2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2.1 Proyección ortogonal sobre un subespacio. El teorema de la proyección ortogonal"

Transcripción

1 Tema 2- Proyecciones, simetrías y giros ÍNDICE 21 Proyección ortogonal sobre un subespacio El teorema de la proyección ortogonal 22 Simétría ortogonal respecto de un subespacio 23 Matrices de Householder 24 Giros 25 Matrices de rotación de Givens 26 Exponencial de una matriz 1

2 21 Proyección ortogonal sobre un subespacio El teorema de la proyección ortogonal Teorema 1 (teorema de la proyección ortogonal): Dados un espacio euclídeo E de dimensión n y un subespacio F del mismo, todo vector u E puede descomponerse de forma única en la suma de un vector v F y de un vector w F Dem: Como se vió en el tema 1, E = F F, y, por tanto, u E existen un único vector v F y un único vector w F tales que u = v + w Definición 1: Al vector v F se le denomina vector proyección ortogonal del vector u E sobre el subespacio F Teorema 2: Dados un espacio euclídeo E de dimensión n y un subespacio F del mismo, existe un único endomorfismo p de E tal que, para cada vector u de E, se cumple p(u) F, u p(u) F Dem: Basta definir una correspondencia de E en E que a cada vector u E le haga corresponder su proyección ortogonal sobre F Dicha correpondencia es aplicación y se denotará p : E E Se cumple, por tanto, que p(u) = v, de modo que u = v + w, v F y w F p es lineal, ya que λ,λ R, u,u E, p(λu+λ u ) = λv+λ v, ya que si u = v+w y u = v +w, v,v F y w,w F, se tiene λu + λ u = λ (v + w) + λ (v + w ) = λv + λ v + λw + λ w, donde λv + λ v F y λw + λ w F, de modo que p(λu + λ u ) = λv + λ v Como v = p(u) y v = p(u ), se deduce, finalmente, que p(λu + λ u ) = λp(u) + λ p(u ) Claramente, p(u) = v F y u p(u) = w F El endomorfismo p está univocamente determinado En efecto, supóngase que existiese otro endomorfismo q, tal que para cada vector u de E, se cumpliese q(u) F, u q(u) F En ese caso, se tiene u p(u) (u q(u)) F ; pero u p(u) (u q(u)) = q(u) p(u) F El único vector que pertenece simultaneamente a F y a F es el vector nulo Por tanto, u E, q(u) = p(u); es decir, q = p Definición 2: El endomorfismo anterior p se denomina proyección ortogonal sobre el subespacio F Sean R n con el producto escalar estandar, F subespacio vectorial de R n y (e 1,,e m ) base ortonormada de F La matriz P de la proyección ortogonal sobre F, respecto de la base canónica, viene dada por P = m e j e t j R n n j=1 Bajo las premisas anteriores, si (u 1,u 2,,u m ) es una base de M (no necesariamente ortonormada), P = A(A t A) 1 A t, donde A = (u 1 u 2 u m ) La matriz P es simétrica (P = P t ) y, además, P 2 = P Recíprocamente, toda matriz P R n n, que cumpla las dos propiedades anteriores, define la proyección ortogonal en R n (con el producto escalar estandar) sobre el subespacio columna de P (ImP), dada por R n R n u Pu 2

3 Supóngase P distinta de I n (si fuera I n sería la proyección ortogonal sobre R n, caso en que el valor propio de P = I n es sólo el 1) y distinta de O (si fuera O sería la proyección ortogonal sobre {0}, caso en que el valor propio de P = O es sólo el 0) En dicha situación, los valores propios de la matriz P son 1 y 0, con subespacios propios asociados ker(p I n ) (coincidente con ImP) y kerp (coincidente con (ImP) ), respectivamente Por tanto, la matriz P es diagonalizable El subespacio sobre el que se proyecta ortogonalmente es, pues, el subespacio propio asociado a 1 Teorema 3: Dados un espacio euclídeo E de dimensión n y un subespacio F del mismo, si u E y v F es la proyección ortogonal de u sobre F, se cumple u v = mín u z z F Dem: Como u v F y v z F, aplicando el teorema de Pitágoras se tiene u z 2 = u v + v z 2 = u v 2 + v z 2 Por tanto, z F, u v 2 u z 2 (la igualdad se da si y sólo si z = v) Se cumple, pues, que z F, u v u z, de modo que, al alcanzarse la cota inferior para z = v F, u v = mín u z z F u-v u u-z F z v v-z Figura 1 Proyección ortogonal sobre un subespacio Figura 1: Figura 1: Proyección ortogonal sobre un subespacio Corolario 1: Si u E y v F, entonces u v = mín u z u v F z F 3

