SISTEMAS DE ECUACIONES LINEALES amn

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE ECUACIONES LINEALES amn"

Transcripción

1 Apunes de A. Cbñó Memáics plicds cc.ss. SISTEMAS DE ECUACIONES LINEALES. CONTENIDOS: Plnemienos de problems lineles. Soluciones de un sisem de ecuciones lineles. Sisems lineles equivlenes. Méodo de reducción de Guss. Inerpreción geoméric de sisems lineles. Los sisems de ecuciones precen en csi ods ls ciencis en muchs siuciones de l vid rel. Ddo el sisem de m ecuciones lineles con n incógnis:... n n b... n n b... m m... mn n b donde. son los coeficienes de ls incógnis, b...son los érminos independienes. Discuir un sisem es esudir ods ls soluciones que pueden presenrse en él, dependiendo del número de ecuciones, del número de incógnis de ls relciones eisenes enre uns ors. Según ls soluciones se ienen los siguienes sisems: Los sisems que ienen solución se llmn compibles. Si l solución es únic, el sisem es compible deermindo. Si iene más de un solución, el sisem es compible indeermindo. Se puede firmr en ese cso que iene infinis soluciones. Los sisems que no ienen ningun solución se llmn incompibles. Sisems homogéneos. Se llm sí los sisems de ecuciones lineles en los que son nulos los érminos independienes de cd un de ls ecuciones. Ese sisem siempre dmie l solución rivil. Dos sisems son equivlenes cundo mbos ienen ls misms soluciones. Méodo de reducción de Guss Si en un sisem de ecuciones se susiue un ecución por el resuldo de sumrl miembro miembro (previmene muliplicd por un número disino de cero) con or u ors ecuciones muliplicds por números culesquier, resul un sisem equivlene l ddo. En el resuldo nerior se fund el méodo de Guss o reducción, pr resolver un sisem de ecuciones lineles. Si l plicr el méodo de Guss resul lgun ecución bsurd, de primer miembro nulo el segundo miembro disino de cero, el sisem es incompible. Si l plicr Guss no resul ningun ecución bsurd, el sisem es compible. Después de eliminr ls ecuciones que son combinción linel de ors nos quedrá un sisem de h ecuciones con n incógnis que es equivlene l ddo. hn el sisem es compible deermindo. h<n el sisem es compible indeermindo m Sisems de ecuciones lineles.

2 Apunes de A. Cbñó Memáics plicds cc.ss. Ejemplo: Resolver los sisems ) b) 9 8 c) d) e) 9 Ejemplo Ddo el sisem de ecuciones: Si es posible, ñde un ecución de modo que el nuevo sisem resulne se: ) Incompible b) Compible indeermindo Jusific us respuess. )Un ecución que hg el sisem incompible h de ser de l form: ( ) ( ) b k k b con, Si ommos, por ejemplo,, b, enemos: Añdiendo es ecución, el sisem es incompible. b)pr que se compible indeermindo, l ecución que ñdmos será de l form: ( ) ( ) enemos) que dos de ls (un combinció n linel b b Si ommos, por ejemplo,, b, quedrá: 8 Añdiendo es ecución, el sisem es compible indeermindo. Los sisems homogéneos siempre ienen l solución. n llmd solución rivil. Pueden o no ener ors soluciones disins de l rivil. A los sisems homogéneos se les puede plicr el méodo de Guss. Después de eliminr ls ecuciones que son combinción linel de ors nos quedrá un sisem de h ecuciones con n incógnis, equivlene l ddo. hn el sisem es compible deermindo. (Solución rivil) h<n el sisem es compible indeermindo. (Infinis soluciones) Ejemplo: Resolver 9 Inerpreción geoméric de un sisem L ecución bc iene por represención en el plno cresino un rec. L siución geoméric de un sisem de dos ecuciones con dos incógnis es l siguiene: Compible deermindo Compible indeermindo Incompible. Sisems de ecuciones lineles.

