Magnitud experimental Fr (N)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Magnitud experimental Fr (N)"

Transcripción

1 Universidad de Antofagasta Facultad de Ciencias Básicas Departamento de Física Asignatura: Biofísica Carrera: Medicina Objetivos: Comprobar que las fuerzas obedecen a la operación de adición de vectores. Materiales y Diagrama: Mesa de Fuerzas Caja de Masas 50, 20, 10, 5 Kg. Nivel de Burbuja Calculadora Regla Transportador Hoja Milimetrada Ilustración 1: Mesa de Fuerza con Caja de Masas Desarrollo Experimental: Caso 1 Obtención de la fuerza de equilibrio del sistema mediante la mesa de fuerza. Se niveló la mesa con el nivelador de burbuja (la burbuja debe quedar en el centro) Se alineó la polea del eje X en 0 y se cargó con 55 gr. (Fuerza 1). La polea del eje Y fue alineada en los 120 y cargada con las masas expuestas a en la tabla 1 (Fuerza 2). Por último, una tercera polea se ajustó en ángulo y en masa para que fuera la fuerza equilibrante de las otras dos fuerzas (de modo que la argolla quedará justo en el centro), y a partir de esto se determinó la magnitud de la fuerza resultante. Luego, se calculó la fuerza resultante entre estas dos fuerzas mediante el método del paralelógramo. También, se determinó la fuerza resultante por el método de la ley de los cosenos. Y luego, fue calculado el error porcentual entre este valor y la fuerza resultante obtenida experimentalmente. Finalmente, se determinó el ángulo entre Fr y Fx en la mesa de fuerza. Y el ángulo entre Fr y Fx dado por el método paralelógramo. Ilustración 2: Esquemas de fuerzas en cuestión Datos: X (gr.) Y (gr.) Fx (N) Fy (N) Magnitud Magnitud experimental Fr (N) Magnitud calculada Dirección Fuerza Dirección Fuerza % Error 1

2 Experimental por M.F. Feq (N) (L.C.) Fr (N) Resultante en la M.F. Resultante por la R.P. 2

3 Cálculos: Los resultados de la tabla se obtuvieron de las siguientes fórmulas: Para determinar Fx y Fy : (N) Para Magnitud Calculada (L.C.) FR : (N) Para Porcentaje de error: donde Va es el valor calculado por ley de los cosenos y Ve el valor experimental (mesa de fuerza) Para determinar ángulo entre Fx y Fr de la mesa de fuerza (dirección Fr) se procedió de la siguiente manera: Primero se midió el ángulo entre Fx y Feq. Como sabemos que Fr y Feq forman un ángulo de 180º, el suplemento de el ángulo entre Fx y Feq es el ángulo entre Fx y Fr. Ejemplo: La aplicación gráfica del método paralelógramo se señala a continuación Se hizo una equivalencia entre las masas dispuestas en la mesa de fuerza y una medida en centímetros para representar vectores. Luego de determinar gráficamente el vector resultante se midió y se hizo la equivalencia a masa y luego a fuerza. 55 g...3 cm. 125 g...x x = 6,81 cm. (vector Fy) 3 cm.55 g 5,3 cm..x x = 97,16 g 0,95 N 55 g...3 cm. 130 g...x x = 7,09 cm. 3 cm...55 g 3

4 6,14 cm...x x = 112,5 g 1,103 N 55 g...3 cm. 135 g...x x = 7,36 cm. 3 cm...55 g 6,4 cm...x x = 117,33 g 1,149 N Caso 2 Aplicando el mismo procedimiento expuesto en el caso 1, calcular el vector resultante partir de 3 fuerzas, cuyas masas se exponen en la tabla 2, por método experimental y calculado. Datos: Fuerzas F1 (0 ) F2 (90 ) F3 (180 ) F1+F2+F3 (medido) Magnitud (gr.) F (N) % Error 0% Cálculos: Para Calcular FA+FB+FC Se obtiene las componentes en X e Y de cada Fuerza F1+F2+F3 (Calculado) Fuentes de Error: 4