4 22 Simétría ortogonal respecto de un subespacio Teorema 4: Dados el espacio euclídeo E de dimensión n y un subespacio F del mismo, existe un único endomorfismo s tal que, para todo vector u de c, se cumple donde p es la proyección ortogonal sobre F s(u) = 2p(u) u Dem: Bastaría definir la correspondencia de E en E, que a cada vector u E, le hiciese corresponder el vector 2p(u) u E Es fácil demostrar que se trata de una aplicación lineal, ya que p es endomorfismo Su unicidad viene determinada por la de la proyección ortogonal p Definición 3: El endormorfismo anterior s se denomina simetría ortogonal respecto del subespacio F Definición 4: s(u) es el simétrico del vector u E respecto del subespacio F Sean R n con el producto escalar estandar y F subespacio vectorial de R n La matriz S, respecto de la base canónica, de la simetría ortogonal respecto de F viene dada por S = 2P I n R n n donde P es la matriz, respecto de la base canónica, de la proyección ortogonal sobre F La matriz S es simétrica y ortogonal Recíprocamente, toda matriz S R n n, que cumpla las dos propiedades anteriores, define la simetría ortogonal en R n (con el producto escalar estandar) respecto del subespacio Im (S + I n ), dada por R n R n u Su Supóngase S distinta de I n (si fuera I n sería la simetría ortogonal respecto de R n, caso en que el valor propio de S = I n es sólo el 1) y distinta de I n (si fuera I n sería la simetría ortogonal respecto de {0}, caso en que el valor propio de S = I n es sólo el 1) En la situación anterior, los valores propios de la matriz S son 1 y 1 Se cumple (ker(s I n )) = ker(s + I n ) y, por tanto, la matriz S es diagonalizable El subespacio, respecto del cual se realiza la simetría ortogonal, es el subespacio propio asociado al valor propio 1 (coincidente con Im (S + I n )) 24 Matrices de Householder Definición 5: Una simetría de Householder es una simetría ortogonal en R n (con el producto escalar estandar) respecto del hiperplano ortogonal a un vector no nulo v R n Definición 6: La matriz, respecto de la base canónica de R n, de la simetría de Householder correspondiente a un vector no nulo v R n, se denomina matriz de Householder correspondiente a ese vector v y se denota H v Dicha matriz, respecto de la base canónica de R n, es H v = I n 2 v 2 vv t 4

5 Teorema 5: Sea e 1 = (1, 0,,0); a R n, que no dependa linealmente de e 1, existen solamente dos matrices de Householder H 1 y H 2 (H 1 H 2 ) tales que H 1 a = a e 1 y H 2 a = a e 1 Aunque no se incluye la demostración del teorema anterior, es importante indicar que H 1 viene definida por el vector a a e 1 y H 2 por el vector a + a e 1 Observación- Uno de los objetivos prácticos de las matrices de Householder, como se verá en el tema siguiente, es transformar un vector no nulo en un vector cuya primera componente sea a o a y el resto de sus componentes sean nulas En el caso excluido en el teorema anterior; es decir, si a = βe 1, β R, existe también la matriz de Householder H e1 tal que H e1 a = a e 1 si β < 0 o H e1 a = a e 1 si β > 0 25 Giros Definición 7: Se define un giro en R 3, de ángulo ϕ, alrededor del eje L[u] (u 0), como el único endomorfismo G del espacio euclídeo R 3, con el producto escalar estandar, tal que, si (e 1,e 2,e 3 ), donde e 1 = 1 u u, es una base ortonormada de R3, de modo que e 2 e 3 = e 1, que cumple G(e 1 ) = e 1, G(e 2 ) = cosϕ e 2 + senϕ e 3, G(e 3 ) = senϕ e 2 + cosϕ e 3 Como consecuencia, la matriz del giro respecto de la base (e 1,e 2,e 3 ) es la matriz ortogonal de determinante igual a 1: cos ϕ senϕ 0 senϕ cos ϕ La matriz del giro, respecto de la base canónica de R 3, es (e 1 e 2 e 3 ) 0 cos ϕ senϕ (e 1 e 2 e 3 ) t 0 senϕ cos ϕ donde (e 1 e 2 e 3 ) es la matriz de columnas e 1,e 2,e 3 El vector (x,y,z ) t, transformado por el giro de un vector (x,y,z) t R 3, viene dado por x x y = (e 1 e 2 e 3 ) 0 cos ϕ senϕ (e 1 e 2 e 3 ) t y z 0 senϕ cos ϕ z 5

