LÍMITES DE FUNCIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÍMITES DE FUNCIONES"

Transcripción

1 LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos la función: f Su gráfica: si < si > Si toma valores próimos a, distintos de y menores que ej.: 9, 99, 999,, que se nota:, es decir: < Los correspondientes valores de y: muy próimos a : y 9 99 Se aproiman muchísimo a se nota: y Se escribe: f Se lee: Límite de f por la izquierda de es Si toma valores próimos a, distintos de y mayores que ej.:,,, etc... que se nota, es decir:

2 > a próimos muy Los correspondientes valores de y: : y Se aproiman cada vez más a se nota: y Se escribe: f Se lee: Límite de f por la derecha de es. y se llaman límites laterales de f por la izquierda y derecha de respectivamente. Ejemplo : Dadas las funciones: > < > < si si k si si si h si si g Cuyas gráficas respectivas: Observamos: g g h h h k k k En los tres casos se escribe que: g h k Y se lee que el límite de la función es en el punto.

3 En general: Si y f es una función cuya gráfica es: Se escribe f m y f m' a a Si y f es una función cuya gráfica es: Se tiene que f f m ó f m a a a A m y m se les llama límites laterales de f por la izquierda y por la derecha de a respectivamente. Si ambos números reales son iguales m m, a dicho número real m se le llama límite de f en el punto a.

4 Es importante señalar que para definir el límite de una función en un punto a, no necesitamos para nada el valor de la función y f en a, es decir fa, sino que sólo nos interesa el comportamiento de dicha función en los alrededores de a valores próimos a a pero menores o mayores que a. Definición formal de límite de una función en un punto. Diremos que: f L EL, ε E*a, / E*a,, f EL, ε a El límite de una función f cuando a es el número real L, si se cumple que para cualquier entorno de centro L y radio ε : EL, ε que tomemos, por pequeño que sea ε, encontramos un entorno reducido de a, E* a, sin centro a, tal que todos sus valores reales tengan sus imágenes f dentro del entorno El, ε Cálculo del límite de f algebraicamente. El cálculo del límite de f usando la fórmula de la función se hace de la siguiente forma: Ejemplo : si < f si > f como < y f como > Ejemplo : k f como si si no se entre diferencia izq. y dcha de Y no sería necesario buscar por separado los límites laterales, ya que la epresión algebraica de f tanto por su izquierda para < como por su derecha para > es la misma.

5 IDEA INTUITIVA DE LÍMITES INFINITOS. ASÍNTOTAS VERTICALES Ejemplo : Consideremos la función: f de Df R-{ } y cuya gráfica es: Si, los correspondientes valores de y: y Se hacen cada vez más grandes en valor absoluto y son negativos se nota y Se escribe: f Se lee: Límite de f por la izquierda de es Si, los correspondientes valores de y: y Se hacen cada vez más grandes sin ningún tope real se nota y Se escribe: f Se lee: Límite de f por la derecha de es Ejemplo : Tomemos g de Dg R-{ } y gráfica opuesta de f : 5

6 Observamos: g y g Ejemplo : Tomemos h h f Observamos: h h h Se escribe: h Se lee: Límite de h en el punto es Ejemplo : Sea k k opuesta de h Observamos: k k k En todos los casos se dice que la recta de ecuación es una asíntota vertical. En general: 6

7 Se escribe: f ± Y: a a a. Se dice que el límite de f en a o los laterales es ± a es una A.V. de y f f ± a a a Definición de A.V. Algebraicamente: El cálculo del límite de f usando la fórmula se hace: Ejemplo : R por Cuando sale en el denominador, su significado en el cálculo de límites es denominador. La tendencia del denominador a puede ser: - Por valores positivos denominador:,,, si - Por valores negativos denominador: -, -, -, si.. Por eso cuando sale en el denominador, se calculan los límites laterales: f f '9,'99,... ',',... Con lo cual podemos conocer la posición relativa de y f con respecto a su asíntota vertical

8 En general si al calcular: f sale a a a l con l a es A.V. de f. Basándonos en ello, las asíntotas verticales de una función y f se obtienen entre los valores que anulan al denominador y no anulan el numerador. Para calcular las A.V. de una función : Denominador Despejamos : a, b, c, si numeradora, b, c,... Si en a el numeradora, veremos lo que pasa más adelante. IDEA INTUITIVA DE LÍMITES EN EL INFINITO. ASÍNTOTAS HORIZONTALES. RAMAS PARABÓLICAS Ejemplo : Tomemos f de Df R y gráfica: Observa: A medida que toma valores que se representan más a la izquierda sobre el eje de abscisas,,, que se nota, las ordenadas y correspondientes: y 98 8 y Se escribe: f Se lee: Límite de f cuando tiende a es. Ejemplo : Tomemos ahora g con Dg R y gráfica: 8

9 Observa: A medida que toma valores cada vez mayores y que se representan cada vez más a la derecha sobre el eje de abscisas,,, que se nota, las ordenadas y correspondientes: y 98 y Se escribe: g. Se lee: Límite de g cuando tiende a es. Ejemplo : Sea h con Dh R-{ } y gráfica: Observamos: h y h. En todos los casos se dice que la recta de ecuación y es una asíntota horizontal A.H. de h. En general: Si y f es una función cuya gráfica se comporta de la forma: 9

10 Se escribe: Y: f b R ó f b R ó f b R ± y b es A.H. de y f f b R Definición A.H. o Algebraicamente: El cálculo del límite en el infinito aprenderemos a calcularlos cuando se estudien las propiedades de cálculo de límites. Ejemplo : Dadas las funciones f y de dominio R y gráficas: g Observamos: f f g g En todos los casos se trata de límites infinitos en el infinito: f ± Cuando la gráfica no se aproima a ninguna recta oblicua y se cumple que f ±, se ± ± dice que y f tiene una rama parabólica por la derecha si f ± y por la izquierda si f ±, y por ambos lados si ocurren las dos cosas. En general: y f tiene una R.P. f ± recta Definición de R.P o y Gráff no se aproima a ninguna ASÍNTOTAS OBLICUAS.- Para algunas funciones ocurre que cuando ó a aproimarse a una recta oblicua, llamada asíntota oblicua de la función:, se observa que su gráfica tiende

11 La recta y m n con m es asíntota oblicua de f y [ f m n ] o Como se observa en la gráfica si ó AP. El método general para calcular las asíntotas oblicuas de una función es el siguiente: Si es asíntota oblicua de y f, entonces: [ f m n ] y m n Si calculamos. o f m n f m n n ± m f o o o n f f o ó ó ó f m m m. Luego m: m El cálculo de n es inmediato sin más que observar que: [ f m n] n : n [ f m] o. o o f, que despejando En la práctica: Si f ± : se calcula: ± f m R AO.. calcula : n ± R. P ±. PROPIEDADES INDETERMINACIONES. f ± g f ± g a ± a ± a ±

12 l ± ±. f g f g a ± a ± a ± k f k f con k constante a ± ± ± a ± l Regla de los signos para el producto y l ± ± ± Regla de los signos para el producto. f a g ± f a ± g a ± l ± ± l ± Regla de los signo para el cociente l l R incluido l ± ± Regla de los signos para el cociente l R incluido l l. f a ± g f a ± g a ± n a n a ± ± l f f si l > l si l < l si l > si < l < l si l > si < l < Entre las propiedades anteriores faltan los siguientes casos, en los que no hay ninguna regla fija:. ± ±.. ±. En estos casos se trata de indeterminaciones. 5. ± 6..