5 En esta experiencia realizada, como en toda experiencia de laboratorio en física, existen factores que pueden llevar a un margen de error que al ser tan pequeño, se puede despreciar. Estos pueden ser: Una leve inclinación de la mesa, a pesar de haber utilizado el nivelador de burbuja. Siempre puede haber un margen de error en este procedimiento, puesto que para determinar si la burbuja está en el centro se utiliza la vista, y por lo tanto entra un grado de subjetividad bastante importante en la medida final. La correcta aproximación o eliminación de decimales puede llevar a obtener un pequeño error. La obtención del ángulo, en la mesa de fuerza, al momento de calcular la fuerza equilibrante puede variar, y llevar a un leve error de la masa requerida para el equilibrio. El Roce existente entre la cuerda utilizada y la polea también puede influir en el resultado, pero en forma muy despreciable. Conclusión A través de este trabajo práctico fue posible comprobar el comportamiento vectorial de las fuerzas. Es por esto que al finalizar este experimento podemos concluir: Si en un sistema se aplican distintas fuerzas, estas pueden ser expresadas en una sola fuerza, la llamada fuerza resultante. Es decir, si uno aplica la fuerza resultante en un sistema, va a dar el mismo resultado que se obtuvo al aplicar todas las fuerzas. Además esta fuerza resultante puede ser obtenida con las diferentes operatorias de suma vectorial. La fuerza resultante va a tener una opuesta, llamada Fuerza Equilibrante (que quedó en evidencia, en el caso 1, al buscar un contrapeso que equilibrara las fuerzas ejercidas por las pesas en el sistema), que va a tener el mismo módulo que la Fuerza Resultante, pero en sentido contrario. Entonces, para mantener un sistema en equilibrio, en el cual se aplican distintas fuerzas, basta con aplicar una fuerza, en sentido contrario y de igual módulo, que la fuerza resultante de las fuerzas aplicadas. También quedó demostrado que es posible determinar la fuerza resultante, de un conjunto de fuerzas, mediante un método gráfico, como lo es la regla del paralelogramo, que puede ser muy eficaz, debido al 0% de error registrado, en nuestro caso. Fr = Fuerza Resultante M.F.= Mesa de Fuerza Feq = Fuerza Equilibrante L.C. = Ley del Coseno R.P. = Regla del Paralelógramo 9 FY 5

6 FX Feq FA= 0.59 N FB = 0.39 N FC = 0.29 N Y X 55 g. 125 g. 130 g. 135 g.? =86º---- Fx Feq Fr Ángulo entre Fx y Fr () (Dirección de la Fuerza Resultante) = 180º = 180º 86º = 94º 6

LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO

LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO No LABORATORIO DE MECANICA SEDE VILLA DEL ROSARIO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BASICAS Objetivos Diseñar y construir un sistema para comprender el análisis

Más detalles

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS Adaptación del Experimento Nº 4 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 51-54. Autorizado por el Autor. Materiales: Mesa de

Más detalles

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS

COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS COMPOSICIÓN Y DESCOMPOSICIÓN DE FUERZAS Adaptación del Experimento Nº 4 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 51-54. Autorizado por el Autor. Materiales: Mesa de

Más detalles

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN

FUERZAS CONCURRENTES. Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN FUERZAS CONCURRENTES Lorena Vera Ramírez 1, Iván Darío Díaz Roa 2. RESUMEN En este laboratorio lo que se hizo inicialmente fue tomar diferentes masas y ponerlas en la mesa de fuerzas de esa manera precisar

Más detalles

1. Cuántas baldosas cuadradas de 20cm de lado serán necesarias para embaldosar un patio cuadrado de 5,20 m de diagonal?

1. Cuántas baldosas cuadradas de 20cm de lado serán necesarias para embaldosar un patio cuadrado de 5,20 m de diagonal? 1 REPASO Capitulo I 1. Cuántas baldosas cuadradas de 20cm de lado serán necesarias para embaldosar un patio cuadrado de 5,20 m de diagonal? Solución: la sup de cada baldosa es 400 cm 2 y la sup del patio

Más detalles

1. Diseñar y construir un sistema para comprender el análisis vectorial.

1. Diseñar y construir un sistema para comprender el análisis vectorial. No 1 LABORATORIO DE MECÁNICA COMPOSICIÓN Y DESCOMPOSIÓN DE VECTORES DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General 1. Encontrar la fuerza

Más detalles

L2. FUERZAS CONCURRENTES UNIVERSIDAD INDUSTRIAL DE SANTANDER. Ligia Marcela Daza Torres. Mayerly Katherine Rueda Durán. Oscar Leonardo Sanabria

L2. FUERZAS CONCURRENTES UNIVERSIDAD INDUSTRIAL DE SANTANDER. Ligia Marcela Daza Torres. Mayerly Katherine Rueda Durán. Oscar Leonardo Sanabria L2. FUERZAS CONCURRENTES UNIVERSIDAD INDUSTRIAL DE SANTANDER Ligia Marcela Daza Torres Mayerly Katherine Rueda Durán Oscar Leonardo Sanabria RESUMEN Para la realización de la práctica anterior fue necesario

Más detalles

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5

Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES

Más detalles

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas.