3 Apunes de A. Cbñó Memáics plicds cc.ss. De igul form si el sisem esá formdo por más de dos ecuciones se obendrá un siuciones precids ls neriores. Ejemplo Resuelve los siguienes sisems h un inerpreción geoméric de los mismos: ) Resolvemos el sisem por el méodo de Guss: ;., sisem es compible deermindo.su solución es El :, puno que se corn en el son res recs mene, Geoméric Ejemplo En un residenci de esudines se comprn semnlmene heldos de disinos sbores: vinill, chocole n. El presupueso desindo pr es compr es de euros el precio de cd heldo es de euros el de vinill, euros el de chocole euros el de n. Conocidos los gusos de los esudine, se sbe que enre heldos de chocole de n se hn de comprr el % más que de vinill. ) Plne un sisem de ecuciones lineles pr clculr cuános heldos de cd sbor se comprn l semn. b) Resuelve, medine el méodo de Guss, el sisem plnedo en el prdo nerior. ) Llmmos l número de heldos de vinill que se comprn semnlmene, l de heldos de chocole, l de heldos de n., % más que vinill n Chocole euros ol Precio en ol Comprn heldos Sisems de ecuciones lineles.

4 Apunes de A. Cbñó Memáics plicds cc.ss. b) ) ( : 8 Por no, se comprn heldos de vinill, de chocole de n. EJERCICIOS.. Resolver e inerprer el siguiene sisem: 8. Resolver por el méodo de Guss los siguienes sisems: ) b) c) 8 d) e) f). Resolver por el méodo de Guss: ) b) c) 9 9. Ddo el sisem ñdir un ecución más pr que el sisem resulne se incompible. Añdir mbién un ecución l sisem ddo rrib pr que se compible resolverlo en ese cso.. En un sisem de dos ecuciones lineles los coeficienes el érmino independiene de l primer son proporcionles los correspondienes de l segund. Cómo es el sisem?. En un sisem de dos ecuciones lineles los coeficienes de l primer son proporcionles los correspondienes de l segund, pero no los érminos independienes. Cómo es el sisem? Sisems de ecuciones lineles.

5 Apunes de A. Cbñó Memáics plicds cc.ss.. Considerr el siguiene sisem de ecuciones lineles con dos incógnis: ) Añdir un ecución l sisem de modo que el sisem resulne se compible. b) Añdir un ecución l sisem de mner que el sisem que resule se incompible c) Inerprer geoméricmene los prdos b. 8. Resolver clsificr el sisem: Represenr e inerprer gráficmene l siución reliv de ls recs cus ecuciones formn el sisem. 9. Los sueldos del pdre, l mdre un hijo sumdos, dn p. L mdre gn el doble del hijo, el pdre gn / de lo que gn l mdre. Se r de clculr cuáno gn cd uno.. Se dispone de un recipiene de liros de cpcidd de res medids A, B C. Se sbe que el volumen de A es el doble del de B, que ls res medids llenn el depósio que ls dos primers lo llenn hs l mid. Qué cpcidd iene cd medid?. Hllr res números sbiendo que el primero es igul dos veces el segundo más l mid del ercero, que l sum del segundo el ercero es igul l primero más, que si se res el segundo de l sum del primero con el ercero, el resuldo es.. Clculr res números que cumpln ls condiciones siguienes: ) El primero es l sum de los oros dos. b) El segundo es igul l mid del primero más el doble del ercero. c) L sum de odos es.. L sum de ls res cifrs de un número es, si se inercmbin l primer l segund, el número umen en 9 uniddes. Finlmene, si se inercmbin l segund l ercer, el número umen en 9 uniddes. Clculr dicho número.. Hllr un número de res cifrs, sbiendo que sumn 9, que si del número ddo se le res el que resul de inverir el orden de sus cifrs l diferenci es 98 que demás l cifr de ls decens es medi riméic de ls ors dos.. Dos hermnos, chrlndo, concluen que enre mbos ienen 9 ños el uno le dice l oro: Denro de 8 ños, mi edd será el doble de l u. Cuános ños iene cd uno en l culidd?. Un esdo compr brriles de peróleo res suminisrdores diferenes, que lo venden, 8 dólres el brril respecivmene. L fcur ol sciende millones de dólres. Si el primer suminisrdor recibe el % del ol del peróleo comprdo, cuál es l cnidd comprd cd suminisrdor?. Un individuo invirió ps. reprids en res empress obuvo p. de beneficios. Clculr l inversión relid en cd empres, sbiendo que en l empres A hio el doble de inversión que en l empres B C juns que los beneficios de ls empress fueron de % en l empres A, % en l B % en l C. 8. Los nimles de un lbororio deben mnenerse bjo un die esric. Cd niml recibe g de proeíns g de grss. Se dispone de dos ipos de limenos: el ipo A con el % de proeíns % de grss, el ipo B con el % de proeíns % de grss. Cuános grmos de cd limeno pueden uilirse pr obener l die correc de un único niml? Sisems de ecuciones lineles.

