidas a partir de la segunda, se llaman derivadas de orden superior o derivadas sucesivas, siendo la primera derivada la ordinaria. Ejemplo: Obtenga la quinta derivada de la función f(x) = x 7 + 2x 6 5x 4 + 8x 3 2x + 2 La primera derivada de la función es: D x f(x) = 7x 6 + 12x 5 20x 3 + 24x 2 2 26

La segunda derivada La tercera derivada La cuarta derivada La quinta derivada 2 D x f(x) = 42x 5 + 60x 4 60x 2 + 48x D x 3 f(x) = 210x 4 + 240x 3 120x + 48 D x 4 f(x) = 840x 3 + 720x 2 120 D x 5 f(x) = 2520x 2 + 1440x Ejercicios: Obtenga la quinta derivada de las siguientes funciones. 1. f(x) = 2x 5 2x 3 R: 240 2. f(x) = cos(5x 3) 3. f(x) = sen (3x 2) 4. f(x) = 4x 2 5 5. f(x) = 2x 1 R. 105 (2x 1) 9 27

Tema No. 14. Derivación de funciones implícitas. Una función real de variable real es implícita cuando en su regla de correspondencia ninguna variable está despejada en términos de la otra. La derivada de una función implícita se puede determinar con respecto a la variable independiente x o con respecto a la variable dependiente y mediante el proceso denominado derivación implícita. Al derivar funciones implícitas, es común aplicar la regla de la cadena. El procedimiento para esta derivación se puede consultar en el libro de texto y en el formulario o prontuario. Ejemplo: Mediante derivación implícita, obtenga la derivada con respecto a x de la función Derivando con respecto a x 3x 4 y 2 + 3x 2 = xy + 7 D x (3x 4 y 2 ) + D x (3x 2 )=D x (xy) + D x (7) Aquí se debe tener en cuenta que para derivar los términos 3x 4 y 2 y xy se debe aplicar el teorema de la derivada de un producto. Calculando las derivadas y representando por y con respecto a x. la derivada de y 6x 4 yy + 12x 3 y 2 + 6x = xy + y 28

Reordenando y como se desea obtener el valor de y, los términos que contiene a y se agrupan en el primer miembro, factorizando los términos y (6x 4 y x) = y 12x 3 y 2 6x Despejando y, se tiene la derivada de la función con respecto a x. y = y 12x3 y 2 6x 6x 4 y x Ejercicios: Derive implícitamente con respecto a x las siguientes funciones 1. xy + x 3 = y 2 R: y = y+3x2 2y x 2. x 3 + y 2 + cos xy = 3xy 3. x 2 + sen x 2 = y 2 cos y 4. x 3 + y 2 = arc sen 5x Tema No.15. Ecuación de las rectas tangente y normal a una curva. Una de las aplicaciones de la derivada, que tiene una utilidad inmediata, y que se apoya en la definición e interpretación geométrica de la derivada de una función real de variable real continua, consiste en la obtención de la ecuación de la recta tangente y normal en un punto determinado de la curva. Mediante la derivada se obtiene la pendiente y se aplican las ecuaciones de la geometría analítica para rectas 29

Ejemplo: Obtenga la ecuación de la recta tangente y normal a la curva f(x) = 2x 3 + 3x 2 5x + 3 en el punto de abscisa x=0. La ordenada del punto de tangencia, se calcula sustituyendo x=0 en la ecuación de la curva. f(0) = 3 Entonces el punto de tangencia es P (0,3). La pendiente de la recta tangente, se obtiene derivando y valuando la función en la abscisa del punto de tangencia. La derivada de la función es: f (x) = 6x 2 + 6x 5 El valor de la pendiente de la recta en el punto de tangencia es: m = f (0) = 5 Aplicando los valores anteriores en la ecuación de recta conociendo un punto y la pendiente, para obtener la ecuación de la tangente: La ecuación de la normal es: y 3 = 5(x 0) 5x + y 3 = 0 y 3 = 1 (x 0) 5 x 5y + 15 = 0 Se obtiene el ángulo de inclinación de la recta tangente, esto es: = 101º = ang tan m = ang tan( 5) 30

Se obtiene el ángulo de inclinación de la recta normal sumando 90 al ángulo de la recta tangente, esto es: β = 101º + 90º = 191º Ejercicios: Obtenga la ecuación de la recta tangente y normal a la curva en el punto indicado, graficando en cada caso la curva y ambas rectas en el mismo plano. 1. f(x) = x 2 3, en x = 1 R: 2x-y-4=0, x+2y+3=0 2. f(x) = 3x 2 + 6x 5, en x = 1 3. Obtenga la ecuación de la recta tangente a la curva y = x 2 3x 10, con ángulo de inclinación de 135. 4. f(x) = 4 x 2 en x=-2 R: 4x-y+8=0, x+4y+2=0 Tema No. 16 Máximos y mínimos de una función. La principal utilidad al obtener los puntos máximos y mínimos de una función, así como los intervalos donde es creciente y decreciente es para realizar un esbozo general de la gráfica de la función, sin embargo, en problemas de aplicación el objetivo principal es determinar los valores máximos o mínimos que optimicen el problema. Para determinar los puntos máximos y mínimos de una función, así como los intervalos donde es creciente y decreciente, se emplea el procedimiento que marca el libro de texto utilizando el criterio de la primera y segunda derivada. 31

