Tema 5. Modelos multivariantes no estacionarios

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5. Modelos multivariantes no estacionarios"

Transcripción

1 Tem 5. Modelos mulivrines no escionrios. Modelos VAR con vribles no escionris. Coinegrción 3. Modelos vecoriles con mecnismo de corrección del equilibrio 4. Meodologí pr l consrucción de modelos VEqCM 5. Ejemplos de modelos VEqCM 6. Regresiones espuris.

2 . Modelos VAR con vribles no escionris Vmos considerr el siguiene modelo VAR() Si iene un ríz uniri sbemos que el modelo no es escionrio. Vmos considerr que, en ese cso, ods ls vribles del sisem ienen el mismo orden de inegrción. 0 Φ I

3 Ejemplo: Ls dos series ienen un ríz uniri ± Φ ) )( 0.5 ( I

4 Ejemplo: En ese cso, un serie no es escionri pero l or sí ± Φ ) )( 0.5 ( I

5 En el cso de un sisem no escionrio en el que ls dos vribles ienen el mismo orden de inegrción, podemos ener dos siuciones diferenes: ) b) Φ Φ I I

6 Esos dos csos son olmene diferenes. En el primer cso, podemos considerr el modelo donde cd vrible del sisem prece en primers diferencis

7 En el cso más generl,, seguirí un modelo VAR(p): Ese modelo esá represenndo ls relciones coro plzo enre mbs vribles. W p p p p p p ) ( ) ( ) ( ) ( () () () ()... p p p p ) ( ) ( () ()...

8 6. Coinegrción Vmos considerr hor que el modelo VAR() no es escionrio pero que Φ I En ese cso, l diferencición de cd un de ls vribles no serí decud ddo que se inroducirí un medi móvil no inverible en el modelo (esrímos sobrediferencindo). L diferenci enre el cso nerior ese es debid que en ese úlimo eise lo que se conoce como coinegrción enre ls vribles.

9 Pr ilusrr el concepo de coinegrción, vmos considerr dos series cuos niveles evolucionn lo lrgo del iempo sin endenci, es decir, son vribles I() sin consne. En ese cso, un represención posible de ess series es: Cundo coinciden, eise coinegrción. En ese cso, ls series esán relcionds lrgo plzo (de form permnene). η µ µ ε µ η δ δ ε δ η η

10 Vmos considerr ls siguienes vribles: Y Y.5 η ε σ η µ µ σ ε µ 0 ), ( Corr ε ε σ η δ δ ε δ ε

11 Vmos considerr hor ls siguienes vribles δ δ σ η δ ε Corr( η, η η ) Y Y4

12 Cundo los niveles subcenes esán relciondos enre sí, enonces ls series esán relcionds en el lrgo plzo mnendrán un relción de equilibrio enre ells.

13 Definición forml de coinegrción pr dos vribles I(): Dos vribles esán coinegrds si cd un de ells es I() pero eise un combinción linel de mbs vribles que es escionri. ε η η µ µ ε µ η δ δ ε δ η βη ε βη βη δ βη δ δ βε ε β

14 Ls vribles mnendrán un relción de equilibrio lrgo plzo que viene dd por β (, -β) es lo que se conoce como vecor de coinegrción Si plnemos l regresión β u Ls perurbciones son ls desviciones de l relción de equilibrio lrgo plzo.

15 3. Modelos vecoriles con mecnismo de corrección del error Pr modelizr ls relciones enre vribles no escionris coinegrds enemos que plner un modelo que eng en cuen que dichs vribles mnienen no relciones coro plzo como lrgo plzo. Dicho modelo es el modelo VAR con Mecnismo de corrección del error (MCE): VEqCM

16 El modelo VAR-MCE pr dos vribles viene ddo por: es el mecnismo de corrección del error de, iene signo negivo. p p p p p p ) ( ) ( ) ( ) ( () () () ()... ) ( β α α α

17 4. Meodologí pr l consrucción de modelos VEqCM Se puede esimr conrsr l coinegrción uilizndo el méodo de Máim Verosimiliud de Johnsen. Sin embrgo, eise un méodo en dos eps más sencillo: i) Esimr primero l relción de equilibrio lrgo plzo: u β Si ls vribles esán coinegrds, ls perurbciones deben ser escionris.

18 Por lo no, un vez esimdos los prámeros por MCO, se hce un conrse de ríces uniris en los residuos. Si se rechz l hipóesis nul de no-escionriedd, ls vribles esán coinegrds.

19 Vmos considerr, por ejemplo, ls series: Y Y

20 Y Residuls

21 Oro ejemplo: Y Y4

22 Y Residuls

23 ii) Se esim el modelo VAR-MCE susiuendo ls desviciones del equilibrio l lrgo plzo por los residuos del modelo nerior. p p p p p p u ) ( ) ( ) ( ) ( () () () ()... ˆ α α

24

25 Alernivmene, el modelo se puede esimr por MV en un únic ep

26 5. Ejemplo: Relciones dinámics enre precios del vcuno El objeivo es conrsr empíricmene l inegrción espcil enre los dos circuios en los que rdicionlmene h esdo frgmendo el mercdo inerncionl de crne de vcuno. Pr ello, se v conrsr si eise un relción de equilibrio lrgo plzo enre dos precios represenivos de cd uno de los dos circuios.