6 Apunes de A. Cbñó Memáics plicds cc.ss. 9. Jun Pedro invieren p. cd uno. Jun coloc un cnidd A l % de inerés, un cnidd B l % el reso l %. Pedro inviere l mism cnidd A l %, l B l % el reso l %. Deerminr l cnidd B, sbiendo que Jun obiene inereses de p. Pedro de 9 ps.. El dueño de un br h comprdo refrescos, cerve vino por impore de p.(sin impuesos) El vlor del vino es p. menos que el de los refrescos de l cerve conjunmene. Teniendo en cuen que los refrescos deben pgr un IVA del %, por l cerve del % por el vino del %, lo que hce que l fcur ol con impuesos se de 9 p. Clculr l cnidd inverid en cd ipo de bebid.. Cuános liros de leche con % de grs h de meclrse con leche de % de grs pr obener liros de leche con % de grs?. Al represenr en el plno ls ecuciones de un sisem formdo por ecuciones (E,E,E ) dos incógnis, se observ que E es un rec prlel l eje OX, E E se corn en el puno(,), E E se corn en el puno (,) E es prlel l eje OY. Obeng ls ecuciones del sisem. EJERCICIOS PROPUESTOS. º Esudi si son equivlenes los sisems: ) b) c) d) Sol: ) Sí; b) Sí; c) No; d) Sí _ º Esudi, resuelve cundo sen compibles, los siguienes sisems: ) b) c) Sol: ) S.C.D.; ; ; ; b) S.C.I.; λ; λ; ; c) S.I. Sisems de ecuciones lineles.

7 Apunes de A. Cbñó Memáics plicds cc.ss. º Resuelve los sisems: ) b) c) d) e) f) Sol: ) S.I.; b),, ; c) λ, λ, λ; d) λ, λ, λ; e) S.I.; f),, º Resolver: ) b) c) Sol: ),, ; b) S.I.; c) λ, λ, λ Sisems de ecuciones lineles.

SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES

SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES SOLUCIONES EJERCICIOS SISTEMAS DE ECUACIONES Ejercicio nº.- Pon un ejemplo cundo se posible de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Guss Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible Jusific en cd cso us respuess.

Más detalles

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1 Unidd Nº Sisems de ecuciones. Méodo de Guss Memáics plicds ls Ciencis Sociles II. ANAYA JRCICIOS PROPUSTOS (págin Sin resolverlos, son equivlenes esos sisems? b, d c ---oooo--- Se r de prir de uno de los

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sisems José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo de de reducción

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

elblogdematedeaida pág Discute según los valores del parámetro y resuelve cuando sea posible los sistemas de ecuaciones siguientes:

elblogdematedeaida pág Discute según los valores del parámetro y resuelve cuando sea posible los sistemas de ecuaciones siguientes: elblogdeedeid pág curso - HOJA : EJERCCO REPAO DE TEMA - Discue según los vlores del práero resuelve cundo se posible los sises de ecuciones siguienes: ) 9 b) ) λ λ λ ; /;/;) b) - ); ) - Resuelve por Crer

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. IES Pdre Poved (Gudi) Memáics plicds ls SS II Deprmeno de Memáics loque I: Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (Jun-96) Encuenre

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=.

1.MATRICES. Definición : Se llama matriz de dimensiones m x n ( m filas y n columnas) a una. colección de datos expresados de la siguiente forma A=. .MATRICES. DEINICION, TERMINOLOGIA, TIPOS DE MATRICES Y OPERACIONES LINEALES: Definición : Se llm mri de dimensiones m n ( m fils n columns) un colección de dos epresdos de l siguiene form A=. m. m..........