13 Cuando al calcular el límite de la función aparece una indeterminación, hay que evitarla usando estrategias de cálculo que dependerán de la forma que tenga la epresión algebraica de la función y del tipo de indeterminación que nos haya salido. CÁLCULO ALGEBRAICO DE LÍMITES: Tendremos en cuenta además de las propiedades anteriores: k k a ± siendo k constante. a P P a siendo P un polinomio. ± ± P dependiendo del signo del coeficiente principal y del grado de P Indeterminación ± ± Si f es racional Q P ± P y Q polinomios. En todos los casos, para evitar la indeterminación, se divide numerador y denominador por la de mayor grado del denominador. Ejemplo : Ejemplo : Ejemplo : Si f es irracional: Se evita dividiendo numerador y denominador entre la de mayor grado del denominador igual que si fuese racional. Si el denominador tiene raíz, se dividen entre la raíz de esa potencia de. Ejemplo:

14 Indeterminación: Si f es racional: a Q a P Q P a. Como Pa P es divisible por a Teorema del resto. Lo mismo ocurre con Q. Para evitar este tipo de indeterminación dividimos numerador y denominador por. a Ejemplo: indeterminación Dividimos numerador y denominador entre : Si f es irracional: Ejemplo: indeterminación que se evita multiplicando numerador y denominador por el conjugado de donde aparece la raíz y posteriormente dividiendo por a, en nuestro ejemplo por. Indeterminación: Si f es racional: Ejemplo :, se evita la indeterminación operando razones algebraicas y transformando la epresión en un cociente de polinomios:

15 5 Queda otra indeterminación que se evita dividiendo numerador y denominador por : 6 : Ejemplo :, se evita la indeterminación, como en el caso anterior, realizando la operación y transformando la resta en una sola razón algebraica. 6 6 Indeterminación que se evita dividiendo por la de mayor eponente del denominador, en nuestro caso dividimos por : Si f es irracional: Si hay cociente se divide por la de mayor eponente del denominador con su raíz, en caso de que le afecte alguna raíz. Ejemplo :, para quitar la indeterminación se divide numerador y denominador entre :

16 6 Ejemplo :, para quitar indeterminación se divide numerador y denominador por Si no hay cociente sino sólo una resta de raíces, la indeterminación se evita multiplicando y dividiendo por el conjugado: Ejemplo : Indeterminación. Para evitarla multiplicamos y dividimos por el conjugado: Indeterminación que se evita dividiendo por la de mayor eponente del denominador, en nuestro caso EJERCICIOS RESUELTOS DEL CÁLCULO DE LAS ASÍNTOTAS DE UNA FUNCIÓN.- Calcula razonadamente todas las asíntotas de las siguientes funciones: Ejercicio. f A.V: Calculamos los valores de que anulan al denominador:

17 que son las posibles A.V. de la función. Comprobamos si lo son o no, calculando los límites en estos puntos: f R ± es una A. V. Y la posición relativa de la gráfica de la función respecto de se estudia calculando los límites laterales: f f f ' ' : R y D f Luego: no es una A. V. En, hay una discontinuidad evitable A.H: f ± ± ± ± y es A. H por la dcha y por la izqda Y para saber la posición relativa de la f R Gráf respecto de la asíntota: y : f Comparació n f con y Posición de f con respecto a A.H. ' ' ' 98 '98 No puede haber A.O.: Pues la función tiene un A.H. Ejercicio. g g f por encima de la A.H >. f <. por debajo de la A.V: Calculamos el valor de que anula al denominador, que es: posible A.V Comprobamos si lo es o no, calculando el límite en ese punto: R ± es una asíntota vertical A.H

18 Y la posición relativa de la gráfica de la función respecto de se estudia calculando los límites laterales: g g '9 ' ± A.H: g ± ± ± ± ± f no tiene asíntotas horizontales ± R A.O.: y m n Con m y n R, Que se calculan de la forma siguiente: m n g ± ± ± ± ± ± ± g m ± ± ± ± ± R n R m ± Luego la función posee una asíntota oblicua de ecuación: y Si queremos conocer la posición relativa de la Gráf f respecto de la A.O.: ' g A.O. ± ± y Comparació n g con y A.O. por encima de la A.O. 99' 99 g g por debajo de la A.O. Ejercicio. h A.V: No tiene A.V., pues el denominador es el y no se puede anular. A.H: Calculamos el h ± ± R No hay A.H. A.O.: y m n Con m y n R, Que se calculan de la forma siguiente: 8

19 m ± h ± ± ± R R Para: m n Y la asíntota oblicua tiene de ecuación: Para: m y n Y la asíntota oblicua tiene de ecuación: Como vemos tiene dos A.O. : Y la posición relativa de la Gráf h respecto de ellas: ' 99 ' 99 y Por la dcha : y Por la izqda : y h A.O. y Comparació nh con y A.O. h por debajo de la A.O 99. h por debajo de la A.O 99. Ejercicio. k A.V: si < si Calculamos los valores de que anulan a los denominadores: que son las posibles A.V. de la función. Comprobamos si lo son o no, calculando los límites en estos puntos: 9

20 k k R es A. V. R ± k es A.V. Y la posición relativa de la gráfica de la función respecto de se estudia calculando los límites laterales: k k A.H: Calculamos el k ± '9 ' La posición relativa de la Gráf k respecto de ellas: A. H. por la dcha : y A. H. por la izqda : y k Comparació nk con A. H Posición de k con respecto a A.H. ' ' ' ' < k por encima de la A.H >. k. por debajo de la A.H Observación: El estudio de la posición relativa de la Gráf de cada función respecto de sus asíntotas no es riguroso, en cuanto que damos a un solo valor ó - que no tiene por qué ser en valor absoluto suficientemente alto. Pero en la mayoría de las funciones que trabajaremos en el curso, nos suele ayudar y dar una idea clara de cómo se posiciona la gráfica de la función. En cualquier caso, podemos prescindir de dicho estudio y sustituirlo por la utilización del resto de las propiedades que tenga la gráfica de la función, encajándolas hasta hacer un esbozo correcto de la gráfica pedida.

Apuntes de Límites de funciones

Apuntes de Límites de funciones Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de

Más detalles

1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO.

1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. º Bachillerato Matemáticas I Tema 8:Límites y continuidad.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. En ocasiones interesa saber hacia qué valor se aproima una función cuando la variable

Más detalles

Apuntes de Límites de funciones

Apuntes de Límites de funciones Apuntes de Límites de funciones En el tema anterior estudiamos el concepto de función real de variable real y sus principales características. En este tema, introducimos la idea intuitiva de límite de

Más detalles

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores

Más detalles

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 6 : DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejercicio: Observa la gráfica siguiente: a) Estudia el dominio, el recorrido y la continuidad de f(). b) Indica si eisten los límites

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Dada una función f(), diremos que el ite de f() cuando tiende a a es el número real L y lo escribiremos f() = L, si al tomar cada vez valores más

Más detalles

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + ) Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:

1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de: Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,

Más detalles

LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN

LÍMITES Y CONTINUIDAD. 1º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITE DE UNA FUNCIÓN EN UN PUNTO CONCEPTO DE LÍMITE DE UNA FUNCIÓN LÍMITES Y CONTINUIDAD º Bto. Sociales. CONCEPTO DE LÍMITE DE UNA FUNCIÓN Sea f() =. Vamos a darle valores a cercanos a y vamos a ver cómo se comporta f()..9.99.999.9999.99999 f() 4.8 4.98 4.998 4.9998

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

Límite de una Función

Límite de una Función Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.

Más detalles

TEMA 6 LÍMITE Y CONTINUIDAD

TEMA 6 LÍMITE Y CONTINUIDAD TEMA 6 LÍMITE Y CONTINUIDAD 6.. IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN. Dada la función f() = 2, a qué valor se aproima f() cuando se aproima a 2? Dada la función f() =?, a qué valor se aproima f() cuando

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

x f(x) ?

x f(x) ? Idea intuitiva de ite: Sea c R y una función f definida cerca de c aunque no necesariamente en el mismo c. El número L es el ite de f cuando se aproima a c, y se escribe f() = L si y sólo si los valores

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Tema 5: Funciones. Límites de funciones

Tema 5: Funciones. Límites de funciones Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal.