27 El precio elegido como represenivo del circuio de fiebre fos es el precio mensul de eporción FOB de crne de vcuno en Argenin como represenivo del circuio libre de fiebre fos, el precio de imporción CIF de crne usrlin en Esdos Unidos. Los precios, medidos en dólres por oneld, hn sido observdos mensulmene durne el periodo comprendido enre enero de 977 diciembre de 997.

28 L rnsformción logrímic de mbs series de precios prece represend en el siguiene gráfico en el que puede precirse que su nivel prece evolucionr lo lrgo del iempo LARG LUSA

29 LUSA(4) Esdísico -.83 Vlores críicos (%, 5%, 0%) -4.00, -3.43, -3.4 DLUSA(4) , -.87, -.57 LARG(4) , -3.43, -3.4 DLARG(4) , -.87, -.57

30 El gráfico de ls series nos señl mbién ls siguienes crcerísics: Hs proimdmene el fin del ño 990, l evolución lrgo plzo de mbos precios es mu similr, con un diferencil proimdmene consne enre ellos. A prir de 99 prece hber un cmbio en el ipo de relción lrgo plzo que mnienen mbos precios. A prir de proimdmene 994, mbs series convergen en su evolución.

31 El primer cmbio en l relción de equilibrio lrgo plzo puede jusificrse porque el 4 de mo de 989, el Prido Jusicilis gn ls elecciones presidenciles: Nuev oriención en l políic económic con medids de esbilizción El secor del vcuno mbién eperimen un fuere liberlizción

32 El segundo cmbio puede esr jusificdo por cmbios en el propio mercdo inerncionl del vcuno. A medidos de 989, los Gobiernos de Argenin, Brsil Urugu, juno con el cenro Pnmericno de Fiebre Afos, firmron un convenio pr el conrol l errdicción de l enfermedd en l Cuenc de l Pl. Urugu fue declrdo en 993, pís libre de fos con vcunción mienrs que Argenin recibió dich declrción en mo de 997.

33 Pr inroducir el efeco de esos dos cmbio, se inroducen en el modelo VAR-MCE, dos vribles ficicis: que om vlor cero hs diciembre de 990. A prir de ese momeno, om vlores,, 3, hs diciembre de 994, volviendo omr vlor cero prir de ese momeno. D que es un vrible esclón que om vlor cero hs diciembre de 994 uno prir de ese momeno. D

34 Resuldos de l esimción: 4 LUSA * (0,4) 0,6 3 LUSA * (0,) 0,5 LUSA * (0,) 0,05 LUSA * (0,) 0,0 4 LARG * (0,06) 0,09 3 LARG * (0,06) 0,8 LARG * (0,06) 0,0 LARG * (0,06) 0,9 ) - * D (0,) 0,5 - - * D (0,00) 0,008 - LUSA LARG (0,03) 0,5 * ( (0,03) 0,3 LARG 4 LUSA * (0,06) 0,06 3 LUSA * (0,07) 0,04 LUSA * (0,05) 0, LUSA * (0,06) 0,46 4 LARG * (0,04) 0,06 3 LARG * (0,04) 0,03 LARG * (0,04) 0,09 LARG * (0,04) 0,0004 ) - * D (0,) 0,5 - - * D (0,00) 0,008 - LUSA LARG (0,03) 0,5 * ( (0,0) 0,008 LUSA

35 Los esdísicos Bo-Ljung correspondienes los residuos de ls ecuciones de los precios LARG LUSA omn vlores de respecivmene, no deecndo problems de ml especificción en el modelo.

36 L relción de equilibrio lrgo plzo enre mbos precios viene dd por: LARG LUSA.008 D 0.5 D (0.00) (0.) (0.03) Enre enero de 99 diciembre de 994, los precios rgeninos crecen un rimo del 0.8%. A prir de enero de 995, los dos precios se inegrn olmene l diferenci enre ellos desprece l cncelrse l consne de l consne de l relción de equilibrio lrgo plzo con el coeficiene del esclón.

37 En cuno l relción dinámic coro plzo, los precios rgeninos relizn el juse ne ls desviciones respeco l equilibrio de lrgo plzo. Además, ls vriciones en el precio de ese pís, responden su propio psdo (son significivos los coeficienes con 3 rerdos) sí como ls vriciones de los precios en Esdos Unidos.

38 Finlmene, ls vriciones de los precios de Esdos Unidos responden su propio psdo (son significivos los coeficienes de los rerdos ). Además, ls vriciones en esos precios no responden ls desviciones del equilibrio lrgo plzo.

