Ing. Fernando Cabral Hernández. Abordando Problemas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ing. Fernando Cabral Hernández. Abordando Problemas"

Transcripción

1 Abordando Problemas OBJETIVOS: Potenciar el gusto por la resolución de problemas. Tomar conciencia de la importancia de la resolución de problemas como núcleo esencial de la educación matemática. Conocer y practicar estrategias heurísticas y destrezas convenientes para la resolución de problemas. Reconocer la resolución de problemas como una actividad en la que se fomente el gusto por hacer matemáticas, evitando que la dificultad se convierta en sinónimo de rechazo, sino más bien en un desafío para la mente y como tal sean tomadas como un juego. Compartir recursos documentales, tecnológicos, etc. para facilitar la enseñanza y el aprendizaje de la resolución de problemas. CONTENIDOS: La Resolución de Problemas como objetivo, contenido y método. Contemplación del tema en los currículos oficiales de Primaria. Problemas aritméticos elementales. Pautas, técnicas y estrategias heurísticas. Los problemas abiertos: un recurso metodológico para atender la diversidad. Los juegos de lógica y estrategia. Relación con la resolución de problemas. Aplicaciones de las calculadoras para investigaciones y resolución de problemas. Evaluación de la resolución de problemas. Internet: un banco de posibilidades para la resolución de problemas. ALGUNOS PUNTOS DE VISTA: Según Weatley resolver un problema es lo que haces cuando no sabes qué hay que hacer. Un problema matemático implica un propósito con dificultad a conseguir, que hay obstáculos y requiere deliberación, ya que quien lo afronta no conoce ningún algoritmo para resolverlo. Los buenos problemas matemáticos representan un desafío a las capacidades deseables de un matemático, tienen interés en sí mismos y estimulan en quienes lo resuelven el deseo de proponerlo a otras personas. La resolución de problemas es sobre todo un proceso y no un procedimiento paso a paso aunque se enseñen todas las técnicas heurísticas, es como ha dicho alguien ES más un viaje que un destino. PROBLEMAS vs EJERCICIOS: Una actividad matemática podemos tipificarla como ejercicio cuando el que lo resuelve dispone de un algoritmo directamente, o consultando en la fuente adecuada, que una vez aplicado le lleva directamente a la solución. En el caso de los ejercicios, el único problema (si así puede llamársele), estriba en averiguar el algoritmo a aplicar Página 1

2 IDENTIFICACIÓN DE LOS PROBLEMAS QUE SE NOS PLANTEAN EN LA ENSEÑANZA / APRENDIZAJE: Dificultades en la comprensión del enunciado y/o del problema. La larga extensión del enunciado y a veces lo farragoso del mismo o su falta de adaptación al lenguaje del alumno. En problemas de varias etapas, la ausencia de preguntas intermedias. Ignorar las unidades de medida en el desarrollo y expresión de la solución. Falta de organización de los datos del problema. Ausencia de representación de los datos en tablas, gráficas o dibujos. Inercia para operar con lo último que están estudiando derivado de la práctica de poner problemas categorizados por temas. No comprobar el resultado, la solución y no revisar el proceso. Carencias para reformular los problemas, escribir variantes de los mismos y buscar analogías. QUÉ NECESITA SABER UNA PERSONA PARA RESOLVER UN PROBLEMA? Conocimiento lingüístico: Términos en los que está redactado el problema, comprensión del enunciado. Conocimiento semántico: Hechos, por ejemplo; 1 ha = 10,000 m 2, comprensión de la lengua y del lenguaje específico matemático. Conocimiento esquemático: Ser consciente del tipo de problema a resolver, por ejemplo, algorítmico o de enunciado abierto. Conocimiento operativo: Dominio de herramientas, por ejemplo, cómo despejar una incógnita, cómo determinar la ecuación de una recta, cómo manejar el compás, etc. Conocimiento estratégico: Uso de líneas de pensamiento que se ponen en juego al resolver problemas, en forma de elección de heurísticos, procedimientos o métodos. ESTRATEGIAS HEURÍSTICAS. Resolver primeramente un problema más simple. Codificar los datos buscando notaciones adecuadas para representar el problema. Hacer tablas y buscar pautas. Descomponer el problema en subproblemas. Realizar experimentos. Generalizar la solución para tener un modelo de resolución de todos los problemas análogos. Si no consigues entender un problema, dibuja un esquema. Si no encuentras la solución, haz como si ya la tuvieras y mira qué puedes deducir de ella (razonando hacia atrás). Si el problema es abstracto, prueba a examinar un ejemplo concreto. Intenta abordar primero un problema más general (es la paradoja del inventor : el propósito más ambicioso es el que tiene más posibilidades de éxito). Página

3 PASOS PARA LA RESOLUCIÓN DE UN PROBLEMA: Ing. Fernando Cabral Hernández. COMENCEMOS CON EL PROBLEMA DEL HENO: Unos granjeros almacenaron heno para 57 días. Sin embargo, el heno almacenado era de mejor calidad de lo que pensaban. Por lo que ahorraron 113 kg por día y tuvieron para 73 días. Cuántos kilos de heno almacenaron? UN PROBLEMA MÁS SENCILLO. En una casa compran pan para 6 días. Sin embargo, esa semana tuvieron menos apetito de lo normal y ahorraron una barra de pan diaria, por lo que tuvieron pan para 9 días. Cuantas barras de pan compraron? EL PLAN: Saber las barras de pan que ahorran. Como la diferencia debida al ahorro es de 3 días, las barras de pan ahorradas se reparten entre 3 y así descubriré el consumo de pan diario. Por último multiplicaré por 9, puesto que éste es el número de días que estuvieron consumiendo pan Página 3

4 LA EJECUCIÓN: 6 días ahorrando 1 barra por día; 6 x 1 = 6. Ahorran 6 barras. 9 6 = 3. Por ahorrar una barra diaria tienen pan para 3 días más. 6 : 3 = 2, consumen 2 barras diarias. 9 x 2 = 18, así pues, compran 18 barras. Si no hubiesen ahorrado 1 barra por día, el consumo sería de 3 barras diarias, 3 x 6 = 18, en cualquier caso consumen 18 barras de pan. APLICADO AHORA EL PLAN AL HENO: Averiguar el número total de kilos de heno ahorrados. Calcular la diferencia entre el nº de días para los que hay heno si se ahorra y el nº de días para los que se preveía que hubiera sin ahorrar. Si repartimos los kilos de heno ahorrados entre los días que hay (ahorrando y sin ahorrar), descubriremos el consumo de heno diario. Multiplicando el consumo de heno diario por 73, es de esperar que el resultado sea el mismo que si multiplico el consumo diario más 113 por 57 (CONJETURA). EJECUNTANDOLO AL PROBLEMA DEL HENO: 113 x 57 = 6,441, multiplico 113 kg de ahorro diario por 57 días que duraría el ahorro, obtenemos 6,441 kg de heno ahorrados = 16, lo ahorrado duraría 16 días : 16 = , al repartir el heno ahorrado entre los días que dura el ahorro, se obtienen kg de heno por día, puesto que es lo que toman los animales desde el día 57 hasta el x 73 = 29, Luego almacenaron 29, kilos de heno. COMO TRABAJAR LOS PROBLEMAS EN CLASE: Con la cabeza. Con materiales. Simbólicamente (dibujos y esquemas). Usando algoritmos de lápiz y papel. Usando la calculadora. Página

5 PROBLEMAS DE CÁLCULO MENTAL: Arturo compra un lápiz por 2 pesos y lo vende por Qué tanto por ciento ha ganado? CARACTERÍSTICAS: Enunciado corto Números pequeños Doble retención Operación muy sencilla Cálculo mental automático SUGERNCIAS: Sesiones de cinco problemas Un par de sesiones por semana Autocorrección Sin debate EJEMPLO DE SERIES: Serie 9.26 Mi hermano nació en el año Cuántos años tiene ahora? He pasado 5 mojones y medio en una carretera. Cada mojón indica un hectómetro. Cuántos metros he recorrido? Cuál sería la longitud mínima de una pieza de ropa de la que se pudieran hacer trozos de 2 m, 4 m y 5m sin que en ninguno de los tres casos sobrara ropa? Cuántos minutos representa un ángulo de 7º? Sonia compra un reloj, paga con tres billetes de 500 pesos 2 billetes de 200 y 3 monedas de 10 pesos. Cuánto vale el reloj? LOS SÍNTOMAS ANTES DE RESOLVER UN PROBLEMA: No lo sé hacer. No lo he hecho porque no he tenido tiempo de hacer la operación. Lo he calculado mal. No lo he hecho porque me he hecho bolas No sé qué he hecho, me he complicado con los cálculos No he podido pensar bien la solución, no me cuadran las cosas No he escuchado el enunciado porque estaba calculando el 3 Me he confundido porque he multiplicado dos veces por Página 5

6 PARA QUÉ PROBLEMAS DESDE PRIMERO? Para obligar a los niños a razonar. Para desarrollar su capacidad de pensamiento. Para que apliquen las operaciones. Para que generen estrategias de pensamiento. PROBLEMAS QUE NO SIREN DE NADA: En un barco hay 26 corderos y 10 cabras. Cuál es la edad del capitán? Un pastor tiene 360 borregos y 10 perros. Cuál es la edad del pastor? En una clase hay 7 filas de 4 mesas. Cuántos años tiene la maestra? LA ESTRUCTURA DE LOS ENUNCIADOS: El efecto producido en el comportamiento de los alumnos por un cierto tipo de enunciados es mayor de lo que pudiera suponerse. Cuando los alumnos resuelven un problema, toman en consideración la adecuación de los datos a la pregunta propuesta, lo que les lleva a dar respuestas aparentemente estúpidas y fuera de toda lógica ALGUNOS ENUNCIADOS A CONSIDERAR: Mary invitó a 5 chicas y 3 chicos a su fiesta de cumpleaños. Cuántos años cumplía? Cada día Olga guarda dinero en su cuenta de cerdito y apunta cuánto tiene en ella; el lunes tenía 3 zlotys en su cuenta de cerdito, el martes tenía 4 zlotys en ella, el miércoles tenía 8 zlotys en su cuenta de cerdito. Cuánto dinero acumuló? Un granjero tenía 12 cerdos, fue al mercado y vendió 8 gallinas. Cuántos cerdos le quedan? Ana tiene 7 años y Bob 10. Cuántos años más vieja es Ana? En el mercado un huevo costaba ayer 15 zlotys, hoy un huevo cuesta 14 zlotys. Cuál será el precio de un huevo mañana? Jonny y Mike están sentados en clase, hay chicas de pie frente al pizarrón; Jonny ve tres chicas y Mike ve tres chicas. Cuántas chicas hay de pie frente al pizarrón? Mike tiene una bicicleta, Joan tiene una bicicleta, Tom tiene una bicicleta. Cuántas bicicletas tienen? Mike escribió una carta a su tío, Joan escribió una carta a su tío, Tom escribió una carta a su tío. Cuántos tíos recibieron cartas? ACCIONES A LA HORA DE RESOLVER PROBLEMAS: Lectura del problema. La importancia de cada palabra y cómo ésta puede cambiar el sentido del problema. Pausas en la lectura y cómo éstas ayudan a descomponer el problema en partes. Una entonación especial en la pregunta del problema. Página

7 PROBLEMAS ARITMÉTICOS: Un día el padre de Raúl se da cuenta de que el cuentakilómetros marca 4,320 km. Cuántos kilómetros le faltan para hacer la revisión del coche que es a los 5,000 km? El señor Ferrer desea hacer una valla alrededor de su piscina. El metro de valla vale 40 pesos. En unos grandes almacenes hacen un 20% de descuento, pero hay que pagar el 15% de IVA. Cuando hagas una compra, Qué prefieres que te calculen primero, el descuento o el IVA? ANÁLISIS DEL ENUNCIADO DE LOS PROBLEMAS ARITMÉTICOS: Juan tenía 5 canicas, ganó 3 canicas. Cuántas tiene ahora? Juan tenía 5 canicas, perdió 3 canicas. Cuántas tiene ahora? Juan tenía 5 canicas. Pedro tiene 3 canicas. Cuántas canicas tienen los dos juntos? CATEGORÍAS SEMÁNTICAS DE LOS PROBLEMAS ARITMÉTICOS: CAMBIAR: Juan tenía a canicas, le dan b canicas, cuántas tiene ahora? Juan tiene a canicas, da b canicas, cuántas le quedan? Juan tenía a canicas, Pedro le dio algunas, ahora tiene c canicas, cuántas le dio Pedro? Juan tenía a canicas, dio algunas a Pedro, ahora tiene c canicas, cuántas dio a Pedro? Juan tenía algunas, Pedro le dio b canicas, ahora tiene c canicas, cuántas tenía? Juan tenía algunas, dio b canicas a Pedro, ahora tiene c canicas, cuántos tenía? COMBINAR: (Parte parte todo) Hay a hombres, hay b mujeres, cuántas personas hay? Hay a hombres, hay b personas, cuántas mujeres hay? COMPARAR: (Cantidad referencia, cantidad comparada y diferencia) Juan tiene a, Pedro tiene b, cuántos tiene Pedro más que Juan? Juan tiene a, Pedro tiene b, cuántos tiene Pedro menos que Juan? Juan tiene a, Pedro tiene c más que Juan, cuántos tiene Pedro? Juan tiene a, Pedro tiene c menos que Juan, cuántos tiene Pedro? Pedro tiene b, Pedro tiene c más que Juan, cuántos tiene Juan? Pedro tiene b, Pedro tiene c menos que Juan, cuántos tiene Juan? Página 7

8 SECUENCIA DE PROBLEMAS GRADUADOS EN DIFICULTAD: Actuación centrada en la operación resta: Juan tiene 10 años, cuánto tardará en tener 16? Juan tiene 16 años, cuántos años han pasado desde que tuvo 10? Juan tiene 10 años y Pedro 16, cuántos años le lleva Pedro a Juan? Juan tiene 10 años y Pedro 16, cuántos años tardará Juan en tener la edad que tiene ahora Pedro? Juan tiene 10 años y Pedro 16, cuántos años es Juan más joven que Pedro? Juan tiene 10 años y Pedro 16, cuántos años han pasado desde que Pedro tuvo la edad de Juan? PROBLEMA EJEMPLO: Un tren lleva 5 coches de pasajeros, en el primero van 32 personas, en el segundo van 13 viajeros más que en el primero, en el tercero van tantos viajeros como en el primero y en el segundo, el cuarto y quinto coche llevan cada uno 43 viajeros. Cuántos viajeros lleva el tren? PLAN DE RESOLUCIÓN: Para determinar los viajeros que lleva el tren (esto es, la incógnita del problema) hemos de determinar los viajeros que lleva cada uno de los vagones. Sabemos cuántos viajeros llevan los vagones 1º, 4º, y 5º, porque son datos del problema, no sabemos los pasajeros que llevan los vagones 2º y 3º, luego hemos de determinar los viajeros que llevan estos vagones. Para determinar los viajeros del 2º vagón, hemos de saber los que lleva el primer vagón (lo sabemos) y añadir 13 (una condición del problema). Para determinar los viajeros del tercer vagón, hemos de saber los que llevan el primer vagón y el segundo (lo sabemos). OTROS EJEMPLOS: 1. Todos los días se gastan en una casa 3 litros de leche. Si un litro de leche vale 16 pesos, qué dinero le devuelven a mi madre en el supermercado si paga con 500 pesos la leche consumida en el mes de marzo? ESTRATEGIAS PREVIAS: Como todos los días se gastan en casa 3 litros de leche. Averiguar: Cuántos litros se gastan en el mes de Marzo? Si un litro cuesta 16 pesos, cuánto costará la leche consumida en marzo? Si mi madre pagó con 500 pesos, cuánto le tuvieron que devolver? 2. Juan tiene una hermana y un hermano; su hermana tiene 15 años y es 5 años más joven que su hermano. Qué edad tiene su hermano? ACCIONES A SEGUIR: De quién se habla en la historia? Cuál es su relación? Qué se nos dice de ellos? De quién conocemos la edad? Quién es más joven? Qué nos preguntan? Página

EJERCICIOS DE MATEMÁTICAS 1º ESO

EJERCICIOS DE MATEMÁTICAS 1º ESO EJERCICIOS DE MATEMÁTICAS 1º ESO Realiza estos ejercicios y entrégaselos a tu profesor de Matemáticas en septiembre antes del examen. Te servirán para repasar toda la asignatura. 1.- Calcula: a) 3 4 +

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

Para resolver estos problemas podemos seguir tres pasos:

Para resolver estos problemas podemos seguir tres pasos: RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS

COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS COMPETENCIA MATEMÁTICA Y RESOLUCIÓN DE PROBLEMAS Jesús Gago Sánchez, Maestro de Primaria. 1-. INTRODUCCIÓN AL CONCEPTO DE COMPETENCIA MATEMÁTICA. La Ley Orgánica de Educación, LOE, establece en su Artículo

Más detalles

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita

Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009. Problemas 1 incógnita Ejercicios 2º ESO PROBLEMAS( ecuaciones de primer grado) CURSO 2008/2009 Problemas 1 incógnita 2º E.S.O Sobre números Quién miente? El famoso detective Roberto J. Pescador recibió una tarde la visita de

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

C.A.R.E.I. Centro Aragonés de Recursos para la Educación Intercultural Documento facilitado por Grupo de Trabajo de CPR Huesca 1.

C.A.R.E.I. Centro Aragonés de Recursos para la Educación Intercultural Documento facilitado por Grupo de Trabajo de CPR Huesca 1. 1.º PRIMARIA AREA DE MATEMÁTICAS Concepto de número. Cálculo mental El evaluador, lee el problema y anota la respuesta. El niño lo debe resolver mentalmente, contando o no con los dedos se anotará si lo

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh 6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos

Más detalles

RESOLUCIÓN DE PROBLEMAS

RESOLUCIÓN DE PROBLEMAS RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que

Más detalles

UNIDAD 2. LOS NÚMEROS RACIONALES.

UNIDAD 2. LOS NÚMEROS RACIONALES. IES Prof. Juan Bautista Matemáticas º (Ver. ) Unidad : Los números racionles UNIDAD. LOS NÚMEROS RACIONALES. Unidad : Los números racionales Al final deberás haber aprendido... Usar y operar con fracciones

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Este documento proporciona la secuencia de pasos necesarios para la construcción de un Diagrama de Flujo. www.fundibeq.org

Este documento proporciona la secuencia de pasos necesarios para la construcción de un Diagrama de Flujo. www.fundibeq.org DIAGRAMA DE FLUJO 1.- INTRODUCCIÓN Este documento proporciona la secuencia de pasos necesarios para la construcción de un Diagrama de Flujo. Muestra la importancia de dos aspectos clave en este proceso:

Más detalles

Docencia compartida 1. CASO PRÁCTICO

Docencia compartida 1. CASO PRÁCTICO 1. CASO PRÁCTICO Hace algunos años el trabajo de dos maestros/as en el aula era un hecho normal en la escuela. Cuando digo normal no quiero decir que todos lo hicieran sino que la gente estaba acostumbrada

Más detalles

EJERCICIOS DE REPASO 2º ESO

EJERCICIOS DE REPASO 2º ESO NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

PROGRAMA PARA MEJORAR LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN EDUCACIÓN PRIMARIA

PROGRAMA PARA MEJORAR LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN EDUCACIÓN PRIMARIA Ctra. Daganzo, Km. 2,300. 28806 Alcalá de Henares (Madrid). Tfno.: 918890650 Fax: PROGRAMA PARA MEJORAR LA RESOLUCIÓN DE PROBLEMAS MATEMÁTICOS EN EDUCACIÓN PRIMARIA PROGRAMA PARA MEJORAR LA RESOLUCIÓN

Más detalles

G.C.B.A. Matemática. Fracciones y números decimales. 4º grado. Páginas para el alumno

G.C.B.A. Matemática. Fracciones y números decimales. 4º grado. Páginas para el alumno Matemática Fracciones y números decimales. º grado Páginas para el alumno Gobierno de la Ciudad de Buenos Aires. Ministerio de Educación. Dirección General de Planeamiento. Dirección de Currícula Diversas

Más detalles

CREATIVIDAD E INNOVACIÓN

CREATIVIDAD E INNOVACIÓN TALLER DE TALLER DE CREATIVIDAD E INNOVACIÓN Reglas del juego Participar Compartir experiencias Ser curioso, preguntar Objetivos del taller 1 Entender por qué son necesarias la creatividad y la innovación.

Más detalles

Valoramos nuestros aprendizajes

Valoramos nuestros aprendizajes Valoramos nuestros aprendizajes En esta sesión, se evaluará el desempeño de los niños y las niñas y se registrará el logro de los aprendizajes en una lista de cotejo Antes de la sesión Prepara la lista

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

2Soluciones a los ejercicios y problemas PÁGINA 61

2Soluciones a los ejercicios y problemas PÁGINA 61 PÁGINA 61 Pág. 1 P RACTICA Fracciones y decimales 1 Expresa como un número decimal las siguientes fracciones: 9 1 1 5 1 5 9 6 00 990 9 5 5 1 0,6; 1, ;,8 ; 0,085 9 6 0, 185; 0,5 00 ; 1 0,590 990 Clasifica

Más detalles

Cuáles son esos números?

Cuáles son esos números? MATEMÁTICAS PROBLEMAS QUE SE RESUELVEN CON ECUACIONES Para resolver un problema de ecuaciones debes seguir los siguientes pasos: a) Identificar el dato desconocido y asignarle el valor x (si hay dos o

Más detalles

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Hacemos uso de las ecuaciones II. APRENDIZAJES ESPERADOS COMPETENCIA CAPACIDADES INDICADORES ACTÚA Y PIENSA

PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE. Hacemos uso de las ecuaciones II. APRENDIZAJES ESPERADOS COMPETENCIA CAPACIDADES INDICADORES ACTÚA Y PIENSA PLANIFICACIÓN DE LA SESIÓN DE APRENDIZAJE Grado: Cuarto I. TÍTULO DE LA SESIÓN Duración: 2 horas pedagógicas Hacemos uso de las ecuaciones UNIDAD 3 NÚMERO DE SESIÓN 9/9 II. APRENDIZAJES ESPERADOS COMPETENCIA

Más detalles

Nombre y apellidos:... Curso:... Fecha:... ECUACIONES. SOLUCIÓN 8 x = 5 porque. MULTIPLICAR POR EL m.c.m. RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO

Nombre y apellidos:... Curso:... Fecha:... ECUACIONES. SOLUCIÓN 8 x = 5 porque. MULTIPLICAR POR EL m.c.m. RESOLUCIÓN DE ECUACIONES DE SEGUNDO GRADO 6 Ecuaciones Esquema de la unidad Curso:... Fecha:... ECUACIONES NOMENCLATURA PRIMER MIEMBRO 2x 4 + 11 Resolver una ecuación es calcular...... 2x 4 + 11 SOLUCIÓN 8 5 porque 2 5 4 + 5 = x + a = b TRANSPOSICIÓN

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: REGLA DE TRES CON BASE UNITARIA Año escolar: MATEMATICA 1 Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas.

100% - (12% + 13%) = 75% de alumnos pasan con todo aprobado 75% de 524 = 0,75 524 = 393 alumnos han pasado con todas las materias aprobadas. Números racionales 1 PORCENTAJES o Un porcentaje es equivalente a una fracción con denominador y al número decimal correspondiente a la fracción. 65 65 % = = 0,65 o Para calcular el porcentaje de una cantidad

Más detalles

COMO AUMENTAR MIS VENTAS: ENFOQUE EN PROMOCION Y PUBLICIDAD

COMO AUMENTAR MIS VENTAS: ENFOQUE EN PROMOCION Y PUBLICIDAD COMO AUMENTAR MIS VENTAS: ENFOQUE EN PROMOCION Y PUBLICIDAD OBJETIVOS Conocer la importancia del uso de Publicidad y Promoción en el negocio. Cómo mejorar el negocio a través de la Promoción y Publicidad.

Más detalles

Problemas 1 CUADERNOS DE MATEMATICAS VINDEL ALUMNO: * Numeración con naturales. * Cálculo con naturales. * Numeración con decimales

Problemas 1 CUADERNOS DE MATEMATICAS VINDEL ALUMNO: * Numeración con naturales. * Cálculo con naturales. * Numeración con decimales CUADERNOS DE MATEMATICAS VINDEL * Numeración con naturales * Cálculo con naturales * Numeración con decimales * Cálculo con decimales * Fracciones * Potencias * Ecuaciones primer grado * Sistemas de ecuaciones

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran?

1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran? 1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran? 2.- Un cine tiene capacidad para 240 personas. Cada entrada cuesta 7,50 y esta tarde se han

Más detalles

Trabajo de verano de matemáticas. 2 º E.P.

Trabajo de verano de matemáticas. 2 º E.P. Trabajo de verano de matemáticas. 2 º E.P. Nombre: Curso: RECOMENDACIONES Para que no se te olvide lo que has aprendido este curso y te prepares para 3º. Tu profe te recomienda que durante las vacaciones

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Cómo ayudarles con las tareas escolares si no sabemos euskera?

Cómo ayudarles con las tareas escolares si no sabemos euskera? Cómo ayudarles con las tareas escolares si no sabemos euskera? Objetivo: desarrollar la autonomía de aprendizaje Tanto si sabemos euskera como si no sabemos euskera, la pregunta que debemos responder los

Más detalles

UNIVERSIDAD PRIVADA DE MICHOACAN Educación constante, servicio de excelencia LICENCIATURA EN PSICOLOGIA

UNIVERSIDAD PRIVADA DE MICHOACAN Educación constante, servicio de excelencia LICENCIATURA EN PSICOLOGIA UNIVERSIDAD PRIVADA DE MICHOACAN Educación constante, servicio de excelencia LICENCIATURA EN PSICOLOGIA PSICOLOGÍA DEL PENSAMIENTO ENSAYO FINAL Elaborado por: Gamiño Molina Karla Yubaniyali EL PENSAMIENTO

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

10 Claves para afrontar la crisis

10 Claves para afrontar la crisis 10 Claves para afrontar la crisis Todo el mundo habla de la crisis económica y como afecta a sus negocios. La profesión veterinaria no es ajena a ella. Por tanto es importante admitir que existe un problema

Más detalles

Tarea 1 Instrucciones

Tarea 1 Instrucciones Tarea 1 Instrucciones Vas a escuchar siete conversaciones. Escucharás cada conversación dos veces. Después debes contestar a las preguntas (de la 1 a la 7). Selecciona la opción correcta (A / B / C). EJEMPLO:

Más detalles

APRENDO A CONSTRUIR GRÁFICOS DE BARRAS

APRENDO A CONSTRUIR GRÁFICOS DE BARRAS APRENDO A CONSTRUIR GRÁFICOS DE BARRAS INVITACIÓN: Este dibujo o gráfico permite ver, sin más explicación que, en el pueblo de San Saturnino, hay más automóviles del año 1999, siguen los de 1998 y ocupan

Más detalles

Nombre:.. 1. Belén tiene 50 cromos y su amiga Gloria tiene 30. Cuántos cromos tienen entre las dos? Entre los dos tienen. .. cromos.

Nombre:.. 1. Belén tiene 50 cromos y su amiga Gloria tiene 30. Cuántos cromos tienen entre las dos? Entre los dos tienen. .. cromos. 3º de Ed. Primaria Problemas matemáticos Nombre:.. 1. Belén tiene 50 cromos y su amiga Gloria tiene 30. Cuántos cromos tienen entre las dos? Entre los dos tienen.. cromos. 2. Entre dos amigos tienen 700

Más detalles

Ingeniería en Informática

Ingeniería en Informática Departamento de Informática Universidad Carlos III de Madrid Ingeniería en Informática Aprendizaje Automático Junio 2007 Normas generales del examen El tiempo para realizar el examen es de 3 horas No se

Más detalles

INNOVACIÓN DE LA PRÁCTICA EDUCATIVA. Angélica María Guerrero Escamilla. Estudiante de la Licenciatura en Derecho

INNOVACIÓN DE LA PRÁCTICA EDUCATIVA. Angélica María Guerrero Escamilla. Estudiante de la Licenciatura en Derecho PRESENTA: INNOVACIÓN DE LA PRÁCTICA EDUCATIVA.. Asesora INEA Estudiante de la Licenciatura en Derecho Col. Rancho Nuevo, Mpio. de Apaseo el Grande, Gto. Octubre de 2003 1 INNOVACIÓN DE LA PRÁCTICA EDUCATIVA

Más detalles

guía para LOS PADRES Apoyando a su hijo en segundo grado matemáticas

guía para LOS PADRES Apoyando a su hijo en segundo grado matemáticas TM guía para LOS PADRES Apoyando a su hijo en segundo grado matemáticas 2 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios

Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios 1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo

Más detalles

PRUEBA DE EVALUACIÓN INICIAL

PRUEBA DE EVALUACIÓN INICIAL PRUEBA DE EVALUACIÓN INICIAL EVALUACIÓN DE LA COMPETENCIA CURRICULAR ÁREA DE MATEMÁTICAS REGISTRO PARA EL PROFESOR: - Hojas de evaluación de los ítems de cada subprueba del Área de Matemáticas EVALUACIÓN

Más detalles

SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS

SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS SUMAR Y RESTAR CANTIDADES EXPRESADAS CON FRACCIONES Y DECIMALES CON DISTINTO SIGNIFICADOS 4to. Grado Grupo RED Universidad de La Punta CONSIDERACIONES GENERALES Desde la perspectiva que asocia el aprendizaje

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

Proyecto Iberoamericano de Divulgación Científica Comunidad de Educadores Iberoamericanos para la Cultura Científica LO QUE ESCONDE UNA HAMBURGUESA

Proyecto Iberoamericano de Divulgación Científica Comunidad de Educadores Iberoamericanos para la Cultura Científica LO QUE ESCONDE UNA HAMBURGUESA LO QUE ESCONDE UNA HAMBURGUESA REFERENCIA: 1ACH119 Los retos de la salud y la alimentación 1 Ficha de catalogación Título: Autor: Fuente: Resumen: Fecha de publicación: Formato Contenedor: Referencia:

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora?

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? Solución : 12 años 2.- Si al doble de un número le restas 13, obtienes

Más detalles

Las materias que más te gustaban en el liceo cuales eran? Y las que menos te gustaban?

Las materias que más te gustaban en el liceo cuales eran? Y las que menos te gustaban? ENTREVISTA A LIC. EN NEGOCIOS INTERNACIONALES Profesión: Consultor y Docente. Titulo Obtenido: Lic. En Negocios Internacionales e Integración. Edad: 35 años. Años de Egresado: 5 años. Lugar de Egreso:

Más detalles

TÉCNICAS DINÁMICAS Y APRENDIZAJE TRANSVERSAL Y COMPETENCIAL EN GRUPOS CON GRAN NÚMERO DE ALUMNOS DE PRIMER CURSO. José Juan Aliaga Maraver

TÉCNICAS DINÁMICAS Y APRENDIZAJE TRANSVERSAL Y COMPETENCIAL EN GRUPOS CON GRAN NÚMERO DE ALUMNOS DE PRIMER CURSO. José Juan Aliaga Maraver TÉCNICAS DINÁMICAS Y APRENDIZAJE TRANSVERSAL Y COMPETENCIAL EN GRUPOS CON GRAN NÚMERO DE ALUMNOS DE PRIMER CURSO José Juan Aliaga Maraver José Jaime Rúa R Armesto Área de conocimiento: Ingeniería a Gráfica

Más detalles

TRABAJO FINAL CURSO EVALUACIONES EXTERNAS INTERNACIONALES DEL SISTEMA EDUCATIVO. Fecha: 27/05/2014. Autor: Esteban Menéndez Mozo.

TRABAJO FINAL CURSO EVALUACIONES EXTERNAS INTERNACIONALES DEL SISTEMA EDUCATIVO. Fecha: 27/05/2014. Autor: Esteban Menéndez Mozo. TRABAJO FINAL CURSO EVALUACIONES EXTERNAS INTERNACIONALES DEL SISTEMA EDUCATIVO Fecha: 27/05/2014 Autor: Esteban Menéndez Mozo Página 1 de 1 Contenido 1. Matriz de especificaciones.... 3 2. Estímulos,

Más detalles

Plática de Maestro. Introducción

Plática de Maestro. Introducción Plática de Maestro Qué: ( Qué son las Características de los Personajes?) Los Personajes son las personas o los animales en un cuento. Hay que hacer observaciones de como se ven, sienten y actúan. Los

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

Carrera: Técnico Superior en Programación

Carrera: Técnico Superior en Programación 1 Sistema de dos ecuaciones lineales Resolver los siguientes sistemas de dos ecuaciones lineales en forma analítica y gráfica. Verificar los resultados obtenidos. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.

Más detalles

El APLAUSO. Cinco cuentos para leer en voz alta. Autor: Antonio Pons

El APLAUSO. Cinco cuentos para leer en voz alta. Autor: Antonio Pons El APLAUSO Cinco cuentos para leer en voz alta. Autor: Antonio Pons Mamá me despertó como todas las mañanas para ir al cole. A mí no me gusta que me despierte dándome golpecitos en el hombro, pero ella

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN LA PREPARATORIA (HIGH SCHOOL) MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN LA PREPARATORIA (HIGH SCHOOL) MATEMÁTICAS guía para LOS PADRES APOYANDO A SU HIJO EN LA PREPARATORIA (HIGH SCHOOL) MATEMÁTICAS HS Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca

Más detalles

Cómo ayudar a nuestros hijos e hijas en las tareas escolares si no sabemos euskera?

Cómo ayudar a nuestros hijos e hijas en las tareas escolares si no sabemos euskera? Cómo ayudar a nuestros hijos e hijas en las tareas escolares si no sabemos euskera? Este documento es un resumen de la charla No sabemos euskera, Cómo ayudar a nuestros hijos e hijas en las tareas escolares?.

Más detalles

ACTIVIDAD 3-1 TEMA: Ecuaciones básicas. Resolver las siguientes ecuaciones

ACTIVIDAD 3-1 TEMA: Ecuaciones básicas. Resolver las siguientes ecuaciones ACTIVIDAD 3-1 TEMA: Ecuaciones básicas. Resolver las siguientes ecuaciones 1. 5x=8x-15 A. x=2 B. x= 3 C. x= 4 D. x=5 2. 4x+1=2 A. x=1/2 B. x=1/3 C. x=1/4 D. x=1/5 3 y-5=3y-25 A. y=5 B. y=10 C. y=15 D.

Más detalles

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado:

PARTE 2- Matemáticas pendientes de 3º ESO 2010-11. 2. Indica, para cada representación gráfica, que tipo de sistema de ecuaciones es el representado: PARTE - Matemáticas pendientes de 3º ESO 00- NOMBRE: 4º GRUPO:. Resuelve gráficamente los siguientes sistemas de ecuaciones e indica que tipo de sistema son: x x x 3 4. Indica, para cada representación

Más detalles

Números y operaciones

Números y operaciones 1 Números y operaciones Rosa y Julián tienen en su granja ciento veinte vacas, ochenta de leche y el resto de engorde. Además, crían tres cerdos, cuatro pavos y el triple de gallinas que de pavos. También,

Más detalles

PRIMER NIVEL. Ahora, a practicar con algunos problemas.

PRIMER NIVEL. Ahora, a practicar con algunos problemas. PRIMER NIVEL Este es un nuevo momento para compartir esta experiencia de trabajo con ustedes. Otra vez la excusa para poder establecer ese contacto es la propuesta de resolver problemas. Evidentemente

Más detalles

ENTRENAMIENTO EN AUTO INSTRUCCIONES

ENTRENAMIENTO EN AUTO INSTRUCCIONES ENTRENAMIENTO EN AUTO INSTRUCCIONES El entrenamiento en autoinstrucciones es una técnica para secuenciar cualquier actividad que debe realizar el alumno cuyo objetivo es reducir la impulsividad y mejorar

Más detalles

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13.

El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13. Ejercicios de números naturales con soluciones 1 Tres amigos han juntado 40 para comprar un regalo a otro amigo. El primero puso 12 y el segundo, 3 más que el primero. Cuánto puso el tercero? El primero

Más detalles

PRUEBA DE LA EVALUACIÓN DE DIAGNÓSTICO

PRUEBA DE LA EVALUACIÓN DE DIAGNÓSTICO Evaluación de diagnóstico 2007-2008 Eres chica o chico? Alumno/a Nº.: Grupo: Chica Chico Centro: Marca con una cruz (X) Localidad: PRUEBA DE LA EVALUACIÓN DE DIAGNÓSTICO COMPETENCIAS BÁSICAS EN MATEMÁTICAS

Más detalles

Descripción y tablas de especificaciones de las pruebas formativas. Área Matemática 2015

Descripción y tablas de especificaciones de las pruebas formativas. Área Matemática 2015 Descripción y tablas de especificaciones de las pruebas formativas Área Matemática 2015 De 3 de Primaria a 3 de Media Contenidos El referente conceptual de la evaluación... 3 CUADRO 1. TABLA DE ESPECIFICACIONES

Más detalles

Ús intern per als associats Nº 2 2010 www.parkinsonblanes.org

Ús intern per als associats Nº 2 2010 www.parkinsonblanes.org Ús intern per als associats Nº 2 2010 www.parkinsonblanes.org consulta sempre amb el teu neuròleg Parkinson TALLER COGNITIVO EN ACAPBLANES Y EN CASA JUEGOS CON CARTAS 1 Material necesario Una o varias

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 196

10Soluciones a los ejercicios y problemas PÁGINA 196 0Soluciones a los ejercicios y problemas PÁGINA 96 Pág. E presiones algebraicas Llamando a un número indeterminado, asocia cada enunciado con la epresión que le corresponde: a) El doble del número. b)

Más detalles

PROBLEMAS ECUACIONES 1er GRADO

PROBLEMAS ECUACIONES 1er GRADO PROBLEMAS ECUACIONES 1er GRADO 1.- Dos amigos juntan el dinero que tienen, uno tiene el doble que el otro. Se gastan 20, y les quedan 13 Cuánto dinero tiene cada uno? 2.- He comprado 8 cuadernos y he pagado

Más detalles

EL BIENESTAR EN LA ESCUELA LO QUE DIGO YO TAMBIÉN ES IMPORTANTE

EL BIENESTAR EN LA ESCUELA LO QUE DIGO YO TAMBIÉN ES IMPORTANTE EL BIENESTAR EN LA ESCUELA LO QUE DIGO YO TAMBIÉN ES IMPORTANTE Una realidad que los docentes observamos en nuestras aulas es que existen niños que muestran una buena disposición hacia el aprendizaje:

Más detalles

Proyecto Scratch: http://scratch.mit.edu/projects/38518614/

Proyecto Scratch: http://scratch.mit.edu/projects/38518614/ Proyecto Scratch: http://scratch.mit.edu/projects/38518614/ SISTEMAS DE NUMERACÍON Dos de los sistemas de numeración más utilizados son el sistema decimal, que se emplea en la vida cotidiana, y el sistema

Más detalles

EL FUTURO SERÁ UN REGALO DE DIOS (B.5.4.11)

EL FUTURO SERÁ UN REGALO DE DIOS (B.5.4.11) EL FUTURO SERÁ UN REGALO DE DIOS REFERENCIA BÍBLICA: Génesis 37-50 VERSÍCULO CLAVE: CONCEPTO CLAVE: OBJETIVOS EDUCATIVOS: "Yo sé los planes que tengo para ustedes, planes para su bienestar a fin de darles

Más detalles

RESOLUCIÓN DE ALGUNOS PROBLEMAS ALGEBRAICOS SIN ECUACIONES

RESOLUCIÓN DE ALGUNOS PROBLEMAS ALGEBRAICOS SIN ECUACIONES RESOLUCIÓN DE ALGUNOS PROBLEMAS ALGEBRAICOS SIN ECUACIONES AUTORÍA PATRICIA PÉREZ ORTIZ TEMÁTICA INVESTIGACIÓN SOBRE LA EDUCACIÓN EN MATEMÁTICAS ETAPA ESO Resumen Se propone una colección de problemas

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN SÉPTIMO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN SÉPTIMO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN SÉPTIMO GRADO MATEMÁTICAS 7 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales

MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN. Contenidos Mínimos. I. Estrategias, habilidades, destrezas y actitudes generales MATEMÁTICAS A 4º ESO IES LOS CARDONES 2014-2015 PLAN DE RECUPERACIÓN Contenidos Mínimos I. Estrategias, habilidades, destrezas y actitudes generales II. Números: Resolución de problemas utilizando toda

Más detalles

a 4a (-5) a a op(a) 5-a Op(a-5) 2 5 7 3 3. El valor absoluto de un número menor que 1 es 9. De qué número se trata?

a 4a (-5) a a op(a) 5-a Op(a-5) 2 5 7 3 3. El valor absoluto de un número menor que 1 es 9. De qué número se trata? NÚMEROS ENTEROS 1. Calcula: - (4-3) (-2) 2 = b) (-2) 4 + - 3 (-1) = c) (8-3) : (-1) - 1 (-6) : (3 - ) + = e) [-(-2)+7-(-2) (-3)]-(-2)= f) -9 + [ 10 : (-3-2) -1 ] + 4 (-3) = g) [ -4 (8 - - 4) + (-9-3) :

Más detalles

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS

guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS TM guía para LOS PADRES APOYANDO A SU HIJO EN QUINTO GRADO MATEMÁTICAS 5 Las escuelas de los Estados Unidos de América están trabajando para brindar una enseñanza de mayor calidad nunca antes vista. La

Más detalles

HORACIO ITZCOVICH. Fragmento de la Introducción al libro de Editorial Libros del Zorzal(2005) Iniciación al estudio didáctico de la Geometría

HORACIO ITZCOVICH. Fragmento de la Introducción al libro de Editorial Libros del Zorzal(2005) Iniciación al estudio didáctico de la Geometría Introducción Es reconocido por quienes tienen un vínculo con la enseñanza de la matemática, el hecho de que el trabajo geométrico ha ido perdiendo espacio y sentido, tanto en los colegios como en la formación

Más detalles

Las fracciones. 1. Concepto de fracción. Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una?

Las fracciones. 1. Concepto de fracción. Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una? Las fracciones. Concepto de fracción Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una? P I E N S A Y C A L C U L A / Carné calculista 0 : C = 8; R = A P L

Más detalles

El rincón de los problemas. Nuevos horizontes matemáticos mediante variaciones de un problema

El rincón de los problemas. Nuevos horizontes matemáticos mediante variaciones de un problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 35. Septiembre de 2013 páginas 135-143 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Nuevos horizontes matemáticos

Más detalles

INTRODUCCIÓN. Primero Segundo. De donde viene lo que tengo Tengo que escoger. Tercero Cuarto Quinto Sexto

INTRODUCCIÓN. Primero Segundo. De donde viene lo que tengo Tengo que escoger. Tercero Cuarto Quinto Sexto INTRODUCCIÓN La educación Financiera es una herramienta para adquirir hábitos económicos sanos y tomar mejores decisiones sobre nuestro dinero y patrimonio, lo que genera la posibilidad de un mayor bienestar

Más detalles

Mamá quiero un móvil nuevo!

Mamá quiero un móvil nuevo! Educación para un consumo responsable Mamá quiero un móvil nuevo! Por qué todos los chicos y chicas son consumistas? Confederación Española de Padres y Madres de Alumnos Amenudo tenemos discusiones con

Más detalles

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011

3º ESO. matemáticas IES Montevil tema 9: lenguaje algebraico, ecuaciones y sistemas curso 2010/2011 1. Escribe utilizando el lenguaje algebraico las siguientes afirmaciones El doble de un La mitad de un La décima parte de un Un más su cuarta parte El triple de un más el doble de otro La quinta parte

Más detalles

5. Los números decimales

5. Los números decimales 40. Los números decimales 6. Representa en la recta los siguientes números a) 0, b) 1,7 c) 2,4 d) 3,2 1. NÚMEROS DECIMALES 3,2 1,7 0, 3 2 1 0 2,4 1 2 3 Escribe la fracción y calcula mentalmente el número

Más detalles

PRUEBA DE SIMCE Nº 1 MATEMATICA 4º AÑO BÁSICO

PRUEBA DE SIMCE Nº 1 MATEMATICA 4º AÑO BÁSICO PRUEBA DE SIMCE Nº 1 MATEMATICA 4º AÑO BÁSICO Instrucciones Este cuadernillo consta de 40 preguntas y tiene como objetivo averiguar lo que tú has aprendido en Matemática. Todas las preguntas tienen cuatro

Más detalles

INTRODUCCIÓN INTEGRACIÓN PEDAGÓGICA CALIDAD DE LAS EXPLICACIONES

INTRODUCCIÓN INTEGRACIÓN PEDAGÓGICA CALIDAD DE LAS EXPLICACIONES DIMENSIÓN INDICADOR INTEGRACIÓN PEDAGÓGICA CALIDAD DE LAS EXPLICACIONES INTRODUCCIÓN Este instrumento tiene por objetivo apoyarlo en la reflexión y análisis sobre sus prácticas docentes referidas a la

Más detalles

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B

PRUEBA DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR. septiembre de 1999. Parte General Apartado B septiembre de 1999 Parte General Apartado B Duración: 1 hora 30 minutos 1.- Un alumno ha obtenido 7,1 y 8,3 en las dos primeras evaluaciones de matemáticas. Qué nota debe sacar en la tercera evaluación

Más detalles

NÚMEROS Y OPERACIONES

NÚMEROS Y OPERACIONES NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.

Más detalles

Multiplicamos para resolver problemas de división

Multiplicamos para resolver problemas de división Multiplicamos para resolver problemas de división En esta sesión se espera que los niños y las niñas aprendan a resolver problemas de división utilizando la multiplicación. Antes de la sesión Prepara copias

Más detalles

ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS

ESCUELA SUPERIOR DE INFORMATICA Prácticas de Estadística UNA SESIÓN EN SPSS UNA SESIÓN EN SPSS INTRODUCCIÓN. SPSS (Statistical Product and Service Solutions) es un paquete estadístico orientado, en principio, al ámbito de aplicación de las Ciencias sociales, es uno de las herramientas

Más detalles

PONER UN PROBLEMA EN ECUACIONES

PONER UN PROBLEMA EN ECUACIONES PONER UN PROBLEMA EN ECUACIONES ESQUEMA DEL TEMA. Problema de introducción Regla para poner un problema en ecuaciones Uso de la regla Análisis de un enunciado de un problema que tiene cantidades que no

Más detalles

Si eres: - Un Empresario. - Un Director o Directora de RRHH. - Un Profesional buscando aprender Inglés

Si eres: - Un Empresario. - Un Director o Directora de RRHH. - Un Profesional buscando aprender Inglés Lo que estás a punto de leer es una entrevista con Carolina Pérez realizada por Donald Carter. Se trata de las ventajas y desventajas de ocupuar cursos SENCE para el aprendizaje de inglés en las empresas

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE 4 Pág. Página 60 FRIGORÍFICO 480 FACILIDADES DE PAGO EN TODOS LOS ARTÍCULOS: 25% A LA ENTREGA RESTO: EN 2 MENSUALIDADES SIN RECARGO En esta unidad vas a revisar algunas técnicas y razonamientos que se

Más detalles

INTRODUCCIÓN AL MODELO DE VIA

INTRODUCCIÓN AL MODELO DE VIA INTRODUCCIÓN AL MODELO DE VIA o Definición: La VIA (Valoración inicial del alumno) es una herramienta previa a la formalización oficial de la matrícula, que permite evaluar el nivel de competencias que

Más detalles

Cuadernillo ALUMNO 7 0 básico. Matemáticas

Cuadernillo ALUMNO 7 0 básico. Matemáticas Cuadernillo ALUMNO 7 0 básico Matemáticas Los objetivos de esta sección están en consonancia con los propuestos por el MINEDUC para Séptimo Básico, tanto desde el punto de vista de los contenidos como

Más detalles

DOCUMENTO EXPLICATIVO SOBRE NUESTROS CURSOS DE FORMACIÓN PEDAGÓGICA PRÁCTICA A DISTANCIA, PARA EL PROFESORADO

DOCUMENTO EXPLICATIVO SOBRE NUESTROS CURSOS DE FORMACIÓN PEDAGÓGICA PRÁCTICA A DISTANCIA, PARA EL PROFESORADO 1 DOCUMENTO EXPLICATIVO SOBRE NUESTROS CURSOS DE FORMACIÓN PEDAGÓGICA PRÁCTICA A DISTANCIA, PARA EL PROFESORADO Quiénes somos? ACENTO es un proyecto que nació hace varios años, para dar soporte al sector

Más detalles