Con la ayuda de el dinamómetro implementamos el segundo método de aplicación y medición de fuerzas. EXPERIMENTO # 1: LEY DE HOOKE MEDICIÓN DE FUERZAS Objetivo: Estudios de las propiedades de un dinamómetro mediante la aplicación de fuerza conocidas. Fundamento Teórico: El concepto de fuerza es definido

Más detalles

Un vector es un segmento de recta orientado caracterizado por poseer 4 componentes: punto de aplicación, dirección, sentido y módulo o intensidad.

Un vector es un segmento de recta orientado caracterizado por poseer 4 componentes: punto de aplicación, dirección, sentido y módulo o intensidad. FUEZAS La palabra FUEZA viene del latín "fortia" que significa fuerte, resistente, protegido ante ataques. Sin embargo, en física se considera la FUEZA como una causa capaz de modificar el estado de reposo

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Est s á t t á i t c i a E s e l e es e t s ud u i d o o de d e las a s fue u r e zas a s en e equilibrio.

Est s á t t á i t c i a E s e l e es e t s ud u i d o o de d e las a s fue u r e zas a s en e equilibrio. Estática Es el estudio de las fuerzas en equilibrio. FUERZAS REPRESENTACIÓN GRÁFICA DE LAS FUERZAS Para que una fuerza quede determinada debemos conocer: Su recta de acción o directriz. Su intensidad.

Más detalles

ADICIÓN DE VECTORES Y SUS PROPIEDADES

ADICIÓN DE VECTORES Y SUS PROPIEDADES ADICIÓN DE VECTORES Y SUS PROPIEDADES Tú un amigo están arrastrando una caja por el suelo. Sin embargo, cada uno de ustedes está jalando en una dirección diferente. Un diagrama de sus esfuerzos se vería

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS NOMBRE DE LA ASIGNATURA FÍSICA MECÁNICA CÓDIGO ASIGNATURA 02311 LABORATORIO No 2 TÍTULO DE LA PRÁCTICA DURACIÓN BIBLIOGRAFÍA SUGERIDA MESA DE FUERZAS. VECTORES 2 HORAS. - Sears y Z., Física Universitaria,

Más detalles

LAS FUERZAS y sus efectos

LAS FUERZAS y sus efectos LAS FUERZAS y sus efectos Definición de conceptos La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el movimiento

Más detalles

GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I

GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I UNIVERSIDAD DE ATACAMA Facultad de Ciencias Naturales Departamento de Física GUIA DE EJERCICIOS N6 INGENIERÍA PLAN COMÚN Y GEOLOGÍA - FÍSICA I 1. Calcular la aceleración (en m/s 2 ), si: m = 5 kg, F 1

Más detalles

GUIA DE PROBLEMAS Nº 2 FISICA 4 AÑO 2013

GUIA DE PROBLEMAS Nº 2 FISICA 4 AÑO 2013 FUERZAS 1- Expresar en Newton el módulo de una fuerza de 50 kgf. Expresar en kgf el módulo de una fuerza de 294 N. 2- Calcular la masa de un cuerpo cuyo peso es: a) 19,6 N; b) 1960 dy; c) 96 kgf. 3- Un

Más detalles

Marco Teórico. Materia: Matemáticas de 4to año. Tema: Suma de Vectores

Marco Teórico. Materia: Matemáticas de 4to año. Tema: Suma de Vectores Materia: Matemáticas de 4to año Tema: Suma de Vectores Estás con un amigo tirando de una caja por el suelo. Sin embargo, cada uno de ustedes está tirando en un ángulo diferente. Un diagrama de sus esfuerzos

Más detalles

U IVERSIDAD ACIO AL AUTO OMA DE HO DURAS CE TRO U IVERSITARIO DE ESTUDIOS GE ERALES DEPARTAME TO DE FÍSICA

U IVERSIDAD ACIO AL AUTO OMA DE HO DURAS CE TRO U IVERSITARIO DE ESTUDIOS GE ERALES DEPARTAME TO DE FÍSICA U IVERSIDAD ACIO AL AUTO OMA DE HO DURAS CE TRO U IVERSITARIO DE ESTUDIOS GE ERALES DEPARTAME TO DE FÍSICA FISICA MÉDICA I FS-111 LABORATORIO º 1 VECTORES Elaborado por: Lic. Enma Zúñiga de Guillén (Coordinadora)