39 Un ejercicio eórico (omdo de ls nos del profesor A. Esps) Considere el siguiene modelo VAR(): Tiene esrucur ringulr, es decir, el psdo de no influe en, pero el de és sí que fec. Como Cov(, )0.5, ls vribles e ienen un covrinz conemporáne de 0.5. Ω

40 L ecución crcerísic del modelo es: cus ríces son.49. Por lo no, el sisem no es escionrio. Vmos ver cuáles son los modelos univrines que se derivn pr cd un de ls vribles: ( L)( 0.7L) 0.4 ( L)

41 Ambs vribles ienen un ríz uniri sus primers diferencis ienen medi cero. Por lo no, mbs ienen oscilciones locles de nivel. Vmos reformulr el modelo VAR nerior como un modelo vecoril con mriz de covrinzs digonl, sbiendo que l cuslidd conemporáne v desde. Pr ello vmos considerr que b b Corr( ε, σ σ σ 0.5 ε ) ε 0.5 ε

42 Por lo no, enemos el siguiene sisem de dos ecuciones: ε En ese cso, ls vribles esán coinegrds ddo que l perurbción del modelo que relcion con es escionri. En consecuenci, el modelo propido pr represenr ls relciones dinámics enre mbs vribles es un modelo VAR-MCE. Vmos derivr dicho modelo.

43 Vmos considerr ls epresiones neriores de ls vribles: ε De donde, Escionrio 0.4 ε Escionrio ε Escionrio

44 L relción de equilibrio lrgo plzo enre mbs vribles viene dd por: L velocidd de juse de desviciones con respeco l equilibrio lrgo plzo es L correlción conemporáne enre e es 0.5. L vrible sigue mermene un modelo de pseo leorio

45 Finlmene si susiuimos en ls epresiones neriores ls perurbciones incorrelds por ls originles conemporánemene correlcionds, obenemos el modelo VAR-MCE ε ε

46 En ese ejemplo, ls vribles no esán correlcionds coro plzo. Tod l relción dinámic enre mbs vribles viene recogid por su relción de equilibrio lrgo plzo. Además, l vrible es fueremene eógen porque no responde ls desviciones del equilibrio lrgo plzo no depende coro plzo de ls vriciones de l vrible

47 6. Regresiones espuris Como en el cso de los modelos VAR escionrios, si se sisfcen ls condiciones de eogeneidd, es posible reducir el número de ecuciones del modelo. En el cso de que ods ls vribles sen eógens menos un, obendrímos un modelo uniecucionl.

48 El modelo uniecucionl que se obiene cundo ls vribles son no-coinegrds es un modelo en el que ods ls vribles precen en primers diferencis. Por or pre, cundo ls vribles esán coinegrds, el modelo uniecucionl recoge el mecnismo de corrección del equilibrio o del error.

49 El modelo de l función de rnsferenci pr vribles no coinegrds h que especificrlo en érminos de ls vribles diferencids, ddo que enre ls vribles en niveles no eisen relciones lrgo plzo. Si se inenr regresr ls vribles en niveles, se obiene lo que se conoce como el problem de ls regresiones espuris: regresiones donde el esdísico es lmene significivo con coeficienes de deerminción mu grndes unque, en relidd, l esimción es inconsisene. L form de deecr un regresión espuri es medine l observción de que los residuos del modelo no son escionrios.

Tema 4. Modelos multivariantes recursivos. Variables exógenas. Modelos uniecuacionales. Causalidad en sentido de Granger.

Tema 4. Modelos multivariantes recursivos. Variables exógenas. Modelos uniecuacionales. Causalidad en sentido de Granger. Tem 4. Modelos mulivrines recursivos. Vribles exógens. Modelos uniecucionles.. El Modelo VARp escionrio. Cuslidd en senido de Grnger.. Esimción de modelos VAR 3. Modelos VAR con vribles exógens. Modelo

Más detalles

4. Modelos AR(1) y ARI(1,1).

4. Modelos AR(1) y ARI(1,1). 4. Modelos AR( ARI(,. Los modelos uorregresivos son quellos modelos ARMA(p,q en los que q0. En generl, vmos denorlos por AR(p. En un modelo AR(p en vlor en el momeno de l serie se expres como un combinción

Más detalles

Tema 2. Modelos univariantes lineales: MA e IMA

Tema 2. Modelos univariantes lineales: MA e IMA Tem. Modelos univrines lineles: MA e IMA. Procesos esocásicos escionrios. L función de uocorrelción el correlogrm.. El proceso ruido blnco. 3. Modelos MA( e IMA(,. Generlizción modelos MA(q e IMA(,q 4.

Más detalles

respectivamente. son series estacionarias. primera diferencia regular y no la estacional por lo que (b) es falsa. Como

respectivamente. son series estacionarias. primera diferencia regular y no la estacional por lo que (b) es falsa. Como NOMBRE Y APELLIDO: ECONOMETRÍA II CURSO 009/00 Primer evlución prcil NOTA: En ls preguns 3 4 debe rzonr jusificr correcmene odos los punos de su respues Ls respuess sin jusificr se punurán con un cero

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1 Unidd Nº Sisems de ecuciones. Méodo de Guss Memáics plicds ls Ciencis Sociles II. ANAYA JRCICIOS PROPUSTOS (págin Sin resolverlos, son equivlenes esos sisems? b, d c ---oooo--- Se r de prir de uno de los

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

, verificar que x. vectores propios. Determinar los valores propios correspondientes. Solución: λ

, verificar que x. vectores propios. Determinar los valores propios correspondientes. Solución: λ re 7 Sen : definido por (, y ) ( + y, ) y f ( ) + Hllr f ( )(, y) f ( )(, y) ( y, + y) Pr l mriz A, verificr que (,,) y (,, ) son vecores propios Deerminr los vlores propios correspondienes λ, λ, respecivmene

Más detalles

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B 6 de Noviembre de 010 Nombre: º Bchillero B Elegir res problems y dos cuesiones, el problem P1 es obligorio. Cd problem se vlorrá con hs,5 punos, mienrs que ls cuesiones vldrán hs 1,5 punos cd un. C1.-

Más detalles

Análisis de Series de Tiempo

Análisis de Series de Tiempo CURSO REGIONAL SORE HOJA DE ALANCE DE ALIMENTOS, SERIES DE TIEMPO Y ANÁLISIS DE POLÍTICA MSc. Sndr Hernández sndr.hernndezro@gmil.com Sede Subregionl de l CEPAL en México Ciudd de México, del 9 l 3 de

Más detalles

Relaciones dinámicas entre precios del vacuno. Ejemplo preperado por la Profa.Esther Ruíz

Relaciones dinámicas entre precios del vacuno. Ejemplo preperado por la Profa.Esther Ruíz Relaciones dinámicas enre precios del vacuno Ejemplo preperado por la Profa.Esher Ruíz Relaciones dinámicas enre precios del vacuno El objeivo de esa sección es conrasar empíricamene la inegración espacial

Más detalles

MODELOS ARIMA Mayo 2001

MODELOS ARIMA Mayo 2001 MODELOS ARIMA Mo Prof. Rfel de Arce Prof. Rmón Mhí Dpo. Economí Aplicd U.D.I. Economerí e Informáic ADE Economerí II. Modelos de Series emporles Págin INRODUCCIÓN En 97, Box Jenkins desrrollron un cuerpo

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son:

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: Memáics II Deerminnes PVJ7. Se l mriz 8 9 7 Se B l mriz que resul l relizr en ls siguienes rnsformciones: primero se muliplic por sí mism, después se cmbin de lugr l fil segund y l ercer y finlmene se

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

4.5 Filtros analógicos: respuesta al escalón

4.5 Filtros analógicos: respuesta al escalón Universidd rlos III de Mdrid 4.5 Filros nlógicos: respues l esclón Respues l esclón de un filro nlógico de primer orden. dy () + y() =, x() = u() y () d y() = Y º) Polinomio crcerísico Ps () = s+ riz s

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTCS RUEBS DE CCESO L UNVERSDD DE OVEDO.- MTRCES Y DETERMNNTES.- MODELO DE RUEB roduco de mrices: concepo. Condiciones pr su relición. Es posible que pr dos mrices B no cudrds puedn eisir B B?. b Si

Más detalles

Determinantes y matrices

Determinantes y matrices Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los djunos de. El deerminne de vle L mriz de

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

TÉCNICAS AVANZADAS DE SERIES TEMPORALES PARA LA PREDICCIÓN ECONÓMICA Y EL ANÁLISIS DE COYUNTURA

TÉCNICAS AVANZADAS DE SERIES TEMPORALES PARA LA PREDICCIÓN ECONÓMICA Y EL ANÁLISIS DE COYUNTURA Dpo. de Esdísic,Esr.Ec.y O.E.I. TÉCNICAS AVANZADAS DE SERIES TEMPORAES PARA A PREDICCIÓN ECONÓMICA Y E ANÁISIS DE COYUNTURA Técnics vnzds de series emporles Dpo. de Esdísic,Esr.Ec.y O.E.I. PREDICCIÓN ECONÓMICA

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. IES Pdre Poved (Gudi) Memáics plicds ls SS II Deprmeno de Memáics loque I: Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (Jun-96) Encuenre

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

CAPÍTULO 6 UNA ALTERNATIVA A LA APLICACIÓN EMPÍRICA DE LOS MODELOS FELTHAM-OHLSON

CAPÍTULO 6 UNA ALTERNATIVA A LA APLICACIÓN EMPÍRICA DE LOS MODELOS FELTHAM-OHLSON Un lerniv l plicción empíric de los modelos Felhm-Ohlson CAPÍTULO 6 CAPÍTULO 6 UNA ALTERNATIVA A LA APLICACIÓN EMPÍRICA DE LOS MODELOS FELTHAM-OHLSON Hemos observdo un serie de resuldos en el cpíulo quino

Más detalles

L[u] = ( pu ) + qu. u(t) =

L[u] = ( pu ) + qu. u(t) = Función de Green Asumiremos que el operdor diferencil esá en form de divergenci: L[u] = ( pu ) + qu con p C [, b], p > y q C[, b], q. El problem es, dd un ϕ C[, b] enconr u l que: { L[u]() = ϕ() (, b)

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Integración y Derivación Fraccionaria

Integración y Derivación Fraccionaria Cpíulo 2 Inegrción y Derivción Frccionri Anes de denrrnos en los operdores de inegrción y derivción generlizdos recordremos lgunos resuldos y nociones del cálculo elemenl que servirán como puno de prid

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Deerminnes y. Ejercicios resuelos. EJERCICIOS PROPUESTOS. Clcul el vlor de los siguienes deerminnes. 4 6 e) 4 5 7 4 d) 0 4 f) + 4 ( ) 4 6 4 8 6 = = = 5 0 4 6 7 4 = + = = = = 5 0 4 = + 4 + 0 0 4 = 4+ 0+

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

SISTEMAS DE ECUACIONES LINEALES amn

SISTEMAS DE ECUACIONES LINEALES amn Apunes de A. Cbñó Memáics plicds cc.ss. SISTEMAS DE ECUACIONES LINEALES. CONTENIDOS: Plnemienos de problems lineles. Soluciones de un sisem de ecuciones lineles. Sisems lineles equivlenes. Méodo de reducción

Más detalles

Observabilidad del estado: necesidad

Observabilidad del estado: necesidad Conrol en el Espcio de Esdo 5. Observbilidd por Pscul Cmpoy pscul.cmpoy@upm.es Universidd Poliécnic Mdrid U.P.M.-DISAM P. Cmpoy Conrol en el Espcio de Esdo 1 Observbilidd del esdo: necesidd r() u() B x

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Guss Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible Jusific en cd cso us respuess.

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sisems José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo de de reducción

Más detalles

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x)

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x) INTEGRALES INDEFINIDAS Un función F() se dice que es primiiv de or función f() cundo F'() = f() Por ejemplo F() = es primiiv de f() = Or primiiv de f() = podrí ser F() = + 5, o en generl, F() = + C, donde

Más detalles

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica:

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica: Hoj de Problems Geomerí V 6. lsificr l cónic: f hllr su ecución reducid. Demosrción. Formremos el discriminne: / ; / como se r de un prábol rel. Hllremos los invrines de l cónic: l ecución reducid será

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

A EXAMEN RESUELTO Fecha: junio 2008 (primera semana) Código asignatura:

A EXAMEN RESUELTO Fecha: junio 2008 (primera semana) Código asignatura: Fech: junio 8 (primer semn) Códio sinur: 54137 1. El enerdor, G, de l fiur cons de curo uniddes de 555 MVA cd un, que funcionn un ensión enre fses de 4 kv y 6 Hz, suminisrndo poenci un nudo de poenci infini,

Más detalles

Definición de un árbol Rojinegro

Definición de un árbol Rojinegro Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprmeno de Memáics. º BAC UNIDAD Nº : ECUACIONES, SISTEMAS E INECUACIONES. A. ECUACIONES. ECUACIONES DE PRIMER GRADO. Ls ecuciones de primer grdo son quells en l que inerviene polinomios

Más detalles

Observabilidad. U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 2

Observabilidad. U.P.M.-DISAM P. Campoy Control en el Espacio de Estado 2 Observbilidd Inroducción Definiciones Observbilidd en sisems lineles Observbilidd en sisems lineles e invrines. Subespcio no-observble Subsisem observble Seprción del subsisem conrolble y observble U.P.M.-DISAM

Más detalles

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab .- Se F () ( ) d, enonces: cos Cálculo Inegrl ) F'() -(cos ) sen b) F'() cos c) F'() cos si.- Se f( ) - < si enonces: ) f no es inegrble en, pues no es coninu. b) f es inegrble en, y f( ) d. c) f es inegrble

Más detalles

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97

Más detalles

ALGUNAS REFLEXIONES SOBRE LOS MODELOS ARIMA

ALGUNAS REFLEXIONES SOBRE LOS MODELOS ARIMA Dpo. de Esdísic,Esr.Ec.y O.E.I. TÉCNICAS DE ETRACCIÓN DE SEÑALES -Alguns considerciones finles sobre los modelos ARIMA -Inroducción l nálisis especrl de series emporles -Méodos de exrcción de señles bsdos

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

6.7 Teorema de Convolución y la delta de Dirac 409

6.7 Teorema de Convolución y la delta de Dirac 409 6.7 Teorem de Convolución y l del de Dirc 49 6.7 Teorem de Convolución y l del de Dirc En el nálisis de sisems lineles, como en los sisems vibrorios (mecánicos y elécricos), uno de los objeivos es conocer

Más detalles

PROBLEMAS DE TEOREMA DE GREEN

PROBLEMAS DE TEOREMA DE GREEN PROBLEMAS E TEOREMA E GREEN ENUNIAO EL TEOREMA Se un curv simple cerrd suve rozos oriend posiivmene se F(; (P;Q un cmpo vecoril cus funciones coordends ienen derivds prciles coninus sore un región ier

Más detalles

5014 Mecánica. Primera Parte (60 minutos) Hoja 1 de 2 L 1. ψ = Fecha de Examen:

5014 Mecánica. Primera Parte (60 minutos) Hoja 1 de 2 L 1. ψ = Fecha de Examen: ech de Emen: 3-6- 5 Mecánic Primer pellido: Mrícul: Segundo pellido: Nombre: NOT: en el enuncido ls mgniudes ecoriles se escriben en negri (V), unque en l solución Vd. Debe represenrls con un flech ( V

Más detalles

FACULTAD DE CIENCIAS SECCIÓN FÍSICAS PLAN DE ACOGIDA

FACULTAD DE CIENCIAS SECCIÓN FÍSICAS PLAN DE ACOGIDA FACULTAD DE CIENCIAS SECCIÓN FÍSICAS LAN DE ACGIDA TÍTUL: Moimieno Recilíneo BJETIVS: Cinemáic es l pre de l Físic que se ocup de l descripción de los moimienos sin ender ls cuss que lo producen. Un prícul