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª

1-ª 2-ª 3 1-ª 3-ª ª. x + y + z = 2. 5y + 4z = 2 2z = 24 2-ª ª 3-ª 1-ª 5 2-ª 3-ª 1-ª 2-ª 2 3-ª + 2-ª DOSIER SISTEMAS DE ECUACIONES LINEALES - GAUSS MACS. Resuelve estos sistems de ecuciones medinte el método de Guss: b c -ª -ª -ª -ª -ª -ª -ª -ª -ª,, Resuelve estos sistems de ecuciones lineles: b -ª -ª

Más detalles

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC

I.E.S. Ciudad de Arjona Departamento de Matemáticas. 1º BAC I.E.S. Ciudd de Arjon Deprmeno de Memáics. º BAC UNIDAD Nº : ECUACIONES, SISTEMAS E INECUACIONES. A. ECUACIONES. ECUACIONES DE PRIMER GRADO. Ls ecuciones de primer grdo son quells en l que inerviene polinomios

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Deerminnes y. Ejercicios resuelos. EJERCICIOS PROPUESTOS. Clcul el vlor de los siguienes deerminnes. 4 6 e) 4 5 7 4 d) 0 4 f) + 4 ( ) 4 6 4 8 6 = = = 5 0 4 6 7 4 = + = = = = 5 0 4 = + 4 + 0 0 4 = 4+ 0+

Más detalles

EXPRESIÓN MATRICIAL DE UN SISTEMA DE ECUACIONES DE PIMER GRADO SISTEMA DE CRAMER

EXPRESIÓN MATRICIAL DE UN SISTEMA DE ECUACIONES DE PIMER GRADO SISTEMA DE CRAMER EXPRESIÓN MTRICIL DE UN SISTEM DE ECUCIONES DE PIMER GRDO Un sise de ecuciones lineles con n incógnis, x, x,, xn iene l for: x x n xn b x x n xn b x x n xn b Recordndo el produco ricil, podeos decir: x

Más detalles

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES

Apuntes de A. Cabañó Matemáticas II SISTEMAS DE ECUACIONES LINEALES puntes de. Cbñó Mtemátics II SISTEMS DE ECUCIONES LINELES 8. Epresión mtricil de un sistem.clsificción de un sistem en términos del número de soluciones. 8. Teorem de RouchéFrobenius. 8. El método de eliminción

Más detalles

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible. nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.

Más detalles

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos

TEMA 3. Sistemas de ecuaciones lineales Problemas Resueltos eáics plicds ls Ciencis Sociles II Soluciones de los probles propuesos Te wwweicsjco José rí ríne edino T Sises de ecuciones lineles Probles Resuelos Clsificción resolución de sises por éodos eleenles

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son:

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: Memáics II Deerminnes PVJ7. Se l mriz 8 9 7 Se B l mriz que resul l relizr en ls siguienes rnsformciones: primero se muliplic por sí mism, después se cmbin de lugr l fil segund y l ercer y finlmene se

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = 001 1 = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

Las siguientes matrices son, respectivamente, de orden 3 x 3, 3 x 2, 3 x 4 y 2 x )

Las siguientes matrices son, respectivamente, de orden 3 x 3, 3 x 2, 3 x 4 y 2 x ) Álgebr y Geomerí nlíic Mrices- Deerminnes- Sisems de Ecuciones Fculd Regionl L Pl Ing. Vivin CPPELLO Mrices Un mriz es un conjuno de números colocdos en un deermind disposición ordendos en fils y columns.

Más detalles

Taller 1 matemáticas básicas: Preparación primer parcial. Profesor Jaime Andrés Jaramillo. ITM

Taller 1 matemáticas básicas: Preparación primer parcial. Profesor Jaime Andrés Jaramillo. ITM Tller memáics básics: Preprción primer prcil. Profesor Jime Andrés Jrmillo. jimej@gmil.com. ITM. 0- Referenci: STEWART, Jmes oros. Precálculo. Quin edición. Méico: Thomson, 00. Números Reles. Simplific

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTCS RUEBS DE CCESO L UNVERSDD DE OVEDO.- MTRCES Y DETERMNNTES.- MODELO DE RUEB roduco de mrices: concepo. Condiciones pr su relición. Es posible que pr dos mrices B no cudrds puedn eisir B B?. b Si