6 26 Matrices de rotación de Givens Definición 8: Una matriz de Givens es una matriz de la forma i) 0 cos ϕ 0 senϕ j) 0 senϕ 0 cos ϕ i j donde i y j indican las filas o columnas correspondientes a los cosenos y senos Esta matriz se denotará G(i,j,ϕ) Las matrices de Givens son matrices ortogonales de determinante igual a 1 Definición 9: Una matriz de rotación de R n n es una matriz ortogonal cuyo determinante es igual a 1 Teorema 6: La matriz, respecto de una base ortonormal, de todo giro en R 3 es una matriz de rotación de R 3 3 Recíprocamente, toda rotación de R 3 3 define un giro, aunque éste no está unívocamente determinado 27 Exponencial de una matriz Definición 10: La exponencial de la matriz A C n n viene definida por e A = I n + 1 1! A + 1 2! A k! Ak + serie de potencias matricial convergente cualquiera que sea A Teorema 7: Sean A,B C n n, se cumplen: 1) e O = I n 2) deta = Ae ta = e ta A dt 3) t R, e ta = (e ta ) 1 4) Si AB = BA, e A+B = e A e B 5) Si u C n y Au = λu, entonces t R, e ta u = e tλ u El producto vectorial de dos vectores u = (u 1,u 2,u 3 ) t y v = (v 1,v 2,v 3 ) t de R 3 viene dado por: 0 u 3 u 2 v 1 u 3 0 u 1 v 2 u 2 u 1 0 v 3 que se escribirá como ũv, donde ũ denota la primera matriz 6

7 Teorema 8 (Fórmula de Rodrigues): Dada la matriz A = 0 u 3 u 2 u 3 0 u 1 u 2 u 1 0 R 3 3 donde el vector (u 1,u 2,u 3 ) t es unitario, se tiene, para todo ϕ real, e ϕa = I 3 + (sen ϕ)a + (1 cos ϕ)a 2 Teorema 9: La exponencial de una matriz real antisimétrica de orden tres es una rotación y, recíprocamente, toda matriz de rotación de R 3 3 puede expresarse como la exponencial de una matriz real antisimétrica de orden tres 7

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 5 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

4.2 Producto escalar.

4.2 Producto escalar. Producto escalar. 147 Este resultado tiene su recíproco, es decir, cualquier matriz cuadrada A define la forma bilineal b(x, y) =x T Ay Si b es simétrica, la matriz A es simétrica. Si b es definida positiva,

Más detalles

Tema 5: Espacios Eucĺıdeos.

Tema 5: Espacios Eucĺıdeos. Espacios Euclídeos 1 Tema 5: Espacios Eucĺıdeos. 1. Producto escalar. Espacios eucĺıdeos. Definición. Sea E un R-espacio vectorial y sea f : E E R una forma bilineal simétrica. Se dice que f es un producto

Más detalles

7 Aplicaciones ortogonales

7 Aplicaciones ortogonales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 7 Aplicaciones ortogonales 7.1 Aplicación ortogonal Se llama aplicación ortogonal a un endomorfismo f : V V sobre un espacio vectorial

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS EJERCICIOS DE ÁLGEBRA LINEAL TEMA 3 ESPACIOS EUCLÍDEOS ESPACIOS EUCLÍDEOS ) a) Decir cuál de las siguientes aplicaciones de x de no definir un producto escalar comprobar el axioma que falla: a ) x' x,y,

Más detalles

Objetivos III.1. NORMA VECTORIAL

Objetivos III.1. NORMA VECTORIAL ema III NORMAS VECORIALES Y PRODUCO ESCALAR Objetivos Generalizar conceptos como el de norma de un vector distancia ortogonalidad ángulo entre dos vectores. En este capítulo el cuerpo K de escalares será

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Tema 3.- Sistemas de ecuaciones lineales incompatibles. Sistemas compatibles e indeterminados.