Más detalles

PLANTEAMIENTO DEL PROBLEMA

PLANTEAMIENTO DEL PROBLEMA I2. DETERMINACIÓN EXPERIMENTAL DEL VECTOR RESULTANTE DE LA SUMA DE VARIAS FUERZAS CONCURRENTES RESUMEN Las fuerzas surgen a partir de las interacciones entre los cuerpos, es común que un cuerpo siempre

Más detalles

1. Sobre un cuerpo actúan las dos fuerzas que se indican. 2.- Las tres fuerzas de la figura actúan sobre un cuerpo. 200N 30º

1. Sobre un cuerpo actúan las dos fuerzas que se indican. 2.- Las tres fuerzas de la figura actúan sobre un cuerpo. 200N 30º 1. Sobre un cuerpo actúan las dos fuerzas que se indican. 20 N 10 N 150º Halla la fuerza total en módulo, dirección y sentido. 2.- Las tres fuerzas de la figura actúan sobre un cuerpo. 300N 45 º 53 º 200N

Más detalles

MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad

MAGNITUDES ESCALARES. expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad MAGNITUDES ESCALARES Son aquellas en donde las medidas quedan correctamente expresadas por medio de un número y la correspondiente unidad. Masa Temperatura Presión Densidad Para muchas magnitudes físicas

Más detalles

MÓDULO 8: VECTORES. Física

MÓDULO 8: VECTORES. Física MÓDULO 8: VECTORES Física Magnitud vectorial. Elementos. Producto de un vector por un escalar. Operaciones vectoriales. Vector unitario. Suma de vectores por el método de componentes rectangulares. UTN

Más detalles

Introducción y fundamentos de mecánica

Introducción y fundamentos de mecánica Fundamentos para programación y robótica Módulo 3: Fundamentos de mecánica Capítulo 1: Introducción y fundamentos de mecánica. Objetivos: o Estimular la intuición a fundamentos de mecánica Todos tenemos

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS CARRERA DE INGENIERIA MECANICA ING. PAUL VISCAINO VALENCIA DOCENTE Objetivos del tema: 1.- Mostrar cómo se suman

Más detalles

LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO

LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO LABORATORIO Nº 2 PRIMERA Y SEGUNDA CONDICIÓN DE EQUILIBRIO I. LOGRO Comprobar experimental, gráfica y analíticamente la primera y segunda condición de equilibrio a través de diagramas de cuerpo libre.

Más detalles

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No.

COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO. Nombre del estudiante: No. 1 COMPLEJO EDUCATIVO SAN FRANCISCO PRIMER PERIODO CIENCIAS NATURALES Primer año Sección: Nombre del estudiante: No. UNIDAD No 3 Tema: Vectores Cuando vas en coche por una carretera, una autovía o una autopista,

Más detalles

Capítulo 2 Estática Página 1

Capítulo 2 Estática Página 1 apítulo 2 Estática Página 1. Problemas para el apítulo 2 PROLEM 1 ados los vectores: = 5 unidades; = 10 unidades; = 2 unidades; = 8 unidades. Sumar usando la regla del paralelogramo haciendo uso de una

Más detalles

Laboratorio de Física para Ingeniería

Laboratorio de Física para Ingeniería Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)

Más detalles

Mecánica Unidad 2. Sistema de vectores. Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes

Mecánica Unidad 2. Sistema de vectores. Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes Mecánica Unidad 2. Sistema de vectores Profesores: Ing. Iraid Hebed Hernández Barragán Ing. Mario Rivero Reyes En esta unidad el alumno podrá identificar claramente el concepto de vector así como la clasificación

Más detalles

T.P.N 4: Vectores en el plano

T.P.N 4: Vectores en el plano T.P.N 4: Vectores en el plano Matemática - Tercer Año Piensa que, por casualidad, te encuentras sentado junto a un físico durante una larga travesía en micro. Supón además que el físico tiene ganas de

Más detalles

FS-104 Física General UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Mesa de fuerzas

FS-104 Física General UNAH. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física. Mesa de fuerzas Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Elaboró: Lic. Enma Zuniga Objetivos Mesa de fuerzas 1. Visualizar las fuerzas como vectores, que poseen una magnitud y una

Más detalles

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.

Más detalles

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.

Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m. Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más

Más detalles

INSTITUTO TECNOLOGICO DE SALTILLO

INSTITUTO TECNOLOGICO DE SALTILLO INSTITUTO TECNOLOGICO DE SALTILLO SEGUNDA LEY DE NEWTON PROBLEMAS COMPLEMENTARIOS 1.- Se muestran 3 bloques de masas m1 = 2 kg. m2 = 3 kg. m3 = 8 kg. Si se supone nulo el roce, calcular la aceleración

Más detalles

TEMAS SELECTOS DE FÍSICA I

TEMAS SELECTOS DE FÍSICA I TEMAS SELECTOS DE FÍSICA I Mtro. Pedro Sánchez Santiago TEMAS Origen de una fuerza Vectores Cuerpos en equilibrio Momentos de fuerzas Cómo describir la posición de un punto en el espacio: Sistemas de coordenadas

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

CLASE I Estática de las construcciones I

CLASE I Estática de las construcciones I Introducción a las construcciones CLASE I Estática de las construcciones I Casa sobre el arroyo. Mar del Plata. Amancio Williams Física: estudio de los fenómenos que sufren los cuerpos Cinemática Mecánica

Más detalles

Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. TEMA I. Vectores. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I TEMA I. Vectores UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TEMA I. VECTORES Magnitudes Una magnitud se define como toda aquella propiedad que

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 2 Dinámica Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Cuestionarios Páginas LEY DE HOOKE.

Más detalles

ESTRUCTURAS I B F1 = 100 N. TEMA: Revisión de Conceptos de Física Estática VECTOR. Conceptos que tendrá el alumno que repasar:

ESTRUCTURAS I B F1 = 100 N. TEMA: Revisión de Conceptos de Física Estática VECTOR. Conceptos que tendrá el alumno que repasar: Conceptos que tendrá el alumno que repasar: Dirección, sentido y módulo o magnitud de un vector. Operaciones con vectores. Composición y descomposición de fuerzas. Desplazamiento de un vector sobre su

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago Estática A Fuerzas Si sobre un cuerpo actúan solo dos fuerzas en la misma línea, y el cuerpo está en reposo o moviéndose con velocidad constante, las fuerzas son iguales pero de sentidos contrarios. Si

Más detalles

Guía de vectores. coordenadas ortogonales, puede ser negativa. determinan sus direcciones cuando sus orígenes coinciden.

Guía de vectores. coordenadas ortogonales, puede ser negativa. determinan sus direcciones cuando sus orígenes coinciden. Guía de vectores 1. Con respecto a los vectores, todas Ias afirmaciones siguientes son verdaderas excepto: a) La componente de un vector, correspondiente a un sistema de coordenadas ortogonales, puede

Más detalles

Verificación experimental de la segunda ley de Newton.

Verificación experimental de la segunda ley de Newton. Objetivo Temático Segunda ley de Newton Verificación experimental de la segunda ley de Newton. Objetivo Específico Encontrar experimentalmente la relación entre la fuerza resultante aplicada a un cuerpo

Más detalles

Coordenadas polares:cuando expreso el vector con módulo y ángulo:

Coordenadas polares:cuando expreso el vector con módulo y ángulo: MAGNITUDES ESCALARES Y VECTORIALES (V5) Hay magnitudes como la masa, o el tiempo, que basta con dar su magnitud numéricamente. Ej: Una masa de 5 kg, un tiempo de 18 s, Estas magnitudes se denominan magnitudes

Más detalles

Coordenadas polares: Cuando expreso el vector con módulo y ángulo:

Coordenadas polares: Cuando expreso el vector con módulo y ángulo: MAGNITUDES ESCALARES Y VECTORIALES (V7) Hay magnitudes como la masa, o el tiempo, que basta con dar su magnitud numéricamente. Ej: Una masa de 5 kg, un tiempo de 18 s, Estas magnitudes se denominan magnitudes

Más detalles

34 35

34 35 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 1. Dos fuerzas se aplican a una armella sujeta a una viga. Determine gráficamente la magnitud y la dirección de su resultante usando: a) La ley

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

TEMA 0: INTRODUCCIÓN

TEMA 0: INTRODUCCIÓN TEMA 0: INTRODUCCIÓN 0.1 CÁLCULO VECTORIAL... 2 0.2 DERIVADAS E INTEGRALES... 6 0.3 REPASO DE CINEMÁTICA Y DINÁMICA... 9 Física 2º Bachillerato 1/21 Tema 0 0.1 CÁLCULO VECTORIAL 0.1.1 MAGNITUDES ESCALARES