Ejemplo: Obtenga los puntos máximos y mínimos de la función f(x) = x 3 3x 2 9x + 3, así como los intervalos en los cuales es creciente y decreciente. Derivando la función f (x) = 3x 2 6x 9 Igualando con cero la primera derivada 3x 2 6x 9 = 0 Simplificando y resolviendo la ecuación, se tiene la abscisa de los puntos críticos x 2 2x 3 = 0 (x 3)(x + 1) = 0 x-3=0 x+1=0 x=3 y x=-1 Calculando la segunda derivada de la función f (x) = 6x 6 Valuando la segunda derivada en los puntos críticos. X f (x) = 6x 6-1 6(-1)-6=-12 f (x) < 0 entonces se tiene un máximo en x = 1 3 6(3)-6=12 f (x) > 0 entonces se tiene un mínimo en x = 3 Valuando los puntos críticos en la función original, se tiene el valor de sus ordenadas 32

x f(x) = x 3 3x 2 9x + 3-1 ( 1) 3 3( 1) 2-9(-1)+3= 8 Entonces se tiene un máximo en (-1,8) 3 3(3) 2 9(3) + 3 = 24 Entonces se tiene un mínimo en (3,-24) A partir de estos datos, se determinan los intervalos donde la función es creciente o decreciente, es importante tener en cuenta que estos mismos intervalos también es posible obtenerlos mediante la primera derivada de la función. La función es creciente en: La función es decreciente en: x (, 1) y en (3, ) x ( 1,3) Se deja al estudiante el trazo de la gráfica. Ejercicios: Trace la gráfica de las siguientes funciones determinando sus puntos máximos y mínimos, así como los intervalos en los cuales es creciente y decreciente. 1. f(x) = x 2 + 6x 1 R: D (, 3), Min( 3,10), C( 3, ) 2. f(x) = 3x 2 4x 2 3. f(x) = 3 8x x 2 4. f(x) = 2x 3 7x + 2 5. f(x) = 2x 3 3x 2 R: C(, 4), máx( 4,19), D( 4, ) 33

Tema No. 17. Problemas de aplicación de máximos y mínimos. Algunos problemas de planteo en los cuales la solución es un máximo o un mínimo, pueden resolverse con la teoría que se ha desarrollado hasta el momento. La aplicación principal de este tipo de problemas se presenta en problemas de optimización, en los cuales se pide obtener uno o varios valores máximos o mínimos. No existe un método general que se pueda aplicar para resolver todos los problemas de este tipo, pero en el libro de texto se hacen algunas recomendaciones que el estudiante puede consultar. Por problema práctico entendemos un problema que puede surgir en la vida cotidiana. Tales problemas en raras ocasiones tienen puntos singulares; por lo regular en éstos los valores máximos y mínimos se presentan en puntos estacionarios, aunque también deberán comprobarse los puntos frontera. Ejemplo: Un proyectil es disparado siguiendo una trayectoria parabólica, dada por la ecuación h = t 2 + 8t 13, donde h es la altura en metros y t el tiempo en segundos. Halle el tiempo en que alcanza su altura máxima y el valor de ésta. En este caso la función objetivo a maximizar es h = t 2 + 8t 13 Derivando la altura con respecto al tiempo, igualando a cero y resolviendo la ecuación h = 2t + 8 34

2t + 8 = 0 t = 4 Por lo tanto el punto crítico se presenta cuando t=4 La segunda derivada es h = 2 En el punto crítico h (4) = 2 < 0 entonces en t= 4 la función presenta un máximo. Sustituyendo t en h se obtiene h = (4) 2 +8(4)-13 =3, por lo tanto el proyectil tarda 4 segundos en alcanzar la altura máxima que es de 3 metros. Ejercicios: 1. Un diseñador gráfico tiene que realizar un trabajo donde tenga 180 cm 2 de material impreso, dejando 3 cm de margen superior e inferior y 2 cm de margen izquierdo y derecho. Determine las dimensiones que debe tener el trabajo para que se utilice la menor cantidad de papel posible. R. 14.95 X 22.43 cm 2. Se desea cercar un terreno utilizando 200 m de rollo de tela de alambre, el terreno cercado debe quedar en forma cuadrada o rectangular. Determine las dimensiones del terreno de tal manera que el área cercada sea máxima. 3. Encuentre el volumen de la caja sin tapa más grande que se pueda hacer con una hoja cuadrada de cartón, de 24 pulgadas de lado, cortando cuadrados iguales en las esquinas y doblando. 35

R: 1024 pulgadas cubicas. 4. Un proyectil es disparado siguiendo una trayectoria parabólica, dada por la ecuación h = 1 4 t2 + 60t, donde h es la altura en metros y t el tiempo en segundos. Halle el tiempo en que alcanza su altura máxima y el valor de esta. 5. Se requiere construir un recipiente cilíndrico sin tapa empleando 480 cm 2 de lámina. Qué dimensiones debe tener el cilindro para que el volumen contenido en el sea máximo? R. r, h=7.13 cm 36

