Geometría Vectorial y Analítica con GEOGEBRA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometría Vectorial y Analítica con GEOGEBRA"

Transcripción

1 Geometría Vectorial y Analítica con GEOGEBRA Fuente Martos, Miguel de la 1 Resumen Partiendo sólo de un conocimiento muy básico de GEOGEBRA, pretendemos trabajar con la mayoría de herramientas y comandos que permiten usar los vectores. Veremos también las altas posibilidades de resolver situaciones típicas o creativas de Geometría Analítica plana usando comandos en la línea de entrada, para lo que desarrollaremos un buen número de actividades prácticas seleccionadas para tal fin. 1. Introducción La mayoría de los programas clasificados como de geometría dinámica incorporan herramientas para el trabajo con vectores, pero la posibilidad de uso de la notación vectorial para la representación gráfica y tratamiento de los vectores o la traducción automática de los vectores trazados a coordenadas en la ventana algebraica, es casi exclusivo de Geogebra. Esta interacción entre la ventana algebraica y gráfica se amplía en el caso de los puntos a la hoja de cálculo incorporada a Geogebra, lo que proporciona una multiplicidad de opciones de representación y tratamiento de nociones matemáticas, como, entre otros, en el caso de las cónicas. Por último la gran cantidad de comandos de que se disponen facilita el trabajo de construcción y tratamiento vectorial de figuras e imágenes, de forma que la dinámica de la construcción no oculte el objetivo de la tarea. 2. Contenidos Los contenidos de este taller están estructurados como una secuencia de tareas dónde se va desde la exploración básica de las posibilidades de Geogebra en el trabajo con vectores y puntos, usando tanto las herramientas gráficas como la notación vectorial sobre la línea de entrada, hasta tareas algo más complejas, pero útiles en nuestras clases, dónde se mezclan las posibilidades de interacción entre la línea de entrada, la pantalla gráfica y/o la hoja de cálculo. Algunas tareas podrían hacerse eludiendo el trabajo con vectores o 1 I.E.S. El Tablero de Córdoba.

2 podrían desarrollarse de otro modo, pero las que aquí se plantean y tal y como se plantean, permiten ser abordadas de una manera más cómoda y pensamos que no forzada. Hemos organizado las tareas en 5 apartados 1) a 5), que presentamos y desarrollamos a continuación: 1) Trabajo básico con vectores: a) Vectores libres y fijos. Operaciones con vectores. i) Representar vectores fijos y libres usando la barra de herramientas o la línea de entrada: Barra de herramientas Línea de Entrada Acciones u=vector[a,b] v=b-a Mover origen o extremo Mover vector w=(2,5) Obtener combinaciones (Vector entre dos Puntos) lineales de dos vectores ii) Trasladar puntos usando vectores: Barra de herramientas Línea de Entrada TAREA 1 (Vector desde un Punto) u=vector[a,b] D=C+v Construir un paralelogramo a partir de tres vértices no alineados usando vectores (sin usar rectas paralelas ni simetrías) Barra de herramientas (Ángulo) Línea de Entrada TAREA 2 Representar dos vectores u y v sin origen común. Hallar el ángulo que forman, usando el producto escalar, y representar dicho ángulo.

3 b) Vectores perpendiculares y unitarios. El vector perpendicular a una recta. Línea de Entrada TAREA 3 TAREA 4 Construir un cuadrado a partir de dos vértices consecutivos usando vectores (sin usar rectas paralelas ni perpendiculares) v=vector[a,b] p_{v1}=(x(v),-y(v)) p_{v2}=(-x(v), y(v)) p_v=vectorperpendicular[v] u= VectorUnitario[v] w=vectorunitarioperpendicular[v] Construir un rectángulo de proporción k (variable) usando vectores. Construir un cuadrado a partir de dos vértices opuestos usando vectores (sin usar rectas paralelas ni perpendiculares) TAREA 4 TAREA 5 TAREA 6 Construir un cuadrado inclinado respecto a los ejes a partir de uno de sus vértices y de lado 3 unidades, usando vectores. c) División de un segmento en partes iguales usando vectores. Representar una recta r inclinada y el vector perpendicular a ella con origen en un punto de la misma. Crear un haz de rectas paralelas a r que disten entre sí 1 5 unidades. TAREA7: Representar un segmento AB y en él n-1 puntos que lo dividan en n partes iguales. Usar el comando secuencia para el caso de n variable.