. Si grado p x grado q x lim f x = k con lo que la función f x tiene una asíntota horizontal. Límites y continuidad de funciones. Curso 4/5 Ejercicio. Determina las asíntotas de la función f ( ) y analiza la posición de la gráfica con respecto a ellas. f ( ) 3 8 p ( ) q( ) R Una función cuya epresión

Más detalles

9.11. Gráficas con poco

9.11. Gráficas con poco 9 - Gráficas con poco. 21 9.11. Gráficas con poco 9.11.1. Asíntotas Las asíntotas son rectas a las que la curva tiende a unirse en situaciones especiales. Unas (verticales) tienen que ver con las discontinuidades

Más detalles

10. LIMITES DE FUNCIONES

10. LIMITES DE FUNCIONES 10. LIMITES DE FUNCIONES Definición de límite La función no está definida en el punto x = 1 ya que se anula el denominador. Para valores próximos a x = 1 tenemos Taller matemático 1/12 Definición de límite

Más detalles

Tema 10: Funciones racionales y potenciales. Asíntotas.

Tema 10: Funciones racionales y potenciales. Asíntotas. 1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión

Más detalles

Tema 4: Funciones. Límites de funciones

Tema 4: Funciones. Límites de funciones Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.

Más detalles

Funciones elementales más importantes

Funciones elementales más importantes º BACHILLERATO (LOMCE) MATEMÁTICAS II TEMA 7.- LÍMITES CONTINUIDAD DE FUNCIONES PROFESOR: RAFAEL NÚÑEZ NOGALES.- FUNCIONES. CARACTERÍSTICAS. FUNCIONES ELEMENTALES Definición de función Una función real

Más detalles

LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto

LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN. Límite de una función en un punto LÍMITES, CONTINUIDAD, ASÍNTOTAS LÍMITE DE UNA FUNCIÓN Límite de una función en un punto xc Se lee: El límite cuando x tiende a c de f(x) es l Notas: - Que x se aproxima a c significa que toma valores muy

Más detalles

Funciones: Límites y continuidad.

Funciones: Límites y continuidad. Límites finitos de sucesiones. Funciones: límites y continuidad Matemáticas I Funciones: Límites y continuidad. + Decimos que una sucesión numérica ( ) n= tiene por límite r R y se escribe =r o de forma

Más detalles

Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1

Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 Capítulo 1 LÍMITES Y CONTINUIDAD Versión Beta 1.1 www.mathspace.jimdo.com Tabla de contenido Capítulo 1...1 LÍMITES Y CONTINUIDAD...1 1.1. LÍMITES...2 1.1.1 Definición formal...2 1.1.2. Cálculo de límites...2

Más detalles

Límite de una sucesión

Límite de una sucesión Límite de una sucesión Idea intuitiva del límite de una sucesión En la sucesión a n = 1/n, observamos que los términos se van acercando a cero. Consideremos que 0 es el límite de la sucesión porque: 1

Más detalles

LÍMITES DE FUNCIONES 1.- CONCEPTO INTUITIVO Y DEFINICIÓN DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES. Otros ejemplos:

LÍMITES DE FUNCIONES 1.- CONCEPTO INTUITIVO Y DEFINICIÓN DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES. Otros ejemplos: LÍMITES DE FUNCIONES 1.- CONCEPTO INTUITIVO Y DEFINICIÓN DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES. Otros ejemplos: lim f(x) = L ε > 0 δ > 0 / x a < δ f(x) L < ε x a Nótese que la idea de

Más detalles

TEMA 8. LÍMITES Y CONTINUIDAD

TEMA 8. LÍMITES Y CONTINUIDAD TEMA 8. LÍMITES Y CONTINUIDAD. IDEA DE LÍMITE. La idea de lmite de una función f() cuando ésta tiende a un punto a, (se escribe f () ), es la del valor al que se acerca la función cuando vamos tomando

Más detalles

I.- Límite de una función

I.- Límite de una función I.- Límite de una función a) En un punto En la mayoría de las funciones que vas a encontrarte, el límite, cuando tiende a un número real c, coincide con el valor numérico f(c), siempre que c pertenezca

Más detalles

1.- DOMINIO DE LA FUNCIÓN

1.- DOMINIO DE LA FUNCIÓN En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.

Más detalles

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato Control Global de la ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. º de Bachillerato. (4 puntos). Dada la función f( ) se pide: 4 a) Su dominio. b) Los puntos de corte con los ejes de coordenadas.

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

Denominadores: un denominador nunca se puede hacer cero. Ejemplo: 𝑓 𝑥 =

Denominadores: un denominador nunca se puede hacer cero. Ejemplo: 𝑓 𝑥 = 1. Continuidad de funciones. Una función es continua en 𝑥 = 𝑎, si se cumple: Existe 𝑓(𝑎). lim!! 𝑓 𝑥 = lim!!! 𝑓(𝑥) = lim!!! 𝑓 𝑥 𝒇 𝒂 = 𝐥𝐢𝐦𝒙 𝒂 𝒇 𝒙 Las funciones definidas por expresiones analíticas elementales

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

Actividades resueltas

Actividades resueltas 9 CAPÍTULO 7: LÍMITES Y CONTINUIDAD. CONCEPTO DE LÍMITE Qué es un ite? Límite: lo podemos definir como aquel lugar al que, si no llegamos, seremos capaces de acercarnos todo lo que queramos. En sentido

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad

Más detalles

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

Trabajo Práctico N 5

Trabajo Práctico N 5 Trabajo Práctico N 5 Asíntota Continuidad Algunos ejemplos para tener en cuenta Asíntotas. Asíntota vertical (AV) Decimos que la recta = a es AV de f() f() = ± f() = ± a + Por ejemplo, para hallar la AV

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Estudio de las funciones RACIONALES

Estudio de las funciones RACIONALES Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los

Más detalles

Tema 7. Límites y continuidad. 7.1 Definición de límite de una función

Tema 7. Límites y continuidad. 7.1 Definición de límite de una función Tema 7 Límites y continuidad 7.1 Definición de límite de una función Sea f : I R, I R yseaa I un punto de acumulación de I, decimos que f() tiene límite l R en el punto a f() =l si ε > 0, η > 0: a < η

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender.

De los tres conceptos que se estudian es este tema, funciones, límites y continuidad, el primero y el último son muy sencillos de comprender. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este tema lo iniciamos recordando el concepto de función y dando algunas nociones básicas sobre funciones, para dar paso al estudio del límite de una función, cálculo

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x.

UNIDAD 8.- LÍMITES DE FUNCIONES. CONTINUIDAD (tema 11 del libro) tiene por límite L cuando la variable independiente x tiende a x. UNIDAD 8.- ÍMITES DE FUNCIONES. CONTINUIDAD (tema del libro). ÍMITE. ÍMITES ATERAES Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al

Más detalles

TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.

TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES. TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím ( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím ( x UNIDAD.- ímite de funciones. Continuidad (tema del libro). ÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite cuando la variable independiente tiende a, y se nota por f ( ), cuando al acercarnos

Más detalles

UNIDAD 8 Representación de funciones

UNIDAD 8 Representación de funciones Pág. de 6 Representa las siguientes funciones racionales: y 5 + 7 es raíz del denominador y no lo es del numerador, es asíntota vertical. Veamos la posición de la curva respecto a ella estudiando sus signos

Más detalles

Considermos la función

Considermos la función Considermos la función f x = x2 9 x 3 Qué sucede si reemplazamos a x por 3? f x = x2 9 x 3 = 32 9 3 3 = 0 0 Tenemos lo que se denomina UNA INDETERMINACIÓN En matemática hay 7 indeterminaciones básicas

Más detalles

3 LÍMITE - Teoría y Ejemplos

3 LÍMITE - Teoría y Ejemplos 3 LÍMITE - Teoría y Ejemplos Introducción A partir del concepto de ite, podemos analizar el comportamiento de una función tanto en intervalos muy pequeños alrededor de un número real como cuando los valores

Más detalles

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato B (2007/08)

Control Global de la 2ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. 1º de Bachillerato B (2007/08) Control Global de la ª Evaluación Matemáticas Aplicadas a las Ciencias Sociales. º de Bachillerato B (007/08). (4 puntos). Dada la función f( ) se pide: 4 a) Su dominio. b) Los puntos de corte con los

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos página /0 Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos Hoja 20. Problema. Sabiendo que x 0 x cos(2 x)+b sen( x) 4 x 2 es finito, calcula b y el valor del límite.

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x http://matematicas-tic.wikispaces.com Lamberto Cortázar Vinuesa 07 LÍMITES EN EL INFINITO. ASÍNTOTAS EJERCICIOS WIKI Idea Se trata de estudiar lo que sucede con la unción () cuando damos a valores tan

Más detalles

Problemas de continuidad y límites resueltos

Problemas de continuidad y límites resueltos Problemas de continuidad y límites resueltos Razona de manera justificada el dominio de la siguientes funciones. a) f ()=ln( ) b) f ()= ( )( 3) c) f ()= cos( ) a) La raíz cuadrada solo admite discriminantes

Más detalles

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?

Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)? LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor

Más detalles

"""##$##""" !!!""#""!!! """##$##""" (c) Verdadero siempre que los términos en grado p = q se anulen.

##$## !!!#!!! ##$## (c) Verdadero siempre que los términos en grado p = q se anulen. Unidad nº 0 FFUNCI IONEES POLLI INÓMICAS YY RACIONALLEES! 7 AUTOEVALUACIÓN Halla la suma y el producto de los polinomios P() y Q() - - 5 -. P() + Q() 5 - +.. P() Q() ( ) ( 5 ) - 6 5 5 + + 0 + - 6 5 + 5

Más detalles

1. Expresiones polinómicas con una indeterminada

1. Expresiones polinómicas con una indeterminada C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES 1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

1. Idea de aproximación Qué se entiende por aproximación de una cantidad a otra?

1. Idea de aproximación Qué se entiende por aproximación de una cantidad a otra? LÍMITES. Idea de aproimación Qué se entiende por aproimación de una cantidad a otra? Si, por ejemplo, solicitamos un número próimo a,3, podríamos obtener por respuesta,9, pero alguien podría objetar y

Más detalles

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD

TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º CONCEPTOS PREVIOS Ejercicio º Valor absoluto a,b, TEMA 9: FUNCIONES, LÍMITES Y CONTINUIDAD º Intervalos: a, b, a, b, a, b Semirrectas:, a, -,a, a,, a, Representa gráficamente las siguientes funciones,

Más detalles

Tema II: Análisis Límites

Tema II: Análisis Límites Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257

SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257 TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE

Más detalles

Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016

Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 Repartido 4 Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 6. Estudiar los límites laterales de las siguientes funciones en los puntos que anulan al denominador: A) B) 7. Estudiar la existencia

Más detalles

FUNCIONES. entonces:

FUNCIONES. entonces: FUNCIONES. Si f ( ) para y g( ), entonces: + g f ( ), para + B) g f ( ), para + C) g f ( ), para + D) g f ( ), para + (Convocatoria septiembre 00. Eamen tipo B) La composición de funciones es una operación

Más detalles

LÍMITES DE FUNCIONES. Sol: Sol: 0. Sol: 1/2 28) Sol: 4 30) Sol: Sol: 13. Sol: + Sol: 2/3. Sol: Sol: 1

LÍMITES DE FUNCIONES. Sol: Sol: 0. Sol: 1/2 28) Sol: 4 30) Sol: Sol: 13. Sol: + Sol: 2/3. Sol: Sol: 1 ) ) ) + 5 + + + + + + + + 5 + ) ( ) + 5) ( + ) + ) ( + ) + LÍMITES DE FUNCIONES ) 7) ( ) + + + / No eiste, porque vale si, y si + 8) ( ) + 9) 5 + 0) 5 + ) 5+ ) 5+ ) + 5+ ) 5) + + + ) + + + + + 7) + + 8)

Más detalles