Más detalles

PRÁCTICA 2 PRINCIPIOS BÁSICOS DE LA MECÁNICA

PRÁCTICA 2 PRINCIPIOS BÁSICOS DE LA MECÁNICA Página 11/49 PRÁCTICA 2 PRINCIPIOS BÁSICOS DE LA MECÁNICA Página 11 de 49 Página 12/49 OBJETIVOS Realizar la verificación experimental de: a. El principio de equilibrio b. Adición de sistemas de fuerzas

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 14 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 14 Mayo 2014 Fuerzas de arrastre Cuando un objeto se mueve a través de un fluido, tal como el aire o el agua, el fluido ejerce una fuerza de resistencia

Más detalles

Leyes de Newton o Principios de la dinámica

Leyes de Newton o Principios de la dinámica Leyes de Newton o Principios de la dinámica La dinámica se rige por tres principios fundamentales; enunciados por Isaac Newton en 1687 en su obra Philosophiae naturalis principia mathematica ; conocidos

Más detalles

DPTO. FISICA APLICADA II - EUAT

DPTO. FISICA APLICADA II - EUAT Práctica 1 Estática en el plano 1.1. Objetivos conceptuales Comprobar experimentalmente las ecuaciones del equilibrio de la partícula y del sólido rígido en el plano. 1.2. Conceptos básicos Un sistema

Más detalles

LEY DE COULOMB. EJERCICIOS RESUELTOS

LEY DE COULOMB. EJERCICIOS RESUELTOS LEY DE COULOMB. EJERCICIOS RESUELTOS 1) Suponga que se tiene tres cargas puntuales localizadas en los vértices de un triángulo recto, como se muestra en la figura, donde q 1 = -80 C, q 2 = 50 C y q 3 =

Más detalles

Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie.

Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie. CANTIDADES ESCALARES Y VECTORIALES. Cantidad escalar o escalar: es aquella que se especifica por su magnitud y una unidad o especie. Ejemplos: 10 Kg., 3m, 50 Km./h. Las cantidades escalares pueden sumarse

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

ESTATICA. FUERZA Es la acción que uno ejerce con la mano cuando empuja algo o tira de algo. Por ejemplo:

ESTATICA. FUERZA Es la acción que uno ejerce con la mano cuando empuja algo o tira de algo. Por ejemplo: 1 ESTATICA En estática uno suele tener un cuerpo que tiene un montón de fuerzas aplicadas. Resolver un problema de estática quiere decir calcular cuánto vale alguna de esas fuerzas. Entonces primero fíjate

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Física para Ciencias: Dinámica: Equilibrio

Física para Ciencias: Dinámica: Equilibrio Física para Ciencias: Dinámica: Equilibrio Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVESIDAD DEL ZULIA POGAMA DE INGENIEÍA NÚCLEO COSTA OIENTAL DEL LAGO UNIDAD CUICULA: ÍSICA I INSTUCTIVO PÁCTICA Nº 4. UEZAS COPLANAES CONCUENTES Preparado por. Ing. onny J. Chirinos S., MSc OBJETIVO

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

DINÁMICA: LAS LEYES DE NEWTON DEL MOVIMIENTO

DINÁMICA: LAS LEYES DE NEWTON DEL MOVIMIENTO DINÁMICA: LAS LEYES DE NEWTON DEL MOVIMIENTO CINEMÁTICA: trata con la descripción del movimiento DINÁMICA: Por qué y cómo se produce el movimiento? Qué es un fuerza? Experimentamos una fuerza como un tipo

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 9: CAMPO MAGNÉTICO TERRESTRE Producir un campo magnético en el

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Sesión 2. Fuerzas y vectores. 3.1 Fuerza resultante.

Sesión 2. Fuerzas y vectores. 3.1 Fuerza resultante. Sesión 2. Fuerzas y vectores. 3.1 Fuerza resultante. Cuando 2 o mas fuerzas actúan sobre un mismo punto de un objeto, se dice que son fuerzas concurrentes. El efecto combinado de tales fuerzas se llama

Más detalles

Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y

Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y Laboratori de Física I Estática Objetivo Estudiar las fuerzas que intervienen en diferentes situaciones de equilibrio estático de la partícula y del sólido rígido. Material Panel vertical con dos poleas

Más detalles

ESTÁTICA 3 3 VECTORES

ESTÁTICA 3 3 VECTORES ESTÁTICA Sesión 3 3 VECTORES 3.1. Componentes en dos dimensiones 3.1.1. Operación con vectores por sus componentes 3.1.2. Vectores de posición por sus componentes 3.2. Componentes en tres dimensiones 3.2.1.

Más detalles

Física para Ciencias: Dinámica

Física para Ciencias: Dinámica Física para Ciencias: Dinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Método para resolver problemas Dibujar un diagrama sencillo del sistema y predecir la respuesta. Realizar un diagrama

Más detalles

Titulo: FUERZA RESULTANTE (FISICA ESTATICA) Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

Al representar estos datos obtenemos una curva:

Al representar estos datos obtenemos una curva: Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer

Más detalles

1 Imagen extraída de: E. Egaña, M. Berruti y Alejandro González. Interacciones, fuerzas y energía. Editorial: Contexto. Año: Uruguay.

1 Imagen extraída de: E. Egaña, M. Berruti y Alejandro González. Interacciones, fuerzas y energía. Editorial: Contexto. Año: Uruguay. Propiedades de la fuerza: - Una fuerza siempre es aplicada por un objeto material a otro. - Una fuerza se caracteriza por su módulo, dirección y sentido. - Cuando un objeto A ejerce una fuerza sobre un

Más detalles

SUMA Y RESTA DE VECTORES. GL: Mesa No. Fecha: INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA

SUMA Y RESTA DE VECTORES. GL: Mesa No. Fecha: INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR ACULTAD DE INORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CÁTEDRA DE ÍSICA ASIGNATURA: ISICA I PRACTICA 2 SUMA

Más detalles

LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas

LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas No 3 LABORATORIO DE MECÁNICA Balanza de fuerzas Paralelas DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo Principal: Comprender las condiciones

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

1-Utiliza los datos de la tabla (alargamiento de un muelle al colgarle un peso) para hacer las siguientes actividades:

1-Utiliza los datos de la tabla (alargamiento de un muelle al colgarle un peso) para hacer las siguientes actividades: -Utiliza los datos de la tabla (alargamiento de un muelle al colgarle un peso) para hacer las siguientes actividades: Fuerza (N) 00 00 300 400 500 Alargamiento (m) 0 05 0 0 0 5 0 0 0 5 a) Representa gráficamente

Más detalles

FUERZAS. En la figura 1 se muestra el material que se utilizará en los diferentes experimentos:

FUERZAS. En la figura 1 se muestra el material que se utilizará en los diferentes experimentos: UERZAS En la figura 1 se muestra el material que se utilizará en los diferentes experimentos: igura 1.- Experimental 1.- COMPOSICIÓN DE UERZAS NO PARALELAS Calcular la fuerza resultante de componer dos

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

MECA EC N A I N CA C A A PL

MECA EC N A I N CA C A A PL Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 18:51 CINÉTICA DE PARTÍCULAS SEGUNDA LEY DE NEWTON Mecánica Aplicada Mecánica y Mecanismos 2015 Hoja 1 OBJETIVOS 1. Interpretar las leyes de Newton. 2.

Más detalles

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv

vv = ( vi+ v j+ vk)( v i+ v j+ v k) = v v + v v + vv CÁLCULO VECTORIAL. INTRODUCCIÓN Cálculo de las componentes de un ector Dado un ector cuyo origen es el punto A ( x A,y A,z A ) y su extremo el punto B A ( x B,y B,z B ), las componentes del ector se calculan

Más detalles

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez

ESTATICA DE LAS PARTICULAS ESTATICA. Jorge Enrique Meneses Flórez 2. DE LAS PARTICULAS 2. DE LAS PARTICULAS 2.1 Introducción Estudiar el efecto de las fuerzas sobre las partículas Sustituir dos o mas fuerzas por una RESULTANTE Relaciones necesarias para EQUILIBRIO de

Más detalles

SESIÓN 2 VECTORES Y SISTEMAS DE FUERZAS

SESIÓN 2 VECTORES Y SISTEMAS DE FUERZAS SESIÓN 2 VECTORES Y SISTEMAS DE FUERZAS I. CONTENIDOS: 1. Cantidades escalares y vectoriales. 2. Características de un vector. 3. Sistemas de fuerzas. 4. Resultante de un sistema de fuerzas. 5. Método

Más detalles

Física: Roce y Resortes: Ley de Hooke

Física: Roce y Resortes: Ley de Hooke Física: Roce y Resortes: Ley de Hooke Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Equilibrio En equilibrio la aceleración a de todos los cuerpos en el sistema es nula. T N T m 1 m 2 f F g =

Más detalles

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza.

ESTATICA. Debajo se encuentran las formulas para calcular las componentes y el ángulo α que determina la dirección de la fuerza. ESTATICA Es la parte de la física que estudia las fuerzas en equilibrio. Si sobre un cuerpo no actúan fuerzas o actúan varias fuerzas cuya resultante es cero, decimos que el cuerpo está en equilibrio.

Más detalles

ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas.

ESTÁTICA. Objetivos: Material: Introducción: 1. Suma y descomposición de fuerzas. ESTÁTICA Objetivos: 1. Sumar y descomponer fuerzas (analizando su carácter vectorial) 2. Medir fuerzas resultantes y momentos resultantes de fuerzas paralelas y no paralelas. Analizar el equilibrio mecánico

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

F 28º 1200 N ESTÁTICA Y DINÁMICA

F 28º 1200 N ESTÁTICA Y DINÁMICA COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA Asignatura: ISICA 11º Profesor: Lic. EDUARDO DUARTE SUESCÚN TALLER DE ESTÁTICA SITUACIÓN PROBLEMA Cuando un barco de gran tamaño entra a un puerto o atraviesa

Más detalles

Si θ 60º y F 20 kn, determine la magnitud de la fuerza resultante y la dirección calculada en sentido de las agujas del reloj, desde el eje positivo

Si θ 60º y F 20 kn, determine la magnitud de la fuerza resultante y la dirección calculada en sentido de las agujas del reloj, desde el eje positivo Si θ 60º y 20 kn, determine la magnitud de la fuerza resultante y la dirección calculada en sentido de las agujas del reloj, desde el eje positivo X. Rx ; x Rx 50 4 5 2 40 20 cos 60º 58.28 kn Ry ; y Ry

Más detalles

ME 3.4 E GUIA DEL ALUMNO ME EL PLANO INCLINADO BÁSICO. PROSERQUISA DE C.V. - Todos los Derechos Reservados

ME 3.4 E GUIA DEL ALUMNO ME EL PLANO INCLINADO BÁSICO. PROSERQUISA DE C.V. - Todos los Derechos Reservados 3.4 - EL PLANO INCLINADO BÁSICO GUIA DEL ALUMNO L PLANO INCLINADO BÁSICO 1. LAS FUERZAS Y DINSIONES EN EL PLANO INCLINADO 1.1 PLANO INCLINADO CON RODO 1.2 PLANO INCLINADO CON CARRITO HALL 2. OBJETIVOS

Más detalles

MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7)

MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7) 1 MGNITUDES FISICS Magnitudes escalares Son aquellas cantidades que quedan determinadas por un número una unidad exclusivamente. Ej: el tiempo, la densidad, el trabajo, la temperatura, etc. Magnitudes

Más detalles

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO

TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO TEMA 8. FUERZAS FÍSICA Y QUÍMICA 4º ESO 1. Introducción. 2. La fuerza es un vector. 2.1. Fuerza resultante. 2.2. Composición de fuerzas. 2.3. Descomposición de una fuerza sobre dos ejes perpendiculares.

Más detalles

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A:

INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: INSTITUCION EDUCATIVA DEPARTAMENTAL SAN PATRICIO MADRID TRABAJO DE RECUPERACION FISICA CUARTO PERIODO GRADO 1000 PRESENTADO POR: GRADO: PRESENTADO A: DOCENTE: ING. ALEXANDER CABALLERO FECHA DE ENTREGA:

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

Informe De Laboratorio PRÁCTICA 6: ESTÁTICA O TRATADO DEL EQUILIBRIO

Informe De Laboratorio PRÁCTICA 6: ESTÁTICA O TRATADO DEL EQUILIBRIO Informe De Laboratorio PRÁCTICA 6: ESTÁTICA O TRATADO DEL EQUILIBRIO Presentado Por: SANTIAGO ALDANA G7N02Santiago ALEJANDRO GOMEZ G7N15Alejandro JEAN NICOLAS HERNANDEZ - G7N16Jean MAURICIO POLANIA G7N23Andres

Más detalles

ASPECTOS CURRICULARES EN LOS QUE SE INCIDE

ASPECTOS CURRICULARES EN LOS QUE SE INCIDE ASPECTOS CURRICULARES EN LOS QUE SE INCIDE Las magnitudes vectoriales son necesarias para el estudio de las fuerzas y sistemas basados en componentes físicos cuyo valor no puede ser determinado solamente

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

TEMA 11. VECTORES EN EL ESPACIO

TEMA 11. VECTORES EN EL ESPACIO TEMA 11. VECTORES EN EL ESPACIO Dados dos puntos y, se define el vector como el segmento orientado caracterizado por su módulo, su dirección y su sentido. Dos vectores son equipolentes si tienen el mismo

Más detalles