Más detalles

2. Estudio de la medición experimental de tensiones

2. Estudio de la medición experimental de tensiones Sisem pr l medición del esdo de ensiones en membrns eiles. Esudio de l medición eperimenl de ensiones.1 Eensomerí:.1.1 Concepos fundmenles en ls bnds eensomérics:.1.1.1 Inroducción: L consne demnd de l

Más detalles

EXPRESIÓN MATRICIAL DE UN SISTEMA DE ECUACIONES DE PIMER GRADO SISTEMA DE CRAMER

EXPRESIÓN MATRICIAL DE UN SISTEMA DE ECUACIONES DE PIMER GRADO SISTEMA DE CRAMER EXPRESIÓN MTRICIL DE UN SISTEM DE ECUCIONES DE PIMER GRDO Un sise de ecuciones lineles con n incógnis, x, x,, xn iene l for: x x n xn b x x n xn b x x n xn b Recordndo el produco ricil, podeos decir: x

Más detalles

CINEMÁTICA DE LA PARTÍCULA

CINEMÁTICA DE LA PARTÍCULA CINEMÁTICA DE LA PARTÍCULA ÍNDICE 1. Inroducción. Reposo moimieno. Sisems de referenci 3. Vecores posición, elocidd celerción 4. Componenes inrínsecs de l celerción 5. Inegrción de ls ecuciones del moimieno

Más detalles

SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES

SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES Ejercicio nº.- Pon un ejemplo cundo se posible de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible

Más detalles

Las siguientes matrices son, respectivamente, de orden 3 x 3, 3 x 2, 3 x 4 y 2 x )

Las siguientes matrices son, respectivamente, de orden 3 x 3, 3 x 2, 3 x 4 y 2 x ) Álgebr y Geomerí nlíic Mrices- Deerminnes- Sisems de Ecuciones Fculd Regionl L Pl Ing. Vivin CPPELLO Mrices Un mriz es un conjuno de números colocdos en un deermind disposición ordendos en fils y columns.

Más detalles

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y FÍSICA 1 CERAMEN # Form R 1 de junio de 1 A. AERNO A. MAERNO NOMBRE ROL USM - Si su rol comienz con 9 coloque 9 ESE CERAMEN CONSA DE REGUNAS EN 8 ÁGINAS. IEMO: 15 MINUOS SIN CALCULADORA. SIN ELÉFONO CELULAR

Más detalles

Experimentos con una rueda de construcción casera. 1.- Estudio de un movimiento uniformemente acelerado

Experimentos con una rueda de construcción casera. 1.- Estudio de un movimiento uniformemente acelerado Experimenos con un rued de consrucción cser 1.- Esudio de un movimieno uniformemene celerdo Meril Rued de mder con eje de rdio 5 mm Plno inclindo 1,10 m Cronómero Flexómero Fundmeno Sopore de elevción

Más detalles

La transformada de Laplace

La transformada de Laplace CAPÍTULO 6 L rnsformd de Lplce 6.7 Teorem de Convolución y l del de Dirc En el nálisis de sisems lineles, como en los sisems vibrorios (mecánicos y elécricos), uno de los objeivos es conocer l respues

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

INTEGRAL DE RIEMANN-STIELTJES

INTEGRAL DE RIEMANN-STIELTJES Prof. Enrique Meus Nieves Docorndo en Educción Memáic. INTEGRAL DE RIEMANN-STIELTJES L inegrl de Riemnn-Sieljes es un exensión del concepo de Inegrl de Riemnn que permie mplir el poencil de es herrmien.

Más detalles

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( )

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( ) TRICES emáics º chillero. Inroducción. Definición de mriz El concepo de mriz como un bl ordend de números escrios en fils y columns es muy niguo, pero fue en el siglo XIX cundo J.J. Sylverser (8-897) cuñó

Más detalles

Tema 10: Espacio Afin Tridimensional

Tema 10: Espacio Afin Tridimensional www.selecividd-cgrnd.co Te Espcio Afin Tridiensionl Se ll sise de referenci del espcio fín E l conjuno (O, u, u, u ). Siendo O un puno de E u, u, u res vecores libres que forn un bse de V. Ls recs OX,

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

Integrales impropias.

Integrales impropias. Tem Inegrles impropis.. Inroducción. En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Dom(f) = [, ] es un conjuno codo. f: [, ] IR esá cod en [, ]. Si lgun de ess condiciones

Más detalles

FUNCIONES VECTORIALES

FUNCIONES VECTORIALES FUNCIONES VECTORIALES v - v e lo c i d d i n i c i l v v v lur inicil v r() P Vecor velocidd r() r Q r(+) INDICE FUNCIONES VECTORIALES FUNCIÓN VECTORIAL 4 Dominio de un función vecoril 5 Operciones con

Más detalles

MODELOS ARIMA. Prof. Rafael de Arce Prof. Ramón Mahía Dpto. Economía Aplicada U.D.I. Econometría e Informática

MODELOS ARIMA. Prof. Rafael de Arce Prof. Ramón Mahía Dpto. Economía Aplicada U.D.I. Econometría e Informática MODELOS ARIMA Prof. Rfel de Arce Prof. Rmón Mhí Dpo. Economí Aplicd U.D.I. Economerí e Informáic Progrm Ciius.- écnics de Previsión de vribles finnciers Págin INRODUCCIÓN En 97, Box Jenkins desrrollron

Más detalles

Taller 1 matemáticas básicas: Preparación primer parcial. Profesor Jaime Andrés Jaramillo. ITM

Taller 1 matemáticas básicas: Preparación primer parcial. Profesor Jaime Andrés Jaramillo. ITM Tller memáics básics: Preprción primer prcil. Profesor Jime Andrés Jrmillo. jimej@gmil.com. ITM. 0- Referenci: STEWART, Jmes oros. Precálculo. Quin edición. Méico: Thomson, 00. Números Reles. Simplific

Más detalles

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible. nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 5 Fundmenos de Memáics : Cálculo inegrl en R Cpíulo Inegrles impropis En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] R esá cod en [,

Más detalles

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es:

TEMA 3: ECUACIONES ECUACIONES DE 2º GRADO Las ecuaciones de 2º grado son de la forma ax 2 +bx+c=0 y su solución es: TEMA : ECUACIONES ECUACIONES DE º GRADO Ls ecuciones de º grdo son de l form +b+c=0 y su solución es: b b 4c Cundo b=o o c=0 son incomplets y se resuelven de l siguiente form. Cso b=0, por ejemplo: 6 7=0

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=.

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=. .MATRICES. DEINICION, TERMINOLOGIA, TIPOS DE MATRICES Y OPERACIONES LINEALES: Definición : Se llm mri de dimensiones m n ( m fils n columns) un colección de dos epresdos de l siguiene form A=. m. m..........

Más detalles

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis

En el tema anterior se ha definido la integral de Riemann con las siguientes hipótesis 59 Memáics I : Cálculo inegrl en IR Tem 5 Inegrles impropis 5. Inroducción En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Domf = [, ] es un conjuno codo. f: [, ] IR esá cod

Más detalles

4. Modelos de series de tiempo

4. Modelos de series de tiempo 4. Modelos de series de iempo Los modelos comunes para el análisis de series de iempo son los que se basan en modelos auorregresivos y modelos de medias móviles o una combinación de ambos. Es posible realizar

Más detalles

Aplicación empírica de los modelos Feltham-Ohlson en función del signo del resultado anormal

Aplicación empírica de los modelos Feltham-Ohlson en función del signo del resultado anormal Aplicción empíric de los modelos Felhm-Ohlson en función del signo del resuldo norml Begoñ Giner Inchusi (Universidd de Vlenci y Rúl Iñiguez Sánchez (Universidd de Alicne Dirección de conco: Rúl Iñiguez

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1 Lbororio de Insrumención Indusril Mecánic Lbororio de Insrumención Mecrónic 1 1. Tem: Simulción de un sensor medine su función de rnsferenci nálisis dinámico del mismo. 2. Objeivos: 3. Teorí.. Simulr el

Más detalles

CAPÍTULO 1 FUNDAMENTOS TEÓRICOS

CAPÍTULO 1 FUNDAMENTOS TEÓRICOS Fundmenos Teóricos CAPÍTULO CAPÍTULO FUNDAMENTOS TEÓRICOS Anes de bordr el nálisis delldo de los modelos objeo de es esis, los modelos Felhm-Ohlson, en primer lugr es necesrio referirse ls definiciones

Más detalles

EN EL PLANO (R 2 ) EN EL ESPACIO (R 3 ) ECUACIONES CONSTRUIR CLASIFICAR ECUACIONES CONSTRUIR CLASIFICAR. Resumen de Transformaciones Geométricas

EN EL PLANO (R 2 ) EN EL ESPACIO (R 3 ) ECUACIONES CONSTRUIR CLASIFICAR ECUACIONES CONSTRUIR CLASIFICAR. Resumen de Transformaciones Geométricas Resmen de Trnsformciones Geomérics EN EL PLNO (R ) EUIONES ONSTRUIR LSIFIR EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR Unidd Docene de Memáics de l E.T.S.I.T.G.. Resmen de Trnsformciones Geomérics Unidd Docene

Más detalles

Tema 7: ÁLGEBRA DE MATRICES

Tema 7: ÁLGEBRA DE MATRICES ÁLGER DE MTRICES Tem : ÁLGER DE MTRICES Índice. Concepo de mriz... Definición de mriz... Clsificción de ls mrices... Tls, grfos y mrices.. Operciones con mrices... Sum de mrices... Muliplicción de un número

Más detalles

TRANSFORMACIONES EN EL ESPACIO (R 2 ) ECUACIONES

TRANSFORMACIONES EN EL ESPACIO (R 2 ) ECUACIONES TRNSFORMIONES EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR TRNSFORMIONES EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR Unidd Docene de Memáics de l E.T.S.I.T.G.. EUIONES DE LOS MOVIMIENTOS, HOMOTEIS Y SEMEJNZS

Más detalles

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08.

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08. ESTE MODELO SUSTITUYE AL ANTERIOR FECHA: 5-- Seund Prue Prcil Lso - 7 /7 Universidd Ncionl Aier Memáics III Cód 7 Vicerrecordo Acdémico Cód Crrer: 6-8 Áre de Memáic Fech: -- OBJ PTA Clcul MODELO DE RESPUESTAS

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Físic Generl Proeco PMME - Curso 7 Insiuo de Físic Fculd de Inenierí UdelR TITULO MOVIMIENTO DE PROYECTIL AUTORES Andre Ferreir, Dieo Fonn, Ausin Mimbcs. INTRODUCCIÓN El siuiene rbjo r sobre el esudio

Más detalles

Sea a la longitud de la cuerda. Se trata de encontrar bajo qué ángulo á es máxima la distancia OP.

Sea a la longitud de la cuerda. Se trata de encontrar bajo qué ángulo á es máxima la distancia OP. Hoj de Problems Geomerí I 7. Un lzo corredizo, formdo por un cuerd, envuelve un column cilíndric de rdio r perfecmene lis, esndo sujeo el eremos libre de l cuerd. Averigur que disnci de l column esá el

Más detalles

CAPÍTULO 4 DISEÑO DE LA INVESTIGACIÓN Y METODOLOGÍA

CAPÍTULO 4 DISEÑO DE LA INVESTIGACIÓN Y METODOLOGÍA Diseño de l Invesigción y Meodologí CAPÍTULO 4 CAPÍTULO 4 DISEÑO DE LA INVESTIGACIÓN Y METODOLOGÍA Un vez revisdos los rbjos eóricos de Felhm-Ohlson y sus plicciones empírics, vmos proceder l relizción

Más detalles

5. INDUCCIÓN MAGNÉTICA

5. INDUCCIÓN MAGNÉTICA 5. NDUCCÓN MAGNÉTCA 5.1 Flujo mgnéico. 5. ey de Frdy. 5.3 Generdores y Moores 5.4 nducnci. 5.5 Circuios. Energí mgnéic. 5.1 Flujo mgnéico. Φ E da Φ Φ m _ un _ espir m _ N _ espirs Φ BdA N BdA m BdA A A

Más detalles

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR)

LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) LA METODOLOGÍA DE VECTORES AUTORREGRESIVOS (VAR) ESPECIFICACION La meodología VAR es, en ciera forma, una respuesa a la imposición de resricciones a priori que caraceriza a los modelos economéricos keynesianos:

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

La valoración de acciones y la predicción de beneficios a través de los modelos Feltham-Ohlson

La valoración de acciones y la predicción de beneficios a través de los modelos Feltham-Ohlson L vlorción de cciones y l predicción de beneficios rvés de los modelos Felhm-Ohlson Begoñ Giner Inchusi (Universidd de Vlenci) y Rúl Iñiguez Sánchez (Universidd de Alicne) Dirección de conco: Rúl Iñiguez

Más detalles

FUNDAMENTOS DE PROGRAMACIÓN LINEAL

FUNDAMENTOS DE PROGRAMACIÓN LINEAL 18 de Septiembre de 2017 FUNDAMENTOS DE PROGRAMACIÓN LINEAL Ingenierí Industril Ingenierí Informátic Fcultd de Ingenierí Universidd Ctólic Andrés Bello Progrmción Linel José Luis Quintero 1 Puntos trtr

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

CAPITULO 4 DESARROLLO DE LA INVESTIGACIÓN. El desarrollo de la investigación comenzó con la obtención de los datos seguido de la

CAPITULO 4 DESARROLLO DE LA INVESTIGACIÓN. El desarrollo de la investigación comenzó con la obtención de los datos seguido de la CAPITULO 4 DESARROLLO DE LA INVESTIGACIÓN El desrrollo de l invesigción comenzó con l obención de los dos seguido de l comprobción de l vercidd de los mismos. Ese cpíulo drá conocer los medicmenos selecciondos.

Más detalles

Mecanismos de Transmisión y Reglas de Política Monetaria: La posición de la política monetaria como variable de estado

Mecanismos de Transmisión y Reglas de Política Monetaria: La posición de la política monetaria como variable de estado ESUDIOS ECONÓMICOS Mecnismos de rnsmisión y Regls de Políic Moneri: L posición de l políic moneri como vrible de esdo Por: Crlos Brrer Chupis * Inroducción rs los episodios de elevd inflción en diferenes

Más detalles

elblogdematedeaida pág Discute según los valores del parámetro y resuelve cuando sea posible los sistemas de ecuaciones siguientes:

elblogdematedeaida pág Discute según los valores del parámetro y resuelve cuando sea posible los sistemas de ecuaciones siguientes: elblogdeedeid pág curso - HOJA : EJERCCO REPAO DE TEMA - Discue según los vlores del práero resuelve cundo se posible los sises de ecuciones siguienes: ) 9 b) ) λ λ λ ; /;/;) b) - ); ) - Resuelve por Crer

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo Universidd Ncionl de L Pl Fculd de Ciencis Nurles y Museo Cáedr de Memáic y Elemenos de Memáic signur: Elemenos de Memáic Conenidos de l Unidd Temáic Mrices: Sum y produco por un esclr. Propieddes. Produco

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles