Matemáticas Discretas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Discretas"

Transcripción

1 Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx Oficina 8210 Diapositivas basadas en previas iteraciones de: Dr. Enrique Sucar Dr. Luis Villaseñor

2 Inducción y recursión Generalidades Inducción de números naturales Inducción matemática Funciones recursivas

3 Inducción matemática Técnica de prueba que se aplica a casos que tienen que ver con número enteros positivos Z+ = {1,2, } o números naturales N = {0,1,2, } Intuitivamente: Si probamos algo para n = k, y luego lo probamos para n = k + 1, podemos concluir que es cierto para toda n (mayor que k)

4 Por que los enteros positivos? Los enteros positivos Z+ = {1,2, } se pueden expresar como: Z+ = {x Z x>0} = {x Z x 1} Propiedad de elemento minimo: que todo subconjunto X Z+ contiene un entero a X tal que a x para todo x X Es decir: X contiene un elemento minimo El conjunto Z+ es diferente a Q+ y R+ ya que solo Z+ cuenta con la propuedad de elemento minimo.

5 El principio del buen orden Utilidad de la propiedad de elemento minimo: Es la báse de la tecnica de demostración conocida como inducción matemática El principio del buen orden: Cualquier subconjunto no vacio de Z+ contiene un elemento minimo

6 Inducción matemática Formalmente: 1. (base de inducción): Si el enunciado es verdadero para n = n0 2. (paso de inducción): y el enunciado es verdadero para n = k + 1, asumiendo que es verdadero para n = k donde (k >= n0) 3. Entonces: el enunciado es verdadero para todos los números naturales n >= n0 E. Muñoz de Cote

7 Inducción matemática Este principio es una consecuencia de la definición de los números naturales. Dado N, el conjunto de números naturales: 1. El número natural n=n0 (1) está en N 2. Si el número k está en N, también lo está k + 1

8 Ejemplo Sea S(n)= n, Cuál es el valor de S(n) para n Z+? Teorema: S(n) = ½ n(n+1) para n>0 Base de inducción: n=1, S(1)=½ 1 2 = 1 Paso de inducción: se asume S(n) = ½ n(n+1) y probamos la validez de S(n+1) Note que: S(n+1) = S(n)+(n+1), S(n+1) = ½ n(n+1) + (n+1) = ½ (n+1)(n+2), esto prueba la validez de nuestro teorema para n+1

9 Ejemplo Pruebe que la sumatoria de los n primeros enteros positivos impares es n2 n n 1: (2i 1) = n i= 1 2 Paso base: Sea n=1. La suma del primer número impar positivo es 1, lo cual equivale a 12 Se asume la veracidad para P(n)

10 Ejemplo Probar P(n+1) ) ( 1 2 1) 1) (2( 1) (2 1) (2 + = + + = + + = = + = n n n n i i n i n i ) ( 1 2 1) 1) (2( 1) (2 1) (2 + = + + = + + = = + = n n n n i i n i n i Por hipótesis de inducción P(n)

11 1 Ejemplo Pruebe que n>0, n<2n. Paso base: P(1)=(1<21)=(1<2)=T. Paso inductivo: Se asume válido para n Para n>0 probar P(n+1). n+1 < 2n+1 n < 2n ; n + 1 < 2n + 1 (hipótesis de inducción) 2n + 1 < 2n + 2n (ya que 1< 2= n-1 = 2n) 2n + 1 < 2n+1 Así n + 1 < 2n+1

12 2 Ejemplo Use inducción matemática para mostrar que n = 2n+1-1 para cualquier entero no negativo Paso básico: P(0) : 20 = 1 = 21-1 Paso inductivo: Asumir que P(n) es verdadero. esto es P(n) = 2n+1-1. P(n+1) se expresa como P(n + 1) = n + 2n+1

13 3 Ejemplo P(n + 1) = n + 2n+1 P(n) 2n n+1 2(2n+1) - 1 P(n + 1) 2n+2-1

14 4 Ejemplo Tenemos estampas de 5 y 3 pesos. Demostrar que es posible hacer estampas de denominación mayor o igual a Es posible hacer estampas de 8 pesos (5 + 3) 2. Si es posible hacer de K es posible de hacer de K + 1. Dos casos: a. Si hay una estampa de 5 en K, se substituye por dos de 3 (6) y se tiene K + 1 b. Si no hay de 5, entonces hay puras de 3. Se substituyen tres de 3 (9) por dos de 5 (10) y se tiene K + 1

15 5 Relaciones de recurrencia Una relación de recurrencia para la secuencia a0, a1, an es una ecuación que relaciona an con alguno de sus predecesores a0, a1, an-1 Las condiciones iniciales son valores dados en forma explícita para un número finito de términos ai, aj, ak

16 6 Ejemplo (Fibonacci) Recurrencia: fn = fn-1 + fn-2 Condiciones iniciales: f1 = 1, f2 = 2 Secuencia: 1, 2, 3, 5, 8, 13,

17 7 Ejemplo interés compuesto Si invierto 1000 pesos a un interés compuesto de 7 % anual, cuanto dinero tendré al final de 5 años? Especificar la solución como una relación de recurrencia

18 8 Ejemplo interés compuesto En general: Recurrencia: Cn = Cn-1 + interés * Cn-1 = (1 + interés) * Cn-1 Condición inicial: C0 = inversión Para el ejemplo: C0 = 1000 C1 = 1000 * 1.07 = 1070 C2 = 1070 * 1.07 =

19 9 Solución de ecuaciones de recurrencia Una solución para una relación de recurrencia consisten en encontrar una fórmula explícita para el término an Veremos dos tipo de métodos: Un método iterativo Un método especial para relaciones lineales homogéneas con coeficientes constantes

20 0 Método iterativo Se escribe el término an en función de los términos an-1, an-2, Luego se reemplaza el término an-1 por algunos de sus predecesores Luego el término an-2 Se continua hasta obtener una fórmula explícita en términos de las condiciones iniciales

21 1 Ejemplo Relación: an = an-1 + 3; a1 = 2 Solución: Para n-1: an-1 = an Substituyendo : an = (an-2 + 3) + 3 = an * 3 Para n-2: an-2 = an Substituyendo: an = ( an-3 + 3) + 2 * 3 = an * 3 En general: an = an-k + k * 3 Haciendo k=n-1: an = an-n+1 + (n-1) * 3 = a1 + 3(n-1) Como a1 = 2: an = (n-1)

22 2 Ejemplo La población de perros en Tonantzintla es de 1000 (n=0) y el crecimiento al instante n es del 10% de la población en el tiempo n-1 Determinar la relación de recurrencia Determinar una fórmula explícita

23 3 Recurrencia Condición inicial: p0 = 1000 Recurrencia: pn = pn pn-1 = 1.1pn-1

24 4 Solución La solución explícita se puede obtener en forma iterativa: pn = 1.1pn-1 = 1.1(1.1pn-2) = 1.1(1.1(1.1pn-3) ) = pn = 1.1pn-1 = (1.1)2 pn-2 = (1.1)3 pn-3 = En general: pn = (1.1)n p0 En este caso: pn = (1.1)n 1000

25 5 Relaciones de Recurrencia Lineales Una relación de recurrencia lineal homogénea de orden k con coeficientes constantes (rrlhcc) se puede escribir de la siguiente forma: an = c1an-1 + c2an ckan-k Donde los coeficientes ci son constantes, y se tienen las condiciones iniciales: a0, a1, ak-1 Por ejemplo, la relación de Fibonacci es una relación lineal homogénea de orden 2

26 6 Solución rrlhcc - ejemplo Relación: an = 5an-1 6an-2; a0=7, a1=16 Solución: Asumimos que es de la forma tn Entonces: tn = 5tn-1 6tn-2 tn - 5tn-1 + 6tn-2 = 0 Dividiendo entre tn-2: t2-5t + 6 = 0 Dos soluciones: t = 2, t = 3 Entonces se puede demostrar que la solución es de la forma: Un = b2n + d3n

27 7 Solución rrlhcc - ejemplo Solución (continuación): Para encontrar los coeficientes consideramos las condiciones iniciales, de forma que: 7 = U0 = b20 + d30 ; 16 = U1 = b21 + d31 Al resolverlas, obtenemos: b = 5, d = 2 Entonces la solución es: an = 5 * 2n + 2 * 3n

28 8 Solución rrlhcc 2do orden En general, la solución de una rrlhcc de segundo orden, an = c1an-1 + c2an-2 Es de la forma: an = b r1n + d r2n Donde r1 y r2 son raíces de la ecuación: t2 - c1t c2 = 0 Los coeficientes b, d se determinan de las condiciones iniciales

29 9 Otro ejemplo: Fibonacci Recurrencia: fn = fn-1 + fn-2 Condiciones iniciales: f1 = 1, f2 = 2 Entonces la solución es de la forma: fn = b r1n + d r2n y las raíces la obtenemos al resolver: t2 - t 1 = 0

30 0 continuación: Resolviendo la ecuación anterior, las raíces son: r1 = 1.618; r2 = Por lo que la ecuación tiene la forma: fn = b (1.618)n + d (-0.618)n Obteniendo los coeficientes en base a las condiciones iniciales: fn = (1.618)n (-0.618)n

31 1 Relaciones de recurrencia Una ecuación de la forma: xn = f (xn 1, xn 2,..., xn k ) que expresa el n-ésimo término de una sucesión en función de los k términos anteriores se denomina relación de recurrencia de orden k Observe que dados los valores iniciales x0, x1,...,xk 1, la recurrencia tiene una solución única xk = f (xk 1, xk 2,..., x0), xk+1 = f (xk, xk 1,..., x1)

32 2 Recurrencias lineales homogéneas Una recurrencia de la forma xn a1xn 1 + a2xn akxn k = 0 se denomina recurrencia lineal homogénea de orden k Se caracterizan por que la suma de dos soluciones es también una solución

33 3 Ejemplo La recurrencia xn = axn 1 es lineal, homogénea y de primer orden Recurrencia fácil de resolver Conocido el valor inicial x0 pueden conocerse los demás La recurrencia x2n = 2xn + an no es homogénea

34 4 Solución recurrencias lineales Para resolver la recurrencia xn + axn 1 + bxn 2 = 0 buscamos soluciones de la forma xn = rn. Sustituyendo y manipulando obtenemos r2 + ar + b = 0 Esta ecuación de segundo grado se llama ecuación característica de la recurrencia, y sus raíces r1 y r2 nos dan soluciones de la recurrencia. Si las raíces son diferentes entonces todas las soluciones son de la forma xn= Arin+Br2n para constantes A y B

35 5 Solución recurrencias lineales Recurrencia xn + axn 1 + bxn 2 = 0 Si la ecuación característica de la recurrencia tiene una raíz doble r1 entonces la solución general es de la forma xn = (A + Bn)r1n

36 6 Recurrencias lineales no homogéneas Una recurrencia de la forma xn = a1xn 1 + a2xn akxn k + g(n) se denomina recurrencia lineal no homogénea. La parte no homogénea es la función g(n) La solución de una recurrencia no homogénea se puede obtener sumando una solución particular y la solución a la recurrencia homogénea asociada

37 7 Ejemplo Resuelva la relación de recurrencia an-an-1=3n2 para n 1 y a0 =7 an=7+n(n+1)(2n+1)/2

38 8 Ejemplo Hallar una solución general y la solución particular con x0=0, x1=15 de la recurrencia xn 5xn 1 + 6xn 2 = 8n 42.

Matemáticas Discretas L. Enrique Sucar INAOE. Inducción y Recursión

Matemáticas Discretas L. Enrique Sucar INAOE. Inducción y Recursión Matemáticas Discretas L. Enrique Sucar INAOE Inducción y Recursión Inducción y Recursión Inducción matemática Relaciones de recurrencia Solución de relaciones de recurrencia L.E. Sucar: MGP 4 - Grafos

Más detalles

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común.

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común. Recurrencias Def. Progresión geométrica. Es una sucesión infinita de números, como: 5, 45, 135, donde el cociente de cualquier término entre su predecesor es una constante, llamada razón común. (Para nuestro

Más detalles

Sucesiones, inducción y sumatorias

Sucesiones, inducción y sumatorias Capítulo 3 Sucesiones, inducción y sumatorias 3.. Sucesiones Definición Una sucesión es una función definida de N R que se acostumbra a denotar por a n en lugar de fn), costumbre que también adoptaremos

Más detalles

La recursividad forma parte del repertorio para resolver problemas en Computación y es de los métodos más poderosos y usados.

La recursividad forma parte del repertorio para resolver problemas en Computación y es de los métodos más poderosos y usados. RECURSIVIDAD La recursividad forma parte del repertorio para resolver problemas en Computación y es de los métodos más poderosos y usados. Los algoritmos recursivos ofrecen soluciones estructuradas, modulares

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta

DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta DEPARTAMENTO DE MATEMATICAS Y FISICA Matemáticas Discreta SUCESIONES Y RELACIONES DE RECURRENCIA Esta última sección la dedicamos a presentar el concepto de recurrencia, que esta muy ligado al axioma de

Más detalles

Carlos A. Rivera-Morales. Precálculo 2

Carlos A. Rivera-Morales. Precálculo 2 y Carlos A. Rivera-Morales Precálculo 2 Introducción a y Notación d Tabla de Contenido 1 Definición Sumas Parciales Introducción a y Notación d Tabla de Contenido 1 Definición Sumas Parciales 2 Introducción

Más detalles

Capítulo III. Inducción y Recursión

Capítulo III. Inducción y Recursión Capítulo III Inducción y Recursión III.1. Inducción Figura III.1: La caída de dominós en cadena ilustra la idea del principio de inducción: si el primer dominó cae, y si cualquiera al caer hace caer al

Más detalles

Relaciones de recurrencia

Relaciones de recurrencia MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia

Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Capítulo 3: Técnicas de Conteo Clase 3: Conteo utilizando relaciones de recurrencia Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 3: Técnicas de Conteo 1 /

Más detalles

Tema 5: Recursión. de la siguiente forma: Recursión (Sustantivo) Ver recursión. n Qué es la recursión? Cierto diccionario malévolo la define

Tema 5: Recursión. de la siguiente forma: Recursión (Sustantivo) Ver recursión. n Qué es la recursión? Cierto diccionario malévolo la define Tema 5: Recursión n Qué es la recursión? Cierto diccionario malévolo la define de la siguiente forma: Recursión (Sustantivo) Ver recursión. n En efecto, usamos la recursión para definir algo en términos

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Recurrencias DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción 2 Cuando un algoritmo se llama a sí mismo Su tiempo de ejecución se puede describir

Más detalles

Inducción y recursividad

Inducción y recursividad Capítulo Inducción y recursividad.. Proposiciones Definición (Proposición) Una proposición es una colección de símbolos sintácticos a la cual se le puede asignar uno y solo un valor de verdad: verdadero

Más detalles

SUCESIONES. sucesiones 1

SUCESIONES. sucesiones 1 www.matebrunca.com Profesor Waldo Márquez González sucesiones SUCESIONES Definición Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos y cuyo rango es un subconjunto

Más detalles

El rincón de los problemas

El rincón de los problemas Junio de 008, Número 14, páginas 113-11 ISSN: 1815-0640 El rincón de los problemas Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Problema Proponer una actividad lúdica que ilustre que si

Más detalles

Taller: Introducción a las Relaciones de Recurrencia.

Taller: Introducción a las Relaciones de Recurrencia. Taller: Introducción a las Relaciones de Recurrencia. Déboli Alberto. Departamento de Matemática. F.C.E. y N. Universidad de Buenos Aires. Semana de la Enseñanza de la Ciencia. Buenos Aires 15 de julio

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Recursión Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 15 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema 2. Lógica

Más detalles

Principio de inducción y Sumatorias

Principio de inducción y Sumatorias Semana06[1/14] 3 de abril de 007 Principio de inducción: Primera forma Semana06[/14] Una categoría importante de proposiciones y teoremas es la de las propiedades de los números naturales. Aquí tenemos,

Más detalles

PAIEP. Sucesiones, Sumatoria y Progresiones

PAIEP. Sucesiones, Sumatoria y Progresiones Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Sucesiones, Sumatoria y Progresiones Definición: Una sucesión de números reales es una función a : N R, definida

Más detalles

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción Matemática Discreta Números, inducción y recursión: principio de inducción Números, inducción y recursión 1. Sistemas numéricos 2. Principio de inducción 3. Definiciones recursivas 4. División entera y

Más detalles

Luis Zegarra A. Sucesiones, inducción y sumatorias 97

Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Luis Zegarra A. Sucesiones, inducción y sumatorias 97 Note que a i representa a una suma desde el primer término de la sucesión i a para i hasta el último término que en este caso es a n para i n. Es decir,

Más detalles

DE LOS NÚMEROS NATURALES Y ENTEROS

DE LOS NÚMEROS NATURALES Y ENTEROS Capítulo 2 DE LOS NÚMEROS NATURALES Y ENTEROS Objetivo general Presentar y afianzar algunos conceptos de los números naturales y números enteros relacionados con el estudio de la matemática discreta. Objetivos

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

Análisis y Diseño de Algoritmos. Complejidad Computacional

Análisis y Diseño de Algoritmos. Complejidad Computacional Análisis y Diseño de Algoritmos Complejidad Computacional Multiplicación Método Tradicional Método Russé Método Particiones Complejidad Computacional Tan pronto como una máquina análitica exista, será

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. Sonia M. Sabogal P. * Fecha: 8 de marzo de 2005 Números naturales Se sabe que los números naturales constituyen la estructura básica de la Matemática;

Más detalles

Matemáticas Discretas Lógica

Matemáticas Discretas Lógica Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Inducción Matemática Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Inducción Matemática Matemáticas Discretas - p. 1/34 Inducción Matemática: Inducción

Más detalles

LA FAMILIA DE LOS NÚMEROS METÁLICOS

LA FAMILIA DE LOS NÚMEROS METÁLICOS LA FAMILIA DE LOS NÚMEROS METÁLICOS Mat. Ménthor Urvina M Departamento de Matemáticas Escuela Politécnica Nacional El presente documento pretende divulgar los resultados interesantes de la matemática,

Más detalles

Capítulo II. Pruebas en Matemáticas

Capítulo II. Pruebas en Matemáticas Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,

Más detalles

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 3

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 3 Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, 010 Soluciones Taller 3 1. Pruebe usando contradicción que: + 6 < 15. (Sin usar calculadora, sólo operaciones

Más detalles

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación

Más detalles

1. Traducción al lenguaje algebráico

1. Traducción al lenguaje algebráico 1. Traducción al lenguaje algebráico Resuelva los siguientes problemas, traduciendo primero al lenguaje algebráico. Esto es, planteando las ecuaciones correctas para cada situación. 1. El mayor de tres

Más detalles

TEMA 8: ECUACIONES EN DIFERENCIAS

TEMA 8: ECUACIONES EN DIFERENCIAS Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 8: ECUACIONES EN DIFERENCIAS 1 CONCEPTOS BASICOS Una ecuación en diferencias es una expresión del tipo: G(n, f(n), f(n + 1),..., f(n + k)) = 0, n Z,

Más detalles

COMBINATORIA. Manuel Cortés Izurdiaga. Preparación Olimpiada RSME

COMBINATORIA. Manuel Cortés Izurdiaga. Preparación Olimpiada RSME COMBINATORIA Manuel Cortés Izurdiaga Preparación Olimpiada RSME COMBINATORIA Combinatoria Consiste en contar el número de elementos de un conjunto finito. COMBINATORIA Combinatoria Consiste en contar el

Más detalles

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones

Inducción Matemática Conjuntos Funciones. Matemática Discreta. Agustín G. Bonifacio UNSL. Repaso de Inducción, Conjuntos y Funciones UNSL Repaso de Inducción, y Inducción Matemática (Sección 1.7 del libro) Supongamos que queremos demostrar enunciados del siguiente tipo: P(n) : La suma de los primeros n números naturales es n(n+1)

Más detalles

PROBLEMAS Y APLICACIONES DE SUCESIONES RECURRENTES

PROBLEMAS Y APLICACIONES DE SUCESIONES RECURRENTES PROBLEMAS Y APLICACIONES DE SUCESIONES RECURRENTES TRABAJO FIN DE MÁSTER MÁSTER INTERUNIVERSITARIO DE MATEMÁTICAS Realizado por: CARLOS CERVERA ZAFRA Dirigido por: PASCUAL JARA MARTÍNEZ UNIVERSIDAD DE

Más detalles

Ejercicios (Números reales)

Ejercicios (Números reales) Ejercicios (Números reales).. Decir si cada una de las siguientes expresiones es cierta o falsa: a) d) 30ÿ ÿ00 k j 4 k 30ÿ 00 ÿ k j 4, b) k ÿ00 00, c).. Expresar con notación de sumatorio: 0ÿ a) ` 3 `

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre INDUCCION MATEMATICA

ALGEBRA y ALGEBRA LINEAL. Primer Semestre INDUCCION MATEMATICA ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre INDUCCION MATEMATICA DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 Principio de la buena ordenación

Más detalles

PRINCIPIO DE INDUCCIÓN

PRINCIPIO DE INDUCCIÓN PRINCIPIO DE INDUCCIÓN Axioma del Buen Orden en los naturales Principio de Inducción (I) Principio de Inducción (II) Principio Fuerte de Inducción Ángeles Martínez Sánchez Curso 2016/2017 DMATIC ETSISI

Más detalles

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN INDUCCIÓN MATEMÁTICA EDUARDO SÁEZ, IVÁN SZÁNTÓ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA. INTRODUCCIÓN El método deductivo, muy usado en matemática, obedece a la siguiente idea:

Más detalles

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L. 147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones

Más detalles

Inducción Matemática. Departamento de Matemáticas. Inducción Matemática p. 1/31

Inducción Matemática. Departamento de Matemáticas. Inducción Matemática p. 1/31 Inducción Matemática Departamento de Matemáticas Inducción Matemática p. 1/31 Inducción Matemática: Historia Inducción Matemática es un método de prueba relativamente reciente: Inducción Matemática p.

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo

Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo Los Números Enteros Capítulo 1 1.1 Introducción En este capítulo nos dedicaremos al estudio de los números enteros los cuales son el punto de partida de toda la teoría de números. Estudiaremos una serie

Más detalles

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales.

Para las ecuaciones diferenciales ordinarias no lineales no existen métodos generales. Unidad IV: Sistemas continuos (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA.

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. La Conjetura de Goldbach cegp@utp.edu.co La Conjetura de Goldbach afirma que todo número par mayor o igual

Más detalles

Tarea 3 Matemáticas Discretas Soluciones

Tarea 3 Matemáticas Discretas Soluciones Tarea 3 Matemáticas Discretas Soluciones. (a) Pruebe por inducción que n n < n! para n suficientemente grande (esto es existe un n 0, tal que la desigualdad es cierta para n n 0 ). Como parte de la prueba

Más detalles

Capítulo 11. Progresiones aritméticas y geométricas

Capítulo 11. Progresiones aritméticas y geométricas Capítulo 11 Progresiones aritméticas y geométricas Si a un conjunto de números se le da un cierto orden, entonces tal conjunto se conoce como sucesión, y a los elementos que la constituyen se les denomina

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

Resolución de relaciones de recurrencia lineales no homogéneas con coeficientes constantes a través de valores y vectores propios

Resolución de relaciones de recurrencia lineales no homogéneas con coeficientes constantes a través de valores y vectores propios Artículo Revista digital Matemática, Educación e Internet wwwcidseitcraccr/revistamate/ Vol, N o 9 Resolución de relaciones de recurrencia lineales no homogéneas con coeficientes constantes a través de

Más detalles

Combinatoria Básica: Conteo

Combinatoria Básica: Conteo Capítulo III Combinatoria Básica: Conteo En este capítulo continuamos determinando la cardinalidad de varios conjuntos interesantes, en particular, permutaciones y combinaciones. Como parte de esto encontramos

Más detalles

Capítulo IV. Divisibilidad y Primalidad. Algoritmo de la División

Capítulo IV. Divisibilidad y Primalidad. Algoritmo de la División Capítulo IV Divisibilidad y Primalidad IV.1. Algoritmo de la División (Aquí se enuncia con la posibilidad de divisor negativo y la prueba incluye el caso de dividendo negativo.) Teorema 1 Dados m, d Z,

Más detalles

Análisis de algoritmos. Recursividad

Análisis de algoritmos. Recursividad Análisis de algoritmos Recursividad 1 Matrushka La Matrushka es una artesanía tradicional rusa. Es una muñeca de madera que contiene otra muñeca más pequeña dentro de sí. Ésta muñeca, también contiene

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

BOLETINES DE PROBLEMAS DE

BOLETINES DE PROBLEMAS DE ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN BOLETINES DE PROBLEMAS DE INTRODUCCIÓN A LA MATEMÁTICA DISCRETA Curso 2008/2009 DEPARTAMENTO DE MATEMÁTICA

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural

Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Capítulo 2: Inducción y recursión Clase 3: Definiciones recursivas e Inducción estructural Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Sucesiones y recurrencias

Sucesiones y recurrencias Sucesiones y recurrencias Roberto Quezada Departamento de Matemáticas, UAM-Iztapalapa 28 de enero de 2014 Resumen: Discutimos algunas recurrencias y su relación con sucesiones numéricas bien conocidas.

Más detalles

Soluciones Fase Local Viernes 15 y sábado 16 de enero de 2016

Soluciones Fase Local Viernes 15 y sábado 16 de enero de 2016 LII Olimpiada Matemática Española Soluciones Fase Local Viernes 15 y sábado 16 de enero de 2016 Olimpiada Matemática Española RSME 1. En la primera fila de un tablero 5 5 se colocan 5 fichas que tienen

Más detalles

Algunas sucesiones definidas recursivamente y valores propios

Algunas sucesiones definidas recursivamente y valores propios Revista INTEGRACIÓN Universidad Industrial de Santander Escuela de Matemáticas Vol 8 No p 9 7 enero junio de 000 Algunas sucesiones definidas recursivamente y valores propios Rafael Isaacs G * Resumen

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Capítulo 2: Principio de Inducción Análisis combinatorio Binomio de Newton

Capítulo 2: Principio de Inducción Análisis combinatorio Binomio de Newton Capítulo : Principio de Inducción Análisis combinatorio Binomio de Newton. Escribe usando el símbolo de sumatoria: a) ++9+...+ b) + + + c) 5 7 9 + + + +. 6 8 0. Calcula las siguientes sumas 0 a) ( + )

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

Análisis y Diseño de Algoritmos

Análisis y Diseño de Algoritmos Análisis y Diseño de Algoritmos Notación Asintótica DR. JESÚS A. GONZÁLEZ BERNAL CIENCIAS COMPUTACIONALES INAOE Introducción Por qué el análisis de algoritmos? Determinar tiempos de respuesta (runtime)

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

DIFERENCIAS DE ORDEN k Y MONOMIOS GENERALIZADOS. Enunciado 1 Solución 2. Enunciado

DIFERENCIAS DE ORDEN k Y MONOMIOS GENERALIZADOS. Enunciado 1 Solución 2. Enunciado DIFERENCIAS DE ORDEN k Y MONOMIOS GENERALIZADOS FERNANDO REVILLA Resumen. En el siguiente problema estudiamos las diferencias de orden k asociados a una sucesión y los monomios generalizados. Aplicamos

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 2

Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Problemas de VC para EDVC elaborados por C. Mora, Tema 2 Ejercicio 1 Demostrar que la función u(x, y cosh y sen x es armónica en el plano y construir otra función armónica v(x, y tal que u(x, y + iv(x,

Más detalles

Algoritmos glotones. mat-151

Algoritmos glotones. mat-151 Algoritmos glotones (greedy) mat-151 Alonso Ramirez Manzanares Computación y Algoritmos 04.06.2009 Algoritmos glotones Algoritmos utilizados en problemas de optimización. Estos algoritmos siguen típicamente

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Unidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo general Conocer en forma introductoria los conceptos propios de la recurrencia en relación con matemática discreta. Objetivos específicos

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Series, Sucesiones y recursiones

Series, Sucesiones y recursiones Series, Sucesiones y recursiones Entrenamiento #3 para el nacional -5 de septiembre del 016 Por: Lulú y Argel Resumen En el presente material les presentaremos las series y sucesiones, es posible que en

Más detalles

INDUCCIÓN. Inducción - 2

INDUCCIÓN. Inducción - 2 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

1. Ecuaciones de recurrencia

1. Ecuaciones de recurrencia PRÁCTICA NO 3. ALGORITMOS RECURRENTES 1. Ecuaciones de recurrencia Una ecuación de recurrencia es una expresión finita que define explícitamente una sucesión, en el cual un elemento de la sucesión se determina

Más detalles

Rudimentos 4: Progresiones Profesor Ricardo Santander

Rudimentos 4: Progresiones Profesor Ricardo Santander Rudimentos 4: Progresiones Profesor Ricardo Santander Este capitulo esta destinado a presentar contenidos y actividades que permitirán al estudiante, verificar que un conjunto de números satisface las

Más detalles

Diagonalización de matrices

Diagonalización de matrices Capítulo 6 Diagonalización de matrices 6.. Introducción 6... Un ejemplo preliminar Antes de plantearlo de manera general, estudiaremos un ejemplo que servirá para situar el problema. Supongamos que, en

Más detalles

Algoritmo de Euclides

Algoritmo de Euclides Algoritmo de Euclides Melanie Sclar Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires AED III Melanie Sclar (UBA) Algoritmo de Euclides AED III 1 / 21 Ejercicio 2.8 de la práctica Ejercicio

Más detalles

Potencias de exponente racional. Propiedades

Potencias de exponente racional. Propiedades INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor Coordinación Vo. Bo. Eje temático: POTENCIAS Y RAICES EN LOS NUMEROS REALES Área: MATEMÁTICAS Asignatura: Matemáticas

Más detalles

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura:

Un subconjunto no vacío H de un espacio vectorial V es un subespacio de V si se cumplen las dos reglas de cerradura: 4 Subespacios 29 b) x 5 [25;5], 5 [;24], z 5 [4;4] Use a 5 2, a 5 / a 5 2 / 2 c) Su propia elección de x,, z /o a 2 a) Elija algunos valores para n m genere tres matrices aleatorias de n m, llamadas X,

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

11 Secuencias, Series y Probabilidad

11 Secuencias, Series y Probabilidad Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #0: lunes, 7 de junio de 06. Secuencias, Series y Probabilidad. Continuación:

Más detalles

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular.

Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. Ecuaciones diferenciales homogéneas y no homogéneas lineales a coeficientes constantes. Búsqueda de la solución particular. 1. Definiciones previas 1.1. Wronskiano Diremos que el Wronskiano de un conjunto

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con

Más detalles

Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya. Inducción. 1. Principio de Inducción

Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya. Inducción. 1. Principio de Inducción Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Inducción 1. Principio de Inducción La inducción matemática es un método muy útil en algunas demostraciones. Se emplea generalmente

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:

Más detalles

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32

Clase 1: Primalidad. Matemática Discreta - CC3101 Profesor: Pablo Barceló. P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Capítulo 5: Teoría de Números Clase 1: Primalidad Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 5: Teoría de números 1 / 32 Teoría de números En esta parte

Más detalles

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores.

Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. MATEMÁTICAS BÁSICAS TEORÍA DE ECUACIONES DEFINICIÓN DE OLINOMIO Y DE ECUACIÓN Una variable es una cantidad que se simboliza por una literal y que puede tomar diferentes valores. Una constante es una magnitud

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

1.7 Inducción matemática. Sección de ejercicios de repaso. Ejercicios. 1.7 Inducción matemática 53. Sugerencias para resolver problemas WWW

1.7 Inducción matemática. Sección de ejercicios de repaso. Ejercicios. 1.7 Inducción matemática 53. Sugerencias para resolver problemas WWW 17 Inducción matemática 53 to) La resolución es la refutación completa significa que la resolución será capaz de derivar una contradicción a partir del conjunto de cláusulas incongruentes Así, si una conclusión

Más detalles

Análisis de algoritmos.

Análisis de algoritmos. Análisis de algoritmos. - Introducción. - Notaciones asintóticas. - Ecuaciones de recurrencia. - Ejemplos. 1 Introducción Algoritmo: Conjunto de reglas para resolver un problema. Su ejecución requiere

Más detalles

3.- RELACIONES DE RECURRENCIA

3.- RELACIONES DE RECURRENCIA 3.- RELACIONES DE RECURRENCIA 3.1. REGLAS DE SUMA Y EL PRODUCTO Principio de Adición Este capitulo es un repaso del tema visto en el 2.1 de la unidad 2 Estudiamos el más básico y simple de los principios

Más detalles

b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn

b 11 b b 1n b 21 b b 2n. b n1 b n2... b nn 1429 Un cuadrado de n n números enteros se dice que es mágico si la suma de los números de cada una de sus filas o columnas, así como de cada una de las dos diagonales principales, es el mismo Encontrar

Más detalles

Problemas con Dígitos

Problemas con Dígitos Lima, agosto de 2010 Introducción Al enfrentar problemas que involucran los dígitos de un entero positivo, sabemos antes de resolver el problema dos cosas: El primer dígito del número es significativo,

Más detalles