GLOSARIO. Abscisa. Una de las dos coordenadas rectilíneas que fijan la posición de un punto en el plano. Álgebra. Ciencia que tiene por principal objeto simplificar y generalizar las cuestiones relativas a los números. Esto se consigue utilizando letras para designar los números que se buscan; las reglas operacionales se eligieron para que siguieran el mismo patrón que en aritmética ordinaria con el empleo generalizado del número negativo. Amplitud. De un intervalo (a, b) Aproximación. Evaluación o cálculo empírico con resultado inexacto, pero lo suficientemente cercano al real para considerarse suficiente. Asíntota. Línea recta que, prolongada indefinidamente, se acerca de continuo a una curva, sin llegar a encontrarla nunca. Cálculo Diferencial. Rama de las matemáticas que trata de las unidades de cambio en las cantidades variables. En el cálculo diferencial se consideran solamente los incrementos en las cantidades variables; se antepone a ellas el símbolo d, lo que significa un incremento. Coordenadas. Se le llama coordenada a la pareja (x, y) que determina la distancia que un punto guarda en relación con los ejes de coordenadas rectilíneas o cartesianas. La x se define como la abscisa y es la distancia ortogonal que dicho punto guarda con el eje de las Y, y la coordenada y representa la distancia ortogonal que el punto guarda con respecto al eje X. Curva. Línea o trayectoria que se desvía constantemente de su dirección y no contiene ninguna posición de línea recta. Es el lugar 37

geométrico de las posiciones sucesivas que ocupa un punto que se traslada con arreglo a una determinada ley; por lo tanto, es una figura geométrica determinada por un sistema de coordenadas y la expresión gráfica de la variación que experimenta una magnitud en función de otra u otras, de cuya definición se desprende que una recta es un caso particular de curva. Derivación. Es la operación con la que se encuentra la derivada de una función. Discontinuo. Magnitud que varía por saltos y no gradualmente. Función, derivada de una. Es la tendencia de una función al acercamiento a un valor dado de la variable independiente. Existen varias fórmulas para derivar. Funciones implícitas. Son implícitas cuando su dependencia con la variable independiente no se encuentra en forma de ecuación resuelta, como es: 5xy 2y = 8, en este caso y es una función implícita de x. Funciones, valores críticos de las. Se llaman valores críticos a los valores en los que una función encuentra un máximo, un mínimo o un punto de inflexión, éstos se localizan derivando la función e igualando a cero. Los valores de x que satisfacen a f (x) se llaman valores críticos. Límite de una función. Es el valor al que tiende el resultado de la operación cuando la variable tiende a un valor predeterminado. Como es decir que el límite de f(x) cuando x tiende a a sea k. Máximo. Límite superior de una cosa. Valor mayor de una cantidad variable entre ciertos límites. Trascendentes. Ecuaciones y funciones que no se pueden representar por expresiones algebraicas, porque intervienen en ellas 38

logaritmos, funciones trigonométricas o ecuaciones en las que el exponente es la variable. Variable dependiente. Magnitud que en una relación o función depende del valor que se le asigne a otras variables. Variable independiente. Magnitud que no depende de otra para obtener su valor. 39

BIBLIOGRAFIA. AYRES, F., 2004, Cálculo diferencial e integral, México, Mc. Graw Hill ALEKSANDROV, A.D., Kolmogorov, A.N., Laurentiev, M.A., 1980, La matemática: su contenido, métodos y significado (tres tomos), México, Alianza Editorial. ANFOSSI, Agustín; Flores, M. A., 1991, Cálculo Diferencial e Integral, México, Editorial Progreso. ARYA, J.C, Lardner, R.W., 1992, Matemáticas aplicadas a la Administración y a la Economía, México, Editorial Prentice Hall Hispanoamericana. CONTRERAS G. L., et al., Cálculo diferencial e integral, 2004, México, Universidad Autónoma del estado de México. COURANT, R., Robbins, H., 2002 (edición en español), Qué son las matemáticas?, México, Editorial Fondo de Cultura Económica. GUZMÁN, José, et al., 2005, Cálculo Diferencia e Integral, México, Universidad Autónoma del Estado de México. LEITHOLD, Louis, 1987, El Cálculo con Geometría Analítica, México, Harla. PURCEL, Edwin J; Varberg, Dale, 1992, Calculo Diferencial e Integral, México, Prentice Hall, Hispanoamericana. SESTIER, A., 1981, Diccionario Enciclopédico de las Matemáticas (tres tomos), México, Editorial del Valle de México, S.A. 40

SILVA, J. M; Lazo, A., 1994, Fundamentos de Matemáticas, México, Noriega Editores Limusa. TALIZINA, N.F., 1992, La formación de la actividad cognoscitiva de los escolares, México, Ángeles Editores. ZILL, Dennis G., 1987, Cálculo con Geometría Analítica, México, Grupo Editorial Iberoamérica. 41