Más detalles

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

TEMA 1 SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Te Sises de ecuciones. Méodo de Guss TEMA SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS RESOLVER E INTERPRETAR GEOMÉTRICAMENTE SISTEMAS LINEALES EJERCICIO : Resuelve los siguienes sises h un inerpreción geoéric

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales José Mrí Mríne Medino de ecuciones lineles Observción: L morí de esos problems provienen de ls pruebs de selecividd. Resuelve el siguiene sisem de ecuciones: 9 Aplicndo el méodo de Guss: 9 6 6 L solución

Más detalles

Tema 10: Espacio Afin Tridimensional

Tema 10: Espacio Afin Tridimensional www.selecividd-cgrnd.co Te Espcio Afin Tridiensionl Se ll sise de referenci del espcio fín E l conjuno (O, u, u, u ). Siendo O un puno de E u, u, u res vecores libres que forn un bse de V. Ls recs OX,

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

Experimentos con una rueda de construcción casera. 1.- Estudio de un movimiento uniformemente acelerado

Experimentos con una rueda de construcción casera. 1.- Estudio de un movimiento uniformemente acelerado Experimenos con un rued de consrucción cser 1.- Esudio de un movimieno uniformemene celerdo Meril Rued de mder con eje de rdio 5 mm Plno inclindo 1,10 m Cronómero Flexómero Fundmeno Sopore de elevción

Más detalles

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A

= 27. 1 1, con b un parámetro real. Se pide: a) Para qué valores del parámetro b el sistema de ecuaciones lineales A ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CCSSII: º) (Andlucí, Junio ) Un cliene de un supermercdo h pgdo un ol de 56 euros por 4 liros de leche, 6 kg de jmón serrno liros de ceie de oliv Plnee resuelv un

Más detalles

Determinantes y matrices

Determinantes y matrices Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los djunos de. El deerminne de vle L mriz de

Más detalles

IES Gerardo Diego Departamento de Matemáticas Matemáticas Aplicadas a las Ciencias Sociales II, curso

IES Gerardo Diego Departamento de Matemáticas Matemáticas Aplicadas a las Ciencias Sociales II, curso Memáics plicds ls Ciencis Sociles II, curso - JUN 4 Un produco se compone de l mezcl de oros dos y B Se ienen 5 Kg de y 5 Kg de B En l mezcl, el peso de B debe ser menor o igul que,5 veces el de Pr sisfcer

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

APLICACIONES DE LAS MATRICES

APLICACIONES DE LAS MATRICES PLIIONES DE LS MTRIES Ejercicio nº.- ) Encuenr los vlores de pr los que l ri: no es inversible. Ejercicio nº.- lcul, si es posible, l invers de l ri: Pr los csos en los que. Ejercicio nº.- Hll un ri,,

Más detalles

EXAMEN DE MATEMÁTICAS II (Recuperación)

EXAMEN DE MATEMÁTICAS II (Recuperación) º Bchillero Ciencis XN D TÁTICS II Recuperción) ÁLGBR. ), punos) Clsific en función del práero R, el sise de ecuciones: b) puno) Resuélvelo pr, si es posible.. Se un ri cudrd de orden. Si el deerinne de

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

Tema 3. Sistemas de ecuaciones lineales

Tema 3. Sistemas de ecuaciones lineales Memáics Aplicds ls Ciencis Sociles II Álger: Sisems de ecuciones lineles Tem Sisems de ecuciones lineles Sisems de dos ecuciones lineles con dos incógnis (Repso) c Su form más simple es (,, c,, c son números

Más detalles

SOLUCIONES EJERCICIOS MATRICES

SOLUCIONES EJERCICIOS MATRICES SOLUIONES EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de

Más detalles

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.-

EJERCICIOS MATRICES. 2 euros/kg. Ejercicio nº 1.- EJERIIOS MTRIES Ejercicio nº.- Un hipermercdo quiere oferr res clses de bndejs,. L bndej coniene g de queso mnchego, g de roquefor 8 g de cmember l bndej coniene g de cd uno de los res ipos de queso neriores

Más detalles

Definición de un árbol Rojinegro

Definición de un árbol Rojinegro Definición de un árol Rojinegro Árol inrio esrico (los nodos nulos se ienen en cuen en l definición de ls operciones odo nodo oj es nulo) Cd nodo iene esdo rojo o negro Nodos oj (nulos) son negros L rí