Tema 3.- Sistemas de ecuaciones lineales incompatibles. Sistemas compatibles e indeterminados. Tema 3- Sistemas de ecuaciones lineales incompatibles Sistemas compatibles e indeterminados ÍNDICE 31 Solución de mínimos cuadrados de un sistema lineal incompatible de rango máximo: ecuaciones normales

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Tema 5: ESPACIOS VECTORIALES

Tema 5: ESPACIOS VECTORIALES Tema 5: ESPACIOS VECTORIALES EUCLÍDEOS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

EL ESPACIO VECTORIAL EUCLIDEO

EL ESPACIO VECTORIAL EUCLIDEO EL ESPACIO VECTORIAL EUCLIDEO PRODUCTO ESCALAR Sean dos vectores del espacio V 3. Llamamos producto escalar de dichos vectores, y se denota, al número real que se obtiene al multiplicar sus módulos por

Más detalles

Espacios vectoriales

Espacios vectoriales CAPíTULO 2 Espacios vectoriales 1. Definición de espacio vectorial Es frecuente representar ciertas magnitudes físicas (velocidad, fuerza,...) mediante segmentos orientados o vectores. Dados dos de tales

Más detalles

Problemas de exámenes de Formas Bilineales y Determinantes

Problemas de exámenes de Formas Bilineales y Determinantes 1 Problemas de exámenes de Formas Bilineales y Determinantes 1. Sea R 3 con el producto escalar ordinario. Sea f un endomorfismo de R 3 definido por las condiciones: a) La matriz de f respecto de la base

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

1. Ejercicios. Algebra Lineal Problemas del tema 4 Endomorfismos Curso Universidad de Oviedo

1. Ejercicios. Algebra Lineal Problemas del tema 4 Endomorfismos Curso Universidad de Oviedo 1. Ejercicios Ejercicio 1 En R 2, referido a la base canónica, se consideran los vectores u 1 = (1, 1) y u 2 = (2,). Un endomorfismo de R 2, T los transforma en los vectores v 1 = ( 2,1) y v 2 = (, 1)

Más detalles

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo.

( 1 0 BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. BLOQUE DE GEOMETRÍA TEMA 4: ESPACIOS VECTORIALES. Operaciones Binarias: Observamos las siguientes operaciones: ( 5+ 3i )+ ( 2 i )=7+ 2i. La suma de dos números complejos es un número complejo. ( 1 0 2

Más detalles

Ejercicios Resueltos Tema 5

Ejercicios Resueltos Tema 5 Ejercicios Resueltos Tema 5 Ejercicio 1 Estudiar si la forma bilineal f : R n R n R definida por k f ((x 1,..., x n ), (y 1,..., y n )) = x i y i, siendo 1 k < n, es un producto escalar de R n i=1 Solución.

Más detalles

Apellidos: Nombre: NIF:

Apellidos: Nombre: NIF: Universidad de Oviedo EPS de ingeniería de Gijón Dpto. Matemáticas Algera Lineal 4//8 Segunda parte Apellidos: Nomre: NIF: Ejercicio puntos) Se considera la aplicación lineal f : R R [x] definida como

Más detalles

Tema 4: Endomorfismos

Tema 4: Endomorfismos Marisa Serrano, Zulima Fernández Universidad de Oviedo 11 de enero de 2010 email: mlserrano@uniovi.es Índice 1 2 3 4 en espacios de dimensión dos en espacios eucĺıdeos de dimensión tres Definición Definición

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

MATEMÁTICAS II Tema 4 Vectores en el espacio

MATEMÁTICAS II Tema 4 Vectores en el espacio Geometría del espacio: Vectores; producto escalar, vectorial y mixto Aplicaciones MATEMÁTICAS II Tema 4 Vectores en el espacio Espacios vectoriales Definición de espacio vectorial Un conjunto E es un espacio

Más detalles

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno

ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 2017 Espacios vectoriales con producto interno Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA ALGEBRA LINEAL - Práctica N 8 - Segundo cuatrimestre de 07 Espacios vectoriales con producto interno En esta práctica, todos

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2.

Tema 1. 1 Álgebra lineal. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. 1.1 Vectores de R n. 1. Vectores. 2. Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Tema 1 Álgebra lineal 1. Vectores 2. Matrices 1 Álgebra lineal Aurea Grané

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31

Producto Escalar. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Producto Escalar AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Producto Escalar 1 / 31 Objetivos Al finalizar este tema tendrás que: Saber usar el producto escalar. Calcular

Más detalles

ESPACIO VECTORIAL EUCLÍDEO

ESPACIO VECTORIAL EUCLÍDEO ESPACIO VECTORIAL EUCLÍDEO PRODUCTO ESCALAR Sea V un espacio vectorial sobre C. Una aplicación que asocia un número complejo < u, v > a cada pareja de vectores u y v en V, se dice que es un producto escalar

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d).

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 1 18 de enero de 1 (5 p. 1 Para cada α R se considera el siguiente subespacio de R 4 : U α =

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013)

SOLUCIONES DEL SEGUNDO PARCIAL (17/12/2013) ÁLGEBRA LINEAL 1S1M-b SOLUCIONES DEL SEGUNDO PARCIAL 17/12/2013 1. Dada una aplicación lineal f : de manera que : Se pide, obtener su matriz con respecto a las bases canónicas. Calculamos =col 2. Calcular

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales: Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)

Más detalles

6. Ortogonalidad. Universidad de Chile Conjuntos ortogonales y ortonormales. Ingeniería Matemática SEMANA 12: ORTOGONALIDAD

6. Ortogonalidad. Universidad de Chile Conjuntos ortogonales y ortonormales. Ingeniería Matemática SEMANA 12: ORTOGONALIDAD FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 7- SEMANA : ORTOGONALIDAD 6 Ortogonalidad 6 Conjuntos ortogonales y ortonormales Recordemos que la proyección de u sobre v

Más detalles

Rectas, planos e hiperplanos

Rectas, planos e hiperplanos Semestre -8, Algebra Lineal 37 Rectas, planos e hiperplanos Recta P punto de la recta L, d vector no nulo de R n (vector director de la recta) X punto de la recta L PX paralelo a d (PX = td) PX = OX OP

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES

TEMA 4 VECTORES VECTORES TEMA 4. 1.º BACHILLERATO - CIENCIAS VECTOR FIJO. VECTOR LIBRE. SUMA DE VECTORES LIBRES TEMA 4 VECTORES VECTOR FIJO. VECTOR LIBRE. Un ector fijo en IR 2 está determinado por dos puntos A y B, llamados respectiamente, origen y extremo del ector. Su representación gráfica es una flecha que

Más detalles

TEMA 11.- VECTORES EN EL ESPACIO

TEMA 11.- VECTORES EN EL ESPACIO TEMA 11.- VECTORES EN EL ESPACIO 1.- INTRODUCCIÓN Un vector fijo AB del espacio (también lo era en el plano) es un segmento orientado que tiene su origen en un punto A y su extremo en otro punto B. Estos

Más detalles

Espacio vectorial euclídeo

Espacio vectorial euclídeo Espacio vectorial euclídeo Juan Medina Molina 13 de diciembre de 2004 Introducción En este tema estudiaremos espacios vectoriales reales a los que hemos añadido una nueva operación, el producto escalar,

Más detalles

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas.

Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. Capítulo 5 Movimientos. Teorema de Cartan-Dieudonné. Semejanzas. 5.1 Isometrías y movimientos Partimos de un espacio euclídeo (X, V, +) y recordemos que una isometría de V es un elemento ϕ Gl(V ) que conserva

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

4 Vectores en el espacio

4 Vectores en el espacio 4 Vectores en el espacio ACTIVIDADES INICIALES 4.I. Efectúa las siguientes operaciones en R³ a) 1 + 1 5,, 4, 7, 2 2 3 b) 3 3 2, 1, c) 6(2, 3, 1) + 4(1, 5, 2) 4 4.II. Calcula los valores de a, b y c para

Más detalles

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA

UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA AL GEBRA III UNIVERSIDAD DE CONCEPCION FACULTAD DE CIENCIAS FISICAS Y MATEMATICAS DEPARTAMENTO DE INGENIERIA MATEMATICA ALGEBRA III DEFINICION : Sea L : V V un operador lineal sobre el espacio vectorial

Más detalles

1. Hallar el rango de cada una de las siguientes matrices

1. Hallar el rango de cada una de las siguientes matrices Tarea 5 Hallar el rango de cada una de las siguientes matrices 5 5 a) = 7 6 5 5 b) = 5 8 Solución: a) rang ( ) = b) rang ( ) = Determinar si cada uno de los siguientes conjuntos de vectores es linealmente

Más detalles

1. Relación de ejercicios: Espacio Euclídeo

1. Relación de ejercicios: Espacio Euclídeo 1. Relación de ejercicios: Espacio Euclídeo Ejercicio 1.1 Dado un tensor métrico g sobre V (R) y un subespacio vectorial U < V se define la restricción de g a U como la aplicación restringida g U U U U

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta.

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta. Universidad de Oviedo Ejercicio.5 puntos Se consideran las aplicaciones lineales T : R [x] R y T : R R [x] de las que se conoce la matriz A asociada a T en las bases canónicas de R [x] y R y la matriz

Más detalles

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno

Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Álgebra II (61.08, 81.02) Primer cuatrimestre 2018 Práctica 3. Producto interno Nota: en todos los casos en que no se indique lo contrario, considere el producto interno canónico en K n (K = R o C). 1.

Más detalles

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1

Valores singulares. Producto escalar y ortogonalidad. Proposición. Curso < x, y >= si F = C. Si x C n x i=1 Valores singulares Curso 2017-18 1 Producto escalar y ortogonalidad < x, y >= n y i x i = y T x si F = R, n y i x i = y x Si x C n x x = n x i 2 = x 2 2. si F = C Si x, y C n x y = y x, pero si x, y R

Más detalles

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal

Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Tema 3.1. Espacio eucĺıdeo. Diagonalización ortogonal Definición 1. Sea V un espacio vectorial sobre un cuerpo K. Llamamos forma bilineal a toda aplicación f : V V K ( x, y) f( x, y) que verifica: 1. f(

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios

MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios Pontificia Universidad Católica de Chile Facultad de Matemáticas MAT1202: Algebra Lineal GUIA N 6 Otoño 2002 Valores y Vectores Propios 1. Determine los valores y vectores propios de 0 3 A + I = 1 3 A

Más detalles

Soluciones a los ejercicios del examen final C =. 1 0

Soluciones a los ejercicios del examen final C =. 1 0 Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN

TRANSFORMACIONES LINEALES 1. TRANSFORMACIONES NÚCLEO E IMAGEN RANSFORMACIONES LINEALES 1 RANSFORMACIONES NÚCLEO E IMAGEN DEFINICION : Sean V W espacios vectoriales Una transformación lineal de V en W es una función que asigna a cada vector v V un único vector v W

Más detalles

TEMA VI: ESPACIOS DE HILBERT

TEMA VI: ESPACIOS DE HILBERT TEMA VI: ESPACIOS DE HILBERT. Espacios con producto escalar Definición: Sea L un espacio vectorial sobre el cuerpo K (R ó C). Por un producto escalar (o interno) sobre L entedemos una aplicación :

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

Descomposición en valores singulares de una matriz

Descomposición en valores singulares de una matriz Descomposición en valores singulares de una matriz Estas notas están dedicadas a demostrar una extensión del teorema espectral conocida como descomposición en valores singulares (SVD en inglés) de gran

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 144 Matemáticas 1 : Álgebra Lineal Capítulo 9 Espacios vectoriales reales 9.1 Espacios vectoriales Los conjuntos de vectores del plano, R, y del espacio, R 3, son conocidos y estamos acostumbrados a movernos

Más detalles

Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples)

Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Proyección ortogonal sobre un vector normalizado (ejercicios teóricos simples) Objetivos Deducir fórmulas para la proyección ortogonal de un vector sobre el subespacio generado por un vector normalizado;

Más detalles

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO

ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO ALGEBRA LINEAL Y GEOMETRÍA. REPASO DE ÁLGEBRA LINEAL-2: CAMBIOS DE BASE GRADO DE MATEMÁTICAS. CURSO 2012-2013 José García-Cuerva Universidad Autónoma de Madrid 11 de febrero de 2013 JOSÉ GARCÍA-CUERVA

Más detalles

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS

Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Tema 4: FORMAS BILINEALES Y CUADRÁTICAS Prof. Rafael López Camino Departamento de Geometría y Topología Universidad de Granada Material docente para el alumno Asignatura: Geometría I. Curso 2003/04 Licenciatura:

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

2.5 Ejercicios... 59

2.5 Ejercicios... 59 Índice General 1 Espacios vectoriales 1 1.1 Espacios vectoriales y subespacios......................... 1 1.1.1 Preliminares................................. 1 1.1.2 Espacios vectoriales.............................

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

2.9 Ejercicios resueltos

2.9 Ejercicios resueltos 86 Sistemas de ecuaciones lineales. Espacios vectoriales. 2.9 Ejercicios resueltos Ejercicio 2. Sea A = ( ) 2. Se pide: 3 m a) Encontrar m para que existan matrices cuadradas B ynonulastalesque A B =0.

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS . ESPACIO EUCLÍDEO. ISOMETRÍAS. En el espacio euclídeo usual R 4 se consideran los subespacios vectoriales y W = {(x, y, z, t R 4 : x y =, z + t = } Hallar: W 2 = L{(,, 2, 2, (,,, } a Las ecuaciones de

Más detalles

Material para el examen parcial 1

Material para el examen parcial 1 Algebra Lineal 2, FAMAT-UG, aug-dic, 2009 Material para el examen parcial 1 (17 oct, 2009) Definiciones: Hay que saber las definiciones precisas de todos los siguientes términos, y conocer ejemplos concretos

Más detalles

Tema 6: Espacios euclídeos

Tema 6: Espacios euclídeos Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 6: Espacios euclídeos Ejercicios 1 Demuestra que la aplicación < A, B >= traza(ab t ), A, B M m n (R), es un producto escalar sobre

Más detalles

Vectores y Valores Propios

Vectores y Valores Propios Capítulo 11 Vectores y Valores Propios Las ideas de vector y valor propio constituyen conceptos centrales del álgebra lineal y resultan una valiosa herramienta en la solución de numerosos problemas de

Más detalles

Capítulo V. T 2 (e, e

Capítulo V. T 2 (e, e Capítulo V Métricas En este capítulo y en los siguientes, el cuerpo base de los espacios vectoriales que se consideren será de característica distinta de 2. Empecemos recordando las nociones básicas que

Más detalles

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1 Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

1 Isometrías vectoriales.

1 Isometrías vectoriales. Eugenia Rosado ETSM Curso 9-. Isometrías vectoriales. Sea E un espacio vectorial euclídeo. De nición Una aplicación f : E! E se dice transformación ortogonal o isometría vectorial si conserva el producto

Más detalles

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales:

El espacio euclídeo El espacio vectorial R n. Definición. Conjunto de todas las n-uplas de números reales: Lección 1 El espacio euclídeo 1.1. El espacio vectorial R n Definición. Conjunto de todas las n-uplas de números reales: R n = {(x 1,x 2,...,x n ) : x 1,x 2,...,x n R} Nos interesan los casos n = 2 y n

Más detalles

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2

CONJUNTO R n. = (5, 2, 10) de 3, son linealmente. = (2,1,3) y v 3. = (0,1, 1) y u 3. = (2,0,3, 1), u 3. = (1,1, 0,m), v 2 CONJUNTO R n.- Considerar los vectores u = (, -3, ) y v = (, -, ) de 3 : a) Escribir, si es posible, los vectores (, 7, -4) y (, -5, 4) como combinación lineal de u y v. b) Para qué valores de x es el

Más detalles