4 d) La recta definida con vectores: La ecuación vectorial de la recta. TAREA 8: Representar un vector libre u y un punto A. A partir de ellos construir la recta que pasa por A y tiene a u como vector dirección. e) Dibujo vectorial: Las fases de una evolución vectorial en la creación de comics y caricaturas. TAREA 9: Representar un par de polígonos (Inicial y Final) con el mismo número de vértices (en la figura inferior son los polígonos en forma de M y F). Crear un deslizador (k) que varíe entre -0.5 y 1.5 con incrementos de 0.1. Asociar cada vértice del polígono Inicial con otro del Final (A A 1, B B 1, etc.). Determinar en cada segmento AA 1, BB 1, etc. Un punto A, B, etc. de forma que AA /AA 1 =BB /BB 1 =... y tal que para k=0 sean A =A, B =B, y para k=1 sean A =A 1, B =B 1, etc. Construir el polígono A B C, que será un polígono intermedio (interpolado) entre el Inicial y el Final para 0<k<1, y extrapolado si k<0 o k>1. En estos últimos casos podríamos considerar que el polígono construido para k<0 es una caricatura del polígono Inicial vista por el Final (caricatura de la M desde el punto de vista de la F), y el construido para k>1 es una caricatura del polígono Final vista por el Inicial (caricatura de la F desde el punto de vista de la M).

5 Usando la posibilidad de asignar colores dinámicos, que aparece en la pestaña Avanzado de la ventana Propiedades de cada polígono, podemos tratar el color como un vector tridimensional y lograr también la evolución del color además de la de la forma. Si asignamos colores al azar a los polígonos Inicial y Final, podemos contemplar diferentes evoluciones de forma y color pulsando Mayúsculas+F9 y moviendo el deslizador k. 2) Traslaciones: a) Traslaciones sucesivas como animaciones. TAREA 10:Representar dos vectores y elaborar una animación que permita trasladar una figura (triángulo en la imagen inferior) usando un vector y a continuación el otro, pero con la ayuda de un único deslizador.

6 b) Traslaciones repetidas usando secuencias: Aplicación a la creación de decoraciones periódicas. TAREA 11: Construir un paralelogramo ABDC y encajar dentro de él alguna imagen 2, insertándola de modo que la Esquina 1 o inicial sea A, la Esquina 2 sea C y la Esquina 4 sea B (usar para ello la etiqueta Posición en la ventana de Propiedades de la imagen insertada). Trasladar repetidamente la imagen con los vectores AB y AC para crear una decoración periódica. Usar para ello la orden Secuencia con dos variables. c) Análisis de periodicidad de una decoración previamente digitalizada. TAREA 12: Crear una red de paralelogramos a partir de dos vectores de diferente dirección. (Usar, si se quiere, la que se tiene creada en el fichero Trama vectorial.ggb que se proporciona en este taller). Crear dos puntos en las esquinas inferiores de la zona gráfica de Geogebra que estén en la misma horizontal (J y K en la figura que sigue). Insertar una decoración periódica previamente digitalizada (usar una de las que se proporcionan en este taller) fijando la Esquina 1 y 2 en cada uno de los puntos anteriores. 2 Puede hacerse también (para menor consumo de recursos del ordenador) con un polígono creado con Geogebra y que tesele el plano por traslaciones, como un hexágono de lados opuestos iguales y paralelos.

7 Mover y colocar los puntos A, B y C de forma que la decoración quede dividida en zonas, lo más pequeñas posibles, congruentes por traslación. 3) Centro de gravedad de una nube de puntos con coordenadas y sin ellas: TAREA 13: Crear cuatro puntos A, B, C; D y determinar geométricamente el centro de gravedad B a dividiendo segmentos sucesivos en 2, 3 y 4 partes iguales, tal y como se muestra en la figura que sigue.

8 Pasar las coordenadas de los 4 puntos a la hoja de cálculo y hallar la media aritmética de sus coordenadas, comprobando que se obtienen las coordenadas de B a. TAREA 14: Inserta el Mapa de Huelva que se proporciona (Mapa_Huelva.png) en la zona gráfica de Geogebra fijando su posición y tamaño. Crea unos 20 puntos usando la hoja de cálculo. Coloca los puntos repartidos sobre la frontera de la provincia y determina su centro geográfico considerado como el centro de gravedad de dichos puntos. 4) Las matrices como vectores multidimensionales. Transformaciones geométricas con matrices 2x2: TAREA 15: Consideremos el cuadrado unidad OABC, donde O es el origen de coordenadas, A=(0,1), B=(1,1) y C=(1,0). Construir dos vectores libres u y v representados con origen en O, y a partir de ellos construir el paralelogramo OA B C, como se muestra en la figura que sigue 3. Considerar la matriz M de dimensión 2x2, donde figuran, por filas, las coordenadas de los vectores u y v. Hallar su determinante Det(M) usando, si se quiere, la hoja de cálculo. Mover los vectores u y v comprobando, con coordenadas, que O=O*M, A =A*M, B =B*M y C =C*M, es decir que el paralelogramo OA B C es el polígono transformado del cuadrado unidad por la matriz M; y estudiar la relación entre el determinante de M y el área del paralelogramo OA B C. 3 Aunque no es necesario, se puede rellenar dicho paralelogramo con una imagen asociando las esquinas 1, 2 y 4 a los puntos O, C y A respectivamente.

9 5) Algunas tareas con cónicas: a) Buscando el foco y directriz de una parábola. TAREA 16: Abre el fichero Parábola al azar.ggb y verás una parábola que se ha generado al azar (Si pulsas Mayúsculas+F9 podrás cambiar de parábola). Con las herramientas y comandos de que se disponen en Geogebra, pero sin usar directamente el comando Foco, determinar el Foco (F) y la directriz (d) de dicha parábola. b) El juego de pinchar tres globos 4 (con parábolas y circunferencias) TAREA 17: Abre el fichero Parábola pincha globos.ggb y verás una parábola que se ha trazado usando la expresión y=a(x-b) 2 +c, usando valores concretos de a, b y c; así como tres circunferencias con centros generados al azar y cuyos radios pueden modificarse con el deslizador precision. (Si pulsas Mayúsculas+F9 podrás cambiar de posición las circunferencias). 4 La idea de esta Tarea está tomada de un antiguo juego educativo de ordenador sobre funciones llamado trece globos, en el que aparecían en la pantalla tal número de globos que se rompían cuando la gráfica de una función definida por el usuario los atravesaba. La puntuación que se conseguía en cada representación gráfica dependía del número de globos rotos o del número de intentos para romper un número determinado de ellos. Jugando se conseguía una gran destreza en la influencia de los parámetros en la gráfica para determinadas familias de funciones.

10 Introduce en la línea de comandos valores para a, b y c, de modo que la parábola toque o corte a las tres circunferencias, y anota el número de veces que has tenido que introducir valores (número de intentos). Agradecimientos Agradecemos al la Consejería de Educación y Ciencia de la Junta de Andalucía, Universidad de Córdoba, Universidad de Huelva, Diputación Provincial de Huelva, Ayuntamiento de Huelva, etc., las ayudas prestadas sin la cual no hubiese sido posible la celebración de estas Jornadas. Referencias CLUB DE LAS IDEAS (2010). Grabación del programa CLUB DE LA IDEAS de Canal Sur 2 sobre el trabajo con Geogebra en el IES EL TABLERO de Córdoba. (http://www.youtube.com/watch?v=s0xmlfpow-q) DE LA FUENTE, M. (2010). Dónde está?, Dónde estoy?, Dónde estaba?: Tres Problemas de relaciones de las matemáticas y los mapas resueltos con Geogebra. Comunicación en el XIII Congreso THALES de Enseñanza y Aprendizaje de las Matemáticas. Córdoba. (Pendiente de publicación) HOHENWARTER, M.; HOHENWARTER, J. Y SAIDON, L. (2009). Manual en Castellano de Geogebra para la versión 3.2 (http://www.geogebra.org/help/docues.pdf) LOSADA LISTE, R. (2009) Materiales del curso virtual del ITE :GeoGebra en la enseñanza de las Matemáticas (http://geogebra.es/cvg/index.html)

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16

ESTALMAT-Andalucía. Geometría dinámica con Cabri. Sesión 16 Geometría dinámica con Cabri Sesión 16 SAEM THALES Material recopilado y elaborado por: Encarnación Amaro Parrado Agustín Carrillo de Albornoz Torres Granada, 8 de marzo de 2008-2 - Actividades de repaso

Más detalles

Objetivos específicos de aprendizaje

Objetivos específicos de aprendizaje Introducir un cambio en la metodología de la enseñanza de las Matemáticas en general, y de la geometría en particular, con la ayuda de las NTIC, consiguiendo un mayor dinamismo en las clases, que repercuta

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) PROGRAMA DE ASIGNATURA GEOMETRÍA ANALÍTICA AÑO 2014 I. FUNDAMENTACIÓN En esta disciplina se estudian las operaciones

Más detalles

GeoGebra es un software interactivo de matemática que reúne dinámicamente geometría,

GeoGebra es un software interactivo de matemática que reúne dinámicamente geometría, Documento de Ayuda de GeoGebra 1 Qué es GeoGebra? GeoGebra es un software interactivo de matemática que reúne dinámicamente geometría, álgebra y cálculo. Lo ha elaborado Markus Hohenwarter junto a un equipo

Más detalles

Tutorial de Geogebra. Software interactivo de matemática que reúne dinámicamente geometría, álgebra y cálculo. Ministerio de Educación

Tutorial de Geogebra. Software interactivo de matemática que reúne dinámicamente geometría, álgebra y cálculo. Ministerio de Educación Tutorial de Geogebra Software interactivo de matemática que reúne dinámicamente geometría, álgebra y cálculo Colección de aplicaciones gratuitas para contextos educativos Ministerio de Educación para contextos

Más detalles

Traslaciones, Homotecias, Giros y Simetrías

Traslaciones, Homotecias, Giros y Simetrías Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre

Más detalles

open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl

open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno.cl 1. Transformaciones isométricas Las transformaciones geométricas están presentes en diversos campos de la actividad humana así como

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas

Geometria Analítica Laboratorio #1 Sistemas de Coordenadas 1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.

Más detalles

GeoGebra Quickstart Una guía de referencia rápida para *HR*HEUD

GeoGebra Quickstart Una guía de referencia rápida para *HR*HEUD GeoGebra Quickstart Una guía de referencia rápida para *HR*HEUD Geometría dinámica, álgebra y cálculo se asocian para formar *HR*HEUD, un programa educativo, galardonado en numerosas ocasiones, que combina

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015

IES CANARIAS CABRERA PINTO DEPARTAMENTO DE MATEMÁTICAS CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 CONTENIDOS MÍNIMOS 1º ESO SEPTIEMBRE 2015 UNIDAD 1: LOS NÚMEROS NATURALES. OPERACIONES Y RELACIONES El sistema de numeración decimal Estimación y redondeo de un número natural Las operaciones con números

Más detalles

TEMA 2. HERRAMIENTAS DE GeoGebra

TEMA 2. HERRAMIENTAS DE GeoGebra TEMA 2. HERRAMIENTAS DE GeoGebra INTRODUCCIÓN Herramientas como Punto, Circunferencia, Segmento, Tangente, entre otras, se han utilizado en las actividades propuestas en el capítulo anterior, para realizar

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

8 GEOMETRÍA ANALÍTICA

8 GEOMETRÍA ANALÍTICA 8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V) UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones

KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

José Manuel Dos Santos Dos Santos, Instituto GeoGebra Portugal, Escola Superior de Educação Instituto Politécnico do Porto Portugal

José Manuel Dos Santos Dos Santos, Instituto GeoGebra Portugal, Escola Superior de Educação Instituto Politécnico do Porto Portugal José Manuel Dos Santos Dos Santos, Instituto GeoGebra Portugal, Escola Superior de Educação Instituto Politécnico do Porto Portugal RESUMEN. Con GeoGebra 5.0 el desarrollo de aplicaciones para la geometría

Más detalles

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas

Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2014/2015 MATEMÁTICAS II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad La siguiente relación de objetivos,

Más detalles

La hoja de cálculo de GeoGebra

La hoja de cálculo de GeoGebra La hoja de cálculo de GeoGebra José Luis Álvarez Rafael Losada Resumen La Vista de hoja de cálculo fue una de las grandes sorpresas que incorporó GeoGebra en su versión 3.2, hace ya algunos años. La hoja

Más detalles

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias: Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo

Más detalles

Traslación de puntos

Traslación de puntos LECCIÓN CONDENSADA 9.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que

Más detalles

Cuadernillo de actividades

Cuadernillo de actividades Construyendo con Geogebra II Jornadas sobre Geogebra en Andalucía Abril 2011 Actividades para el Taller: Construyendo con EVA COSTA GAVILÁN Mª TRINIDAD CASTILLO CARA Mª ÁNGELES MARTÍN TAPIAS Cuadernillo

Más detalles

UN IVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA PROGRAMA DE ESTUDIO INGEN IERIA EN MARKETING PLAN 2006

UN IVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA PROGRAMA DE ESTUDIO INGEN IERIA EN MARKETING PLAN 2006 UN IVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD POLITÉCNICA PROGRAMA DE ESTUDIO INGEN IERIA EN MARKETING PLAN 2006 I. - IDENTIFICACIÓN 1. Materia : Geometría Analítica y Vectores 2. Semestre : Primer 3. Horas

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

6. Circunferencia. y polígonos

6. Circunferencia. y polígonos 6. Circunferencia y polígonos Matemáticas 2º ESO 1. Lugares geométricos 2. Polígonos en la circunferencia 3. Simetrías en los polígonos 4. Longitud de la circunferencia y superficie del círculo 192 Circunferencia

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

Integración de las TIC en las clases de Matemáticas utilizando Geogebra

Integración de las TIC en las clases de Matemáticas utilizando Geogebra Integración de las TIC en las clases de Matemáticas utilizando Geogebra PRESENTADA POR Lorenzo Sevilla Ortiz Madrid, 2009 JUSTIFICACIÓN: LA NECESIDAD DE INTEGRAR LAS TIC EN LAS CLASES DE MATEMÁTICAS La

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

EJERCICIOS DE PUNTOS EN EL ESPACIO

EJERCICIOS DE PUNTOS EN EL ESPACIO EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas

Más detalles

CREACIÓN DE PLANOS A PARTIR DE MODELOS 3D DE PIEZAS

CREACIÓN DE PLANOS A PARTIR DE MODELOS 3D DE PIEZAS CREACIÓN DE PLANOS A PARTIR DE MODELOS 3D DE PIEZAS Las últimas versiones de Autocad tienen herramientas que facilitan tanto la obtención de planos de modelos 3D de piezas como su representación, una vez

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA

EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA EXAMEN DE MATEMÁTICAS 2º BACHILLERATO CCNN BLOQUE : GEOMETRÍA OPCIÓN A EJERCICIO 1 Halle el punto P simétrico del punto P ( 3, 4, 0) respecto del plano Л que contiene a la recta s : x = y 2 = z 1 y al

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Geometría analítica. Geometría analítica. La caricia del escorpión

Geometría analítica. Geometría analítica. La caricia del escorpión Geometría analítica Geometría analítica LITERATURA Y MATEMÁTICAS La caricia del escorpión Continuamos, pues, en ese piso calamitoso de Delicias, achicando inundaciones domésticas, martilleando en las cañerías.

Más detalles

Manual GeoGebra. Manual GEOGEBRA. José Aurelio Pina Romero Página 1

Manual GeoGebra. Manual GEOGEBRA. José Aurelio Pina Romero Página 1 Manual GEOGEBRA José Aurelio Pina Romero Página 1 ÍNDICE 0. INTRODUCCIÓN... 3 1. VENTANA... 5 2. HERRAMIENTAS... 6 3. TRABAJO CON OBJETOS... 9 4. PROPIEDAD DE LOS OBJETOS... 11 5. ANIMACIÓN: INTERACTIVIDAD...

Más detalles

Guía de Inicio Rápido

Guía de Inicio Rápido Windows 8 Tablet App Capto una aplicación en instantes ellos, la matemática para siempre GeoGebra Septiembre 2013 Traducción Liliana Saidon de www.centrobabbage.com Qué es GeoGebra? Un conjunto unificado

Más detalles

MANUAL PARA GEOGEBRA Guías para geometría dinámica, animaciones y deslizadores

MANUAL PARA GEOGEBRA Guías para geometría dinámica, animaciones y deslizadores MANUAL PARA GEOGEBRA Guías para geometría dinámica, animaciones y deslizadores Alexánder Borbón A., Escuela de Matemática Instituto Tecnológico de Costa Rica. Revista Digital Matemática Educación e Internet

Más detalles

Explica tu respuesta.

Explica tu respuesta. G.MG.6.8.3 Describe y aplica las relaciones de paralelismo, perpendicularidad y simetría en el mundo real. Ejemplo: Si dos calles se intersecan, son perpendiculares? Explica tu respuesta. Rectas paralelas:

Más detalles

Tema 7. Geometría en plano. Vectores y rectas

Tema 7. Geometría en plano. Vectores y rectas Tema 7. Geometría en plano. Vectores y rectas. Vectores y puntos en el plano. Coordenadas.... Operaciones con vectores... 5.. Suma y resta de vectores... 5.. Producto de un número real por un vector....

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

LA ENSEÑANZA DE LAS MATEMÁTICAS A TRAVÉS DE LAS NUEVAS TECNOLOGÍAS 2. SOFTWARE DE GEOMETRÍA DINÁMICA MAURICIO CONTRERAS

LA ENSEÑANZA DE LAS MATEMÁTICAS A TRAVÉS DE LAS NUEVAS TECNOLOGÍAS 2. SOFTWARE DE GEOMETRÍA DINÁMICA MAURICIO CONTRERAS LA ENSEÑANZA DE LAS MATEMÁTICAS A TRAVÉS DE LAS NUEVAS TECNOLOGÍAS 2. SOFTWARE DE GEOMETRÍA DINÁMICA MAURICIO CONTRERAS GEOMETRÍA CON CABRI Introducción El estudio de la geometría con Cabri permite introducir

Más detalles

3º Tema.- Síntesis de mecanismos.

3º Tema.- Síntesis de mecanismos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 3º Tema.-

Más detalles

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el

LA PARABOLA. R(-a, y) P (x, y) con el origen del sistema de coordenadas cartesianas y el eje de la parábola con el LA PARABOLA Señor... cuando nos equivoquemos, concédenos la voluntad de rectificar; y cuando tengamos razón... no permitas que nos hagamos insufribles para el prójimo. Marshall En la presente entrega,

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales

Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales PROYECTO PERMANENCIA Y GRADUACIÓN ESTUDIANTIL EXPERIENCIA CON LA UNIVERSIDAD DE MEDELLÍN Software dinámico Comprensión lectora Mapas mentales Mapas conceptuales Software dinámico Después de realizar un

Más detalles

Experimento 2 SUMA DE VECTORES. Objetivos. Teoría. Figura 1 Los vectores se representan con flechas

Experimento 2 SUMA DE VECTORES. Objetivos. Teoría. Figura 1 Los vectores se representan con flechas Experimento 2 SUMA DE VECTORES Objetivos 1. Usar la mesa de fuerzas para equilibrar un punto mediante la aplicación de tres fuerzas concurrentes conocidas 2. Encontrar la resultante de estas fuerzas usando:

Más detalles

INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra

INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra INTRODUCCION A LA FISICA NEWTONIANA Manuscrito de cátedra ADVERTENCIA: manuscrito en estado de preparación muy preliminar, particularmente en lo que respecta a la secuencia temática, orden y terminación

Más detalles

Cámara. Práctica 5. 5.1. Introducción. 5.1.1. Proyección

Cámara. Práctica 5. 5.1. Introducción. 5.1.1. Proyección Práctica 5 Cámara 5.1. Introducción En esta práctica se aborda la creación de la cámara virtual, esto es, el medio o forma mediante el cual vamos a poder observar los elementos de la escena. De nuevo,

Más detalles

Geometría del plano. Objetivos. Antes de empezar

Geometría del plano. Objetivos. Antes de empezar 8 Geometría del plano Objetivos En esta quincena aprenderás a: Conocer los elementos del plano. Conocer las rectas y sus propiedades. Manipular rectas y otros elementos relacionados con ellas. Conocer

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.

Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G. Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico

Unidad 4: Vectores. 4.1 Introducción. 4.2 Vectores: enfoque geométrico Unidad 4: Vectores 4.1 Introducción En este capítulo daremos el concepto de vector, el cual es una herramienta fundamental tanto para la física como para la matemática. La historia de los vectores se remonta

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud 1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

INTRODUCCIÓN ESCUELA DE INGENIERÍA CIVIL Parte de la matemática útil para físicos, matemáticos, ingenieros y técnicos. Permite presentar mediante las ecuaciones de modelo matemático diversas situaciones

Más detalles

Mejoramiento Matemático 7º año

Mejoramiento Matemático 7º año Mejoramiento Matemático 7º año Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.

Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta. Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q

coordenadas (x,y) en el plano. Producto de matrices. Sean las dos matrices A = (a ij ) m n B = (b ij ) p q APLICACIONES DE LAS MATRICES El presente estudio se originó como respuesta a la ayuda que me pidió mi nieto mayor, de 7 años, mientras hacía su curso en un colegio de Brisbane, Australia, a la fecha de

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

Capítulo 9 Vectores en el espacio

Capítulo 9 Vectores en el espacio Capítulo 9 Vectores en el espacio Introducción El concepto de vector es muy amplio y su aplicación se evidencia en los diferentes campos de las ciencias. En matemáticas, un vector es un elemento de una

Más detalles

Guía Rápida de Referencia

Guía Rápida de Referencia Qué es GeoGebra? Guía Rápida de Referencia Un conjunto unificado y fácil de usar que conforma un potente programa de Matemática Dinámica Un utilitario para enseñar y aprender en todos los niveles educativos

Más detalles

Abre un documento nuevo. Guardar como Prueba 1 en el pendrive. qué pasa si aceptas reemplazar el archivo existente con el mismo nombre?

Abre un documento nuevo. Guardar como Prueba 1 en el pendrive. qué pasa si aceptas reemplazar el archivo existente con el mismo nombre? Para poder entender el dibujo en nuestros días es necesario trabajar con recursos actuales. El dibujo técnico se ve beneficiado por las ayudas de los programas CAD (Diseño Asistido por Ordenador). Hay

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS

UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS UNIDAD 2: : SSI ISSTEEMASS DEE COORDEENADASS Y LLUGAREESS GEEOMEETRI ICOSS UNIDAD 2: SISTEMAS DE COORDENADAS Y LUGARES GEOMETRICOS Propósitos: Mostrar una visión global del método de la Geometría Analítica

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Sistemas de representación: Planos Acotados. Ejercicios.

Sistemas de representación: Planos Acotados. Ejercicios. Sistemas de representación: Planos Acotados. Ejercicios. Las proyecciones de los puntos A'(3) y C'(8) son los extremos de uno de los diámetros de una circunferencia de 60 mm. de φ. La pendiente de

Más detalles

Pl_Editor. 25 de enero de 2016

Pl_Editor. 25 de enero de 2016 Pl_Editor Pl_Editor II 25 de enero de 2016 Pl_Editor III Índice 1. Introducción a Pl_Editor 2 2. Archivos de Pl_Editor 2 2.1. Archivo de entrada y bloque de título predeterminado................................

Más detalles

GEOMETRÍA CON LA CLASSPAD 300

GEOMETRÍA CON LA CLASSPAD 300 8. GEOMETRÍA CON LA CLASSPAD 300 LA APLICACIÓN GEOMETRÍA Para acceder a la aplicación para trabajar con distintas construcciones geométricas bastará con pulsar el icono correspondiente a Geometry en el

Más detalles

1. ESCALARES Y VECTORES

1. ESCALARES Y VECTORES 1. ESCLRES Y VECTORES lgunas magnitudes físicas se especifican por completo mediante un solo número acompañado de su unidad, por ejemplo, el tiempo, la temperatura, la masa, la densidad, etc. Estas magnitudes

Más detalles

Mosaicos: rompiendo el plano de manera armónica

Mosaicos: rompiendo el plano de manera armónica V Seminario sobre Actividades para Estimular el Talento Precoz en Matemáticas IX Reunión Nacional ESTALMAT Castro Urdiales, 2012 Mosaicos: rompiendo el plano de manera armónica ENRIQUE DE LA TORRE FERNÁNDEZ

Más detalles

Taller: Dibujando con GeoGebra, construcciones útiles para maestros y maestras

Taller: Dibujando con GeoGebra, construcciones útiles para maestros y maestras Taller: Dibujando con GeoGebra, construcciones útiles para maestros y maestras Randall Blanco Benamburg Instituto Tecnológico de Costa Rica rblanco@itcr.ac.cr Ana María Sandoval Poveda Universidad Estatal

Más detalles

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?

GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo

Más detalles

Las Matemáticas en Secundaria con Software Libre. GeoGebra - Primeros Pasos

Las Matemáticas en Secundaria con Software Libre. GeoGebra - Primeros Pasos Las Matemáticas en Secundaria con Software Libre Daniel López Avellaneda dani@lubrin.org GeoGebra - Primeros Pasos Manual para el curso organizado por: CEP Cuevas-Olula +CEP El Ejido +CEP Almería Marzo-Mayo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO CRITERIOS PARA LA REALIZACIÓN DE LA PRUEBA 1.- Se establecen dos opciones A- y B- de tres problemas

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA

CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA CONSTRUCCIONES GEOMÉTRICAS CON GEOGEBRA María José González Geogebra es un software que nos ayuda a manipular objetos matemáticos y a estudiar sus propiedades. En esta sesión: - Veremos cómo descargar

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS

x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)

Más detalles

Guía rápida de Excel Tablas y gráficos dinámicos A. Roldán 2010

Guía rápida de Excel Tablas y gráficos dinámicos A. Roldán 2010 Tablas y gráficos dinámicos Tablas dinámicas Cambios en una tabla dinámica Filtrados Opciones de tabla Configuración de campo Otras operaciones Subtotales Gráficos dinámicos Tablas dinámicas Las tablas

Más detalles

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,

La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y, Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad

Más detalles

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema

El espacio tridimensional. Tema 01: Álgebra lineal y geometría en R 3. Vectores. El producto punto o producto escalar. Teorema El espacio tridimensional Tema 01: Álgebra lineal y geometría en R 3 Juan Ignacio Del Valle Gamboa Sede de Guanacaste Universidad de Costa Rica Ciclo I - 2014 Partimos de los conceptos de punto y vector.

Más detalles

CRITERIOS DE VALORACIÓN

CRITERIOS DE VALORACIÓN PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...

Más detalles