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

Sistemes d equacions (Gauss)

Sistemes d equacions (Gauss) Sistemes d equcions (Guss) Ejercicio nº.- Dos kilos de nrnjs, más un kilo de plátnos, más dos kilos de mngos, vlen, euros. Dos kilos de nrnjs, más dos kilos de plátnos, más de mngos, vlen euros. Tres kilos

Más detalles

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B

Examen 1: Vectores, Cinemática y Dinámica. 26 de Noviembre de º Bachillerato B 6 de Noviembre de 010 Nombre: º Bchillero B Elegir res problems y dos cuesiones, el problem P1 es obligorio. Cd problem se vlorrá con hs,5 punos, mienrs que ls cuesiones vldrán hs 1,5 punos cd un. C1.-

Más detalles

, verificar que x. vectores propios. Determinar los valores propios correspondientes. Solución: λ

, verificar que x. vectores propios. Determinar los valores propios correspondientes. Solución: λ re 7 Sen : definido por (, y ) ( + y, ) y f ( ) + Hllr f ( )(, y) f ( )(, y) ( y, + y) Pr l mriz A, verificr que (,,) y (,, ) son vecores propios Deerminr los vlores propios correspondienes λ, λ, respecivmene

Más detalles

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo

Universidad Nacional de La Plata Facultad de Ciencias Naturales y Museo Universidd Ncionl de L Pl Fculd de Ciencis Nurles y Museo Cáedr de Memáic y Elemenos de Memáic signur: Elemenos de Memáic Conenidos de l Unidd Temáic Mrices: Sum y produco por un esclr. Propieddes. Produco

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x)

funciones primitivas se le llama integral indefinida y se representa por dx = F(x) + C F'(x) = f(x) ( ) '( ) '( ) '( ) f x f x dx C f'( x) INTEGRALES INDEFINIDAS Un función F() se dice que es primiiv de or función f() cundo F'() = f() Por ejemplo F() = es primiiv de f() = Or primiiv de f() = podrí ser F() = + 5, o en generl, F() = + C, donde

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica:

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica: Hoj de Problems Geomerí V 6. lsificr l cónic: f hllr su ecución reducid. Demosrción. Formremos el discriminne: / ; / como se r de un prábol rel. Hllremos los invrines de l cónic: l ecución reducid será

Más detalles

Cuántos gramos hay que coger de cada uno de los tres lingotes?

Cuántos gramos hay que coger de cada uno de los tres lingotes? Consejerí de Educción, Cultur Deportes CENTRO DE EDUCACIÓN DE PERSONAS ADULTAS. Simien C/ Frncisco Grcí Pvón, 6 Tomelloso 7 (C. Rel) Teléfono F: 96 9 9. Por un rotuldor, un cuderno un crpet se pgn,6 euros.

Más detalles

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3

a (3, 1, 1), b(1, 7, 2), c (2, 1, 4) = 18,5 u 3 8 Clcul el volumen del prlelepípedo determindo por u(,, ), v (,, ) y w = u v. Justific por qué el resultdo es u v. w = u Ò v = (,, ) (,, ) = (, 6, 5) [u, v, w] = 6 5 u v = 9 + 6 + 5 = 7 = 7 Volumen = 7

Más detalles

Tema 7: ÁLGEBRA DE MATRICES

Tema 7: ÁLGEBRA DE MATRICES ÁLGER DE MTRICES Tem : ÁLGER DE MTRICES Índice. Concepo de mriz... Definición de mriz... Clsificción de ls mrices... Tls, grfos y mrices.. Operciones con mrices... Sum de mrices... Muliplicción de un número

Más detalles

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab .- Se F () ( ) d, enonces: cos Cálculo Inegrl ) F'() -(cos ) sen b) F'() cos c) F'() cos si.- Se f( ) - < si enonces: ) f no es inegrble en, pues no es coninu. b) f es inegrble en, y f( ) d. c) f es inegrble

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

TEMA 4 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Te Resolución de sises edine deerinnes Meáics II º chillero TEM RESOLUIÓN DE SISTEMS MEDINTE DETERMINNTES Resolución de sises Regl de rer Teore de Rouché-Froenius EJERIIO Resuelve plicndo l regl de rer

Más detalles

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a) Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015

Colegio Diocesano Sagrado Corazón de Jesús EJERCICIOS MATEMÁTICAS 3º ESO VERANO 2015 Colegio Diocesno Sgrdo Corzón de Jesús EJERCICIOS MATEMÁTICAS º ESO VERANO º. Amplific ls siguientes frcciones pr que tods tengn denomindor b c d º. Cuál de ls siguientes frcciones es un frcción mplificd

Más detalles

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( )

Matemáticas 2º Bachillerato MATRICES. columnas es muy antiguo, pero fue en el siglo XIX cuando J.J. Sylverster ( ) TRICES emáics º chillero. Inroducción. Definición de mriz El concepo de mriz como un bl ordend de números escrios en fils y columns es muy niguo, pero fue en el siglo XIX cundo J.J. Sylverser (8-897) cuñó

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles Observción: L orí de esos sises se hn propueso en ls pruebs de Selecividd, en los disinos disrios universirios espñoles.. L ri plid de un sise de ecuciones

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

el log de me de id CSII: mrices y deerminnes pág. DEFINICIONES Un cden de iends de elecrodomésicos dispone de curo lmcenes. En un deermindo momeno ls exisencis de lvdors, frigoríficos y cocins son ls siguienes:

Más detalles

Resolución de sistemas dependientes de parámetros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS

Resolución de sistemas dependientes de parámetros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS Meáics Resolución de sises dependienes de práeros RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES DEPENDIEN- TES DE PARÁMETROS ESTUDIANDO RANGOS ) Discu resuelv el siguiene sise en función del práero : 7

Más detalles

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97

Más detalles

ACTIVIDADES DE REPASO - 2ª EVALUACIÓN (unidades 4 a 6 excepto ecuaciones de 2º grado)

ACTIVIDADES DE REPASO - 2ª EVALUACIÓN (unidades 4 a 6 excepto ecuaciones de 2º grado) Colegio Amor de Dios Vlldolid Memáics º ESO ACTIVIDADES DE REPASO ª EVALUACIÓN (uniddes ecepo ecuciones de º grdo Rzon si ess mgniudes esán en proporción direc o invers Los kilogrmos de fru que se comprn

Más detalles

Unidad 10. Sistemas de ecuaciones lineales

Unidad 10. Sistemas de ecuaciones lineales Tem. istems de Ecuciones Unidd. istems de ecuciones lineles. Definiciones, tipos de sistems distints forms de epresrls.. Definición, sistems equivlentes.. Clses de sistems de ecuciones... Epresión de sistems

Más detalles

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a CNTRI / JUNIO. LOGSE / MTEMÁTICS PLICDS LS CIENCIS SOCILES / ÁLGER / LOQUE Un imporor e gloos los impor e os olores: e olor nrnj (N) e olor fres (F). Toos ellos se envsn en pquees e, unies, que vene los

Más detalles

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08.

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08. ESTE MODELO SUSTITUYE AL ANTERIOR FECHA: 5-- Seund Prue Prcil Lso - 7 /7 Universidd Ncionl Aier Memáics III Cód 7 Vicerrecordo Acdémico Cód Crrer: 6-8 Áre de Memáic Fech: -- OBJ PTA Clcul MODELO DE RESPUESTAS

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,

Más detalles

TEMA 9: SISTEMAS DE ECUACIONES LINEALES

TEMA 9: SISTEMAS DE ECUACIONES LINEALES MTEMÁTICS II TEM 9: SISTEMS DE ECUCIONES LINELES. Defiició Clsificció U ecució liel de "" icógis,,,,, es u iguldd del ipo:., siedo i úmeros reles coocidos, llmdos coeficiees. i so ls icógis cuo vlor h

Más detalles

4. Modelos AR(1) y ARI(1,1).

4. Modelos AR(1) y ARI(1,1). 4. Modelos AR( ARI(,. Los modelos uorregresivos son quellos modelos ARMA(p,q en los que q0. En generl, vmos denorlos por AR(p. En un modelo AR(p en vlor en el momeno de l serie se expres como un combinción

Más detalles

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:

funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio: CÓNICS - - Indiiones Llmndo l mriz soid un óni en un deermindo sisem de refereni l mriz de su form udrái, iers funiones de DERIVE permien lulr lgunos invrines epresiones soidos l euión de dih óni neesrios

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO.

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. ACTIVIDADES PARA EL VERANO. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I ACTIVIDADES PARA EL VERANO MATEMÁTICAS º BHCS IES EL BOHÍO EJERCICIOS Y PROBLEMAS DE APOYO ª EVALUACIÓN - Eectúe Sol -9/ - Eectúe 9 7 8 6 Sol - Eectúe 8

Más detalles

FRACCIONES ALGEBRAICAS

FRACCIONES ALGEBRAICAS FRACCIONES ALGEBRAICAS CÓMO ESTAMOS EN EL TEMA?. Cuáno dee ñdirse / r oener l unidd?. De ué número h ue resr / r oener l se re del número?. Qué número sumdo con sus / con sus / es?. Un erson inviere los

Más detalles

Leyes de Newton de la Dinámica: Momentum y Fuerza. Cálculo de la trayectoria de una partícula

Leyes de Newton de la Dinámica: Momentum y Fuerza. Cálculo de la trayectoria de una partícula Dino Slins Clse 6 Leyes de Newon de l Dináic: Moenu y uerz Cálculo de l ryecori de un prícul L prier ley es un refirción del principio de inerci glileno. Prier Ley de Newon: Todo objeo coninú en su esdo

Más detalles

CINEMÁTICA DE LA PARTÍCULA

CINEMÁTICA DE LA PARTÍCULA CINEMÁTICA DE LA PARTÍCULA ÍNDICE 1. Inroducción. Reposo moimieno. Sisems de referenci 3. Vecores posición, elocidd celerción 4. Componenes inrínsecs de l celerción 5. Inegrción de ls ecuciones del moimieno

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

Álgebra Selectividad

Álgebra Selectividad Álgebr Selectividd 4-11 1 Cundo el ño 18 Beethoven escribe su primer Sinfoní, su edd es diez veces mor que l del jovencito Frnz Schubert. Ps el tiempo es Schubert quien compone su célebre Sinfoní Incomplet.

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tem 3: Sistems de ecuciones lineles 1. Introducción Los sistems de ecuciones resuelven problems relciondos con situciones de l vid cotidin, que tiene que ver con ls Ciencis Sociles. Nos centrremos, por

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Un sistema de tres ecuaciones con tres incógnitas es un conjunto de ecuaciones:

Un sistema de tres ecuaciones con tres incógnitas es un conjunto de ecuaciones: S I S T E M A S D E E C U A C I O N E S L I N E A L E S. M É T O D O D E G A U S S. S I S T E M A S D E E C U A C I O N E S L I N E A L E S C O N T R E S I N C Ó G N I T A S Un sistem de tres ecuciones

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles CTJ. L ri plid de un sise de ecuciones lineles, en for reducid por el éodo de Guss, es: ) El sise es copible o incopible? Ron l respues. b) Resolverlo

Más detalles

, que, como está triangularizado, se observa que es

, que, como está triangularizado, se observa que es MTEMÁTICS PLICDS LS CIENCIS SOCILES II PRUEB ESCRIT. BLOQUE: ÁLGEBR ECH: DE ENERO DE Prte I. Sistems de ecuciones lineles. Mtrices. Ejercicio. Resuelv el siguiente sistem de ecuciones, utilindo, si es

Más detalles

Integración y Derivación Fraccionaria

Integración y Derivación Fraccionaria Cpíulo 2 Inegrción y Derivción Frccionri Anes de denrrnos en los operdores de inegrción y derivción generlizdos recordremos lgunos resuldos y nociones del cálculo elemenl que servirán como puno de prid

Más detalles

GUIA DE SISTEMAS DE ECUACIONES LINEALES

GUIA DE SISTEMAS DE ECUACIONES LINEALES Fcultd de Ciencis Deprtmento de Mtemátics y Ciencis de l Computción GUIA DE SISEMAS DE ECUACIONES LINEALES. Resuelv los siguientes sistems de ecuciones usndo el metodo de elimincion gussin, verifique l

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles