funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "funciones de DERIVE permiten calcular algunos invariantes y expresiones asociados a la ecuación de dicha cónica necesarios para su estudio:"

Transcripción

1 CÓNICS - - Indiiones Llmndo l mriz soid un óni en un deermindo sisem de refereni l mriz de su form udrái, iers funiones de DERIVE permien lulr lgunos invrines epresiones soidos l euión de dih óni neesrios pr su esudio: Epresión Funión de DERIVE min or(,, ) de re ( ) de ( min or(,,) ) de( min or(,,) ) Vlores propios de eigenvlues Veores propios de e_eigenveor (, vlor propio) delee_elemen(,) Unidd Doene de Memáis

2 CÓNICS - - I) Esudir ls siguienes ónis: ) ) Gráfi de l óni b) Euión mriil X ( ) X ) Clsifiión Tipo prbólio 6 PRÁBOL d) Euión reduid b '' λ ' ' ; vlores propios de : λ, λ (on l funión eigenvlues ( )); b ± ± ; pr que b se de signo onrrio λ, ommos b. '' '' '' '' e) Eenriidd prámero de l óni e, por ser un prábol. p p f) Eje vérie. Dibujrlos Veores propios de soidos λ : (,) ( on l funión e_eigenveor (, )) Eje '' n. Busquemos n pr que l inerseión de on l prábol se un únio puno: Unidd Doene de Memáis

3 CÓNICS - - n (n ) n n (n ) ± 6(n ) 6(n n ) 8 Disriminne 6(n ) 6(n n ) n Eje '' ( ) ± bsis del vérie: ; ordend: 8 Luego, V,. El eje fol ps por el vérie es perpendiulr : Eje fol - g) Foo direriz. Dibujrlos. Eje fol irunf. - p de enro V rdio - Observndo el dibujo se obiene que el foo es F (,) l direriz es l re que ps por el puno (, ) es prlel : dir - B) ) Gráfi de l óni Unidd Doene de Memáis

4 CÓNICS - - b) Euión mriil 6 6 X 9 ( ) X ) Clsifiión 6 > Tipo elípio 9 elipse ) < ELIPSE REL ( d) Euión reduid λ '' λ '' ; ;vlores propios de :, (on l funión eigenvlues ( )). Tommos λ ( el de menor vlor bsoluo) λ. Euión reduid: '' '' '' '' 9 e) Semiejes, eenriidd prámero de l óni 9 b ; 6 6 b b Prámero de l hipérbol: b e f) Cenro. Dibujrlo 6 Con delee_elemen(,), se obiene: ; se resuelve el sisem: 9 6 C, 9 g) Ejes (indindo uál es el fol). Dibujrlos Con e_eigenveor (,), se obiene l direión del eje fol:, Eje fol ( ) Unidd Doene de Memáis

5 CÓNICS - - Eje no fol ( ) 6 h) Foos, véries direries. Dibujrlos No: Resolver el sisem Eje fol ( ) irunf. de enro C (, ) rdio k k Foos (Susiuir k por,, 7, 6 ) 6 Véries priniples (Susiuir k por 7 (,),, ) Véries seundrios (Susiuir k por b,,, 6 6 Direries (Susiuir k por / ) ) : Son res prlels l eje no fol que psn por los punos (, ),, ( ) C) ) Gráfi de l óni Unidd Doene de Memáis

6 CÓNICS Unidd Doene de Memáis 6 b) Euión mriil ( ) X X ) Clsifiión < Tipo hiperbólio HIPÉRBOL d) Euión reduid '' '' λ λ ; ;vlores propios de : ± (on l funión eigenvlues ( )). Tommos λ ( signo onrrio ) λ. Euión reduid: '' '' '' '' e) Semiejes, eenriidd prámero de l óni b b b e Prámero de l hipérbol: b f) Cenro. Dibujrlo Con delee_elemen(,), se obiene: ; se resuelve el sisem: ( ), C g) Ejes (indindo uál es el fol). Dibujrlos Con e_eigenveor,, se obiene l direión del eje fol:, Eje fol Eje no fol

7 CÓNICS h) Foos, véries direries. Dibujrlos No: Resolver el sisem Eje fol irunf. de enro C (, ) rdio k Foos (Susiuir k por ) ±, Véries (Susiuir k por ) ±, Direries (Susiuir k por / ( ) k Son res prlels que psn por los punos ±, : ± i) sínos. Dibujrls Son res que psn por el enro ienen de pendiene m l que: m m Como sólo se obiene un vlor rel de m, h un síno prlel l eje OY (de pendiene infini): II) Clsifir hllr l euión reduid de ls siguienes ónis: ) X X 9 Tipo prbólio ( ) ) Unidd Doene de Memáis 7

8 CÓNICS - 8-7, < Dos res prlels de min or (,,) de min or (,,) ) Euión reduid: (No: ( ) ( ) d ; ( ) λ 7 λ '' 7'' r (on l funión re( )); '' ± 7 8 B) ( ) 7 X X 7 6 < Tipo hiperbólio d ; Res senes Euión reduid: λ '' λ '' ; vlores propios de : ± 7 (on l funión eigenvlues ). 7 ( 7 ) '' ( 7 ) '' '' ± ' ' C) > Tipo elípio ( ) X X 7 elipse ( ) > Elipse Imginri Euión reduid: 7 λ '' λ '' ; ; vlores propios de :, (on l funión eigenvlues ( )). Tommos λ ( el de menor vlor bsoluo) λ. '' '' 7 '' 7 7 '' 7 9 Unidd Doene de Memáis 8

9 CÓNICS III) Hllr ls res ngenes l elipse, que sen prlels l eje fol., vlores propios de :, (on l funión eigenvlues ). Con e_eigenveor,, se obiene l direión del eje fol: (,). Euión de l re ngene: k, busndo k de form que su inerseión on l elipse se un únio puno: ( k) ( k) ( k) ( k ) ( k k) k ± k Resolviendo en : k k ±. Luego, ls res ngenes busds son: ± IV) Hllr l euión de l óni que ps por los punos (,),(,9),(, ), ( 9,) (,). L euión busd es de l form B C D E F. Como los ino punos ddos hn de verifir dih euión, susiuendo en ell l l por ls oordends de d uno de los punos, se obiene el siguiene sisem us inógnis son, B, C, D, E F : B C D E F 9 6B C D E F 9 8B 7C D 9E F 9 B C D E F 8 6B 6C 9D E F 9 D F que h de ser ompible indeermindo, luego, definiendo l mriz de los oefiienes del sisem lulndo su deerminne, h de verifirse que: ( 9( ) Unidd Doene de Memáis 9

10 CÓNICS - - Con los omndos simplifir epndir en e, se obiene l euión pedid de l óni: Unidd Doene de Memáis

Estudio algebraico de las cónicas. CÓNICAS

Estudio algebraico de las cónicas. CÓNICAS Esudio lgebrio de ls ónis CÓNICS Esudio lgebrio de ls ónis Inroduión En ese píulo se v efeur un esudio de ess urvs plns uilizndo ls herrmiens que nos hn proporiondo los ems neriores de Álgebr Linel Geomerí

Más detalles

Estudio algebraico de las cónicas. CÓNICAS

Estudio algebraico de las cónicas. CÓNICAS Esudio lgerio de ls ónis Esudio lgerio de ls ónis Inroduión CÓNICAS En ese píulo se v efeur un esudio de ess urvs plns uilizndo ls herrmiens que nos hn proporiondo los ems neriores de Álger Linel y Geomerí

Más detalles

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1

CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1 RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..

Más detalles

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica:

165. Clasificar la cónica: y hallar su ecuación reducida. Demostración. Formaremos el discriminante: = = Hallaremos los invariantes de la cónica: Hoj de Problems Geomerí V 6. lsificr l cónic: f hllr su ecución reducid. Demosrción. Formremos el discriminne: / ; / como se r de un prábol rel. Hllremos los invrines de l cónic: l ecución reducid será

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 07-08

MATEMÁTICAS II Cónicas en coordenadas polares Curso 07-08 MATEMÁTICAS II Cónis en oordends olres Curso 07-08 1. El omet Hlley desribe un orbit elíti de exentriidd e 0.97. l longitud del eje myor de l órbit es, roximdmente, 6,18 uniddes stronómis (un u.., distni

Más detalles

SELECTIVIDAD: MATRICES. B y

SELECTIVIDAD: MATRICES. B y SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )

Más detalles

SISTEMAS DE ECUACIONES DE PRIMER GRADO

SISTEMAS DE ECUACIONES DE PRIMER GRADO el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos

Más detalles

Solucionario a las pruebas de acceso a la universidad 2013 Facultad de Ciencias Sociales de Melilla

Solucionario a las pruebas de acceso a la universidad 2013 Facultad de Ciencias Sociales de Melilla Soluionrio ls prues de eso l universidd Fuld de Cienis Soiles de Melill M TEM Á TIC S II Págin Soluionrio ls prues de eso l universidd Fuld de Cienis Soiles de Melill UNIVERSIDDES DE NDLUCÍ PRUE DE CCESO

Más detalles

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:.

a. (0.5 puntos) Determine la dimensión que debe de tener la matriz A para que se verifique la igualdad:. Seleividd ndluí. emáis plids ls ienis Soiles. loque ries. www.useleividd.om Págin EJEROS E EÁENES E SELETV NLUÍ.LOQUE TRES.. JUNO. OPÓN. Sen ls mries siendo un número rel ulquier.. ( puno) Oeng l mriz..

Más detalles

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b

Calcular los parámetros y los vértices de las siguientes hipérbola equilátera: La hipérbola equilátera es aquella cuyos ejes son iguales a = b Problem relizdo por Elen Abd Felip Enunido: Clulr los prámetros y los vérties de ls siguientes hipérbol equiláter: y = 6 ) Según sus síntots b) Según sus ejes Bses teóris: L hipérbol equiláter es quell

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11

MATEMÁTICAS II Cónicas en coordenadas polares Curso 10-11 MATEMÁTICAS II Cónis en oordends olres Curso -.- L Lun es el stélite nturl de l Tierr y tiene un órit elíti on el entro de l Tierr en uno de sus foos. Est órit tiene los siguientes dtos: = 800 km, e=0.05.

Más detalles

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA

UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Uni Nº Resoluión e sisems meine eerminnes! PR EPEZR, RELEXION Y RESUELVE Deerminnes e oren! Resuelve uno e los siguienes sisems e euiones lul el eerminne e l mri e los oefiienes: E sumno E E sumno λ,s.c.i.,

Más detalles

Cónicas y Cuádricas. Tema V. 2 Intersección de una recta y una cónica. 1 Definición y ecuaciones.

Cónicas y Cuádricas. Tema V. 2 Intersección de una recta y una cónica. 1 Definición y ecuaciones. Tem V Cpítulo Cónis Álgebr Deprtmento de Métodos Mtemátios de Representión UDC Tem V Cónis Cuádris Cónis En todo este pítulo trbjremos en el plno fín eulídeo E 2 on respeto un refereni retngulr {O; ē,

Más detalles

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ

La elipse. coordenadas de los vértices, y la longitud del eje mayor que es #+Þ. coordenadas de los extremos del eje menor, cuya longitud es #,Þ Definiión. L elipse Est Guí tiene..todas...ls respuests MALAS Se llm elipse, l lugr geométrio de los puntos de un plno u sum de distnis dos puntos fijos del mismo plno es onstnte. Los puntos fijos se ostumrn

Más detalles

el blog de mate de aida: MATE I. Cónicas pág. 1

el blog de mate de aida: MATE I. Cónicas pág. 1 el blog de mte de id: MATE I. Cónics pág. 1 SECCIONES CÓNICAS Un superficie cónic se obtiene l girr un rect g (llmd genertriz), lrededor de otr rect e, llmd eje de giro, l que cort en un punto V (vértice).

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sisems José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo de de reducción

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

Elipse: Ecuación de la elipse dados ciertos elementos

Elipse: Ecuación de la elipse dados ciertos elementos Elipse: Euión de l elipse ddos iertos elementos Tinoo, G. (013). Euión de l elipse ddos iertos elementos. [Mnusrito no publido]. Méxio: UAEM. Espio de Formión Multimodl Elipse vertil Si l elipse tiene

Más detalles

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.

2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE. .3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede

Más detalles

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1 Unidd Nº Sisems de ecuciones. Méodo de Guss Memáics plicds ls Ciencis Sociles II. ANAYA JRCICIOS PROPUSTOS (págin Sin resolverlos, son equivlenes esos sisems? b, d c ---oooo--- Se r de prir de uno de los

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos:

, y el plano Π forma un ángulo β con el eje del cono, se pueden presentar los siguientes casos: Águed Mt Miguel Rees, Dpto. de Mtemátic Aplicd, FI-UPM 9 Cónics 9. Cónics Se llm cónic culquier de ls secciones plns que se producen l cortr en el espcio un doble cono recto por un plno. Si el doble cono

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni que tiene entro en (- ; 3) que ps por el punto ( ; -). Grfique.

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS

SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS MATEMÁ TTCAS BÁSICAS SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS Ddos números reles l', b l, b, l Y ' l pr de euiones lx + b,y=l Y x + b y = se denomin un sistem linel de dos euiones en ls dos

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TALLER N NOMBRE DE LA ASIGNATURA: CALCULO MULTIVARIADO Y VECTORIAL TÍTULO: SUPERFICIES DURACIÓN: DOS CLASES CUATRO HORAS BIBLIOGRAFÍA

Más detalles

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus

Matemática básica para ingeniería (MA105) Clase Práctica Dada la siguiente ecuación, identifique la cónica, grafique y encuentre todos sus Mtemáti ási pr ingenierí (MA05) Clse Práti 4.. Dd l siguiente euión, identifique l óni, grfique enuentre todos sus elementos. 6 9 64 54 6 0 Completndo udrdos: ( ) ( 3) 3 4 Centro= C(; 3) 3 4 Como Entones

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07

MATEMÁTICAS II Cónicas en coordenadas polares Curso 06-07 MATEMÁTICAS II Cónis en oorens olres Curso 06-07 ) El omet Hlley esribe un orbit elíti e exentrii e 07 l longitu el eje myor e l órbit es, roximmente, 68 unies stronómis (un u, istni mei entre l Tierr

Más detalles

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA

Matemáticas aplicadas a las Ciencias Sociales II. ANAYA Unidd Nº Resoluión de sises edine deerinnes! eáis plids ls Cienis Soiles II. NY Esudi el rngo de ls siguienes ries: ))! Coo h vrios eleenos no nulos el rngo es.! Coo el rngo es.! unque oo, el rngo es,

Más detalles

TEMA 2. Determinantes Problemas Resueltos

TEMA 2. Determinantes Problemas Resueltos Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l

Más detalles

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS

ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS ELIPSE E HIPERBOLA DEFINICIONES Y EJERCICIOS Chí, Octubre de 015 Señores Estudintes grdos Décimos Adjunto encontrrán ls definiciones y los ejercicios que deben relizr de los dos tems pendientes pr l evlución

Más detalles

AA = Eje menor La elipse.

AA = Eje menor La elipse. 3.. L elipse. 3... L elipse omo lugr geométrio. L elipse es el lugr geométrio del onjunto de puntos P(, ) u sum de ls distnis dos puntos fijos llmdos foos equivlen l dole de un onstnte (), l ul represent

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

Departamento: Física Aplicada III

Departamento: Física Aplicada III Fund mentos Físi os de l Ingenierí. (Ind ustri les) Prlelogrmo insrito en trpezoide Ddo un trpezoide (udrilátero irregulr que no tiene ningún ldo prlelo otro), demuestre, usndo el álger vetoril, que los

Más detalles

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE

UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.

Más detalles

z b 2 = z b y a + c 2 = y a z b + c

z b 2 = z b y a + c 2 = y a z b + c 47 ESTUDIO DEL CONO ELIPTICO Not: Lo diujos orrespondientes ls interseiones de este estudio tienen el mismo speto l estudio del ono irulr. Sin emrgo l interseión on plnos prlelos l plno son en este so

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. IES Pdre Poved (Gudi) Memáics plicds ls SS II Deprmeno de Memáics loque I: Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (Jun-96) Encuenre

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los

Más detalles

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c}

Funciones GENERALIDADES. Sean los conjuntos: A ={1; 2; 3; 4} B = {u, d, t, c} Funiones El onepto de Funión es un de ls ides undmentles en l Mtemáti. Csi ulquier estudio que se reier l pliión de l Mtemáti prolems prátios o que requier el nálisis de dtos, emple este onepto mtemátio.

Más detalles

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse.

X. LA ELIPSE DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO. La recta que pasa por el punto medio del segmento el, se llama EJE MENOR de la elipse. X. LA ELIPSE 10.1. DEFINICIÓN DE ELIPSE COMO LUGAR GEOMÉTRICO Definiión Se llm elipse l lugr geométrio de un punto P que se mueve en el plno, de tl modo que l sum de ls distnis del punto P dos puntos fijos

Más detalles

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a CNTRI / JUNIO. LOGSE / MTEMÁTICS PLICDS LS CIENCIS SOCILES / ÁLGER / LOQUE Un imporor e gloos los impor e os olores: e olor nrnj (N) e olor fres (F). Toos ellos se envsn en pquees e, unies, que vene los

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

c a, b tal que f(c) = 0

c a, b tal que f(c) = 0 IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se

Más detalles

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada.

Una condición necesaria y suficiente para que el triangulo PBP sea equilátero es que el ángulo HBP sea 30º. b que es la relación buscada. Hoj de Prolems Geometrí III 49. Dd l elipse, si tommos el etremo B de ordend positiv del eje menor omo entro, se desrie un irunfereni de rdio igul diho eje menor, ortr l elipse en dos punto P P. Determinr

Más detalles

f) Log 12 1/1728 = -3 c) Log 1/3 1/81 =4 d) Log 2 8 = 3 e) Log = 7 g) Log = 3 h) Log 3 1/27 = -3

f) Log 12 1/1728 = -3 c) Log 1/3 1/81 =4 d) Log 2 8 = 3 e) Log = 7 g) Log = 3 h) Log 3 1/27 = -3 UNIVERSIDAD NACIONAL AUTONOMA DE HONDURAS FACULTAD DE CIENCIAS ECONOMICAS DEPARTAMENTO DE METODOS CUANTITATIVOS METODOS CUANTITATIVOS II Logritmos Escrib en form logrítmic: ) 8 = 6 b)(1/) -1 = c) (1/)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area

IES Fco Ayala de Granada Sobrantes del 2001 (Modelo 1) Solución Germán-Jesús Rubio Luna OPCIÓN A Area Area IES Fco Ayl de Grnd Sobrntes del (Modelo ) GermánJesús Rubio Lun OPCIÓN A Ejercicio de l Opción A del Modelo de sobrntes de. Se quiere dividir l región encerrd entre l prábol y x y l rect y en dos regiones

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendo. UTN Álger Geometrí Anlíti 6 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio : Hlle l euión norml generl de l irunfereni siendo que el segmento de etremos (- ; 3) (4; -) es diámetro

Más detalles

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS

INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS INGENIERÍA TÉCNICA INDUSTRIAL CÁLCULO INFINITESIMAL COMPLEMENTOS 6: SUPERFICIES CUÁDRICAS * Se denominn superfiies uádris tods quells superfiies que pueden ser definids medinte un euión de segundo orden.

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es:

En el espacio una superficie cuádrica es la gráfica de una ecuación de segundo grado en las variables x, y, z. la forma general de esta ecuación es: UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE CIENCIAS BASICAS. SUPERFICIES CUADRICAS 1 SUPERFICIES CUADRICAS En el espio un superfiie uádri es l gráfi de un euión

Más detalles

Determinantes. Ejercicio nº 1.-

Determinantes. Ejercicio nº 1.- Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio

Más detalles

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz

Matemática Diseño Industrial Cónicas Ing. Avila Ing. Moll CÓNICAS. Directriz. Generatriz Mtemáti Diseño Industril Cónis Ing. Avil Ing. Moll CÓNICAS Diretriz Genertriz Un superfiie óni está generd por un ret (genertriz) que se mueve poyándose en un urv fij (diretriz) y que ps por un punto fijo

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique.

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES = = A donde ( ) ( ) 2. B calcule la matriz X que verifique. ES Pdre Poved (Gudi) Memáics plicds ls SS Deprmeno de Memáics loque : Álgebr Linel Profesor: Rmón Lorene Nvrro Uniddes : Mrices Deerminnes EJEROS UNDDES : MTRES Y DETERMNNTES (Jun-96) Encuenre un mriz

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

TEMA 3 DETERMINANTES. Cálculo de determinantes. EJERCICIO 1 : Calcular los siguientes determinantes: a b c a b c.

TEMA 3 DETERMINANTES. Cálculo de determinantes. EJERCICIO 1 : Calcular los siguientes determinantes: a b c a b c. Ejeriios volunrios Te Deerinnes y resoluión e sises Meáis CCSSII º Bh. TEMA DETERMINANTES Cálulo e eerinnes EJERCICIO : Clulr los siguienes eerinnes: ) ) ) ) e) f) g) h) i) j) ) l) ) n) ñ) o) p) q) r)

Más detalles

TRANSFORMACIONES EN EL ESPACIO (R 2 ) ECUACIONES

TRANSFORMACIONES EN EL ESPACIO (R 2 ) ECUACIONES TRNSFORMIONES EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR TRNSFORMIONES EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR Unidd Docene de Memáics de l E.T.S.I.T.G.. EUIONES DE LOS MOVIMIENTOS, HOMOTEIS Y SEMEJNZS

Más detalles

y a z b 2 = y a z b + c

y a z b 2 = y a z b + c 65 ESTUDIO DEL HIPERBOLOIDE DE UNA HOJA - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri

Más detalles

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son:

Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: Memáics II Deerminnes PVJ7. Se l mriz 8 9 7 Se B l mriz que resul l relizr en ls siguienes rnsformciones: primero se muliplic por sí mism, después se cmbin de lugr l fil segund y l ercer y finlmene se

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 8 Pág. Págin 88 PRACTICA Vectores y puntos Ddos los puntos A 0 B0 C y D hll ls coordends de los vectores AB BC CD DA AC y BD. AB = 0 0 = DA = 0 = BC = 0 = AC = 0 = 7 CD = = 6 BD = 0 = 8 Ls coordends del

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,

Más detalles

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos

MATEMÁTICAS II TEMA 3 Sistemas de ecuaciones lineales: Problemas propuestos Álgebr: Sisems wwwmemicsjmmmcom José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo

Más detalles

Determinantes y matrices

Determinantes y matrices Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los djunos de. El deerminne de vle L mriz de

Más detalles

a) Simetría respecto a los planos coordenados

a) Simetría respecto a los planos coordenados 53 ESTUDIO DEL ELIPSOIDE - Estudi de l Simetrí Simetrí respet ls plns rdends Simetrí respet l pln Cm l euión de l superfiie n se lter si mims el sign de l vrile, nluims que l superfiie es simétri respet

Más detalles

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a.

La hipérbola es el lugar geométrico de todos los puntos cuya diferencia de distancias a dos puntos fijos, llamados focos, es constante e igual a 2a. INSTITUTO VALLADOLID PREPARATORIA Págin 11 7 LA HIPÉRBOLA 7.1 DEFINICIONES L hipérol es el lugr geométrico de todos los puntos cuy diferenci de distncis dos puntos fijos, llmdos focos, es constnte e igul.

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Práol. Elise. Hierol Ojetivos. Se ersigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos de un

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Guss Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) compible deermindo compible indeermindo c) incompible Jusific en cd cso us respuess.

Más detalles

Eje normal. P(x,y) LLR Eje focal

Eje normal. P(x,y) LLR Eje focal . L Hipérol...1 L Hipérol omo lugr geométrio. L hipérol es el lugr geométrio de todos los puntos tles que el vlor soluto de l difereni de sus distnis dos puntos fijos es un onstnte. Los puntos fijos se

Más detalles

EN EL PLANO (R 2 ) EN EL ESPACIO (R 3 ) ECUACIONES CONSTRUIR CLASIFICAR ECUACIONES CONSTRUIR CLASIFICAR. Resumen de Transformaciones Geométricas

EN EL PLANO (R 2 ) EN EL ESPACIO (R 3 ) ECUACIONES CONSTRUIR CLASIFICAR ECUACIONES CONSTRUIR CLASIFICAR. Resumen de Transformaciones Geométricas Resmen de Trnsformciones Geomérics EN EL PLNO (R ) EUIONES ONSTRUIR LSIFIR EN EL ESPIO (R ) EUIONES ONSTRUIR LSIFIR Unidd Docene de Memáics de l E.T.S.I.T.G.. Resmen de Trnsformciones Geomérics Unidd Docene

Más detalles

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 XI.2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Págin del Colegio de Mtemátis de l ENP-UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos HIPÉRBOLA UNIDAD XI XI.1 DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno,

Más detalles

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2

6.2 DISTANCIA ENTRE DOS PUNTOS Consideremos la siguiente figura: Según el teorema de Pitágoras se tiene que: d x. y 2 UNIDAD 6: GEOMETRIA ANALÍTICA 6. SISTEMA DE COORDENADAS RECTANGULARES Un sistem de coordends rectngulres divide l plno en cutro cudrntes por medio de dos rects perpendiculres que se cortn en el punto O.

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN

B 1. d 1 d 2 B 2 ECUACIÓN ORDINARIA DE LA HIPÉRBOLA HORIZONTAL CON CENTRO EN EL ORIGEN Fultd de Contdurí Administrión. UNAM Hipérol Autor: Dr. José Mnuel Beerr Espinos MATEMÁTICAS BÁSICAS HIPÉRBOLA DEFINICIÓN DE HIPÉRBOLA Un hipérol es el lugr geométrio de todos los puntos P del plno, tles

Más detalles

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división.

MATEMÁTICAS II. x x x d) ( ) b) Como el grado del numerador y del denominador son iguales, hay que empezar por hacer la división. Albero Enero Conde Maie González Juarrero Inegral indefinida. Cálculo de primiivas Ejercicio Calcula la siguienes inegrales a) d b) d c) 6 d d) 3 d e) d 9 e a) Haciendo el cambio de variable d d. d d d

Más detalles

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función

Profesora Jessica Mora Bolaños Décimo año // Liceo San Nicolás de Tolentino Pág. 1 Función Déimo ño // Lieo Sn Niolás de Tolentino Pág. 1 Funión Ddos dos onjuntos no víos y, se denomin funión de en, l relión o orrespondeni de d elemento del onjunto on un ÚNICO elemento del onjunto. lgunos spetos

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clos lonso Ginoni OPCIÓN..- Clul l se l lu del iángulo isóseles de peímeo áe máim h Máimo. d d u u h u Si d d.h h IES Medieáneo de Málg Soluión Junio Jun Clos lonso

Más detalles

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab

Cálculo Integral. dt, entonces: a) f no es integrable en 11. , pues no es continua. c) f es integrable en Dada f integrable en ab .- Se F () ( ) d, enonces: cos Cálculo Inegrl ) F'() -(cos ) sen b) F'() cos c) F'() cos si.- Se f( ) - < si enonces: ) f no es inegrble en, pues no es coninu. b) f es inegrble en, y f( ) d. c) f es inegrble

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

Tema 10: Espacio Afin Tridimensional

Tema 10: Espacio Afin Tridimensional www.selecividd-cgrnd.co Te Espcio Afin Tridiensionl Se ll sise de referenci del espcio fín E l conjuno (O, u, u, u ). Siendo O un puno de E u, u, u res vecores libres que forn un bse de V. Ls recs OX,

Más detalles

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es:

Si P es el punto de coordenadas (x,y) de los datos del enunciado obtenemos: La pendiente de la recta que une P con A es: Halla el lugar geométrio de los puntos P(, ) tales que el produto de las pendientes de las retas trazadas desde P a los puntos: A (, 1) B (, 1) sea igual a 1. Qué figura obtienes? Represéntala. Si P es

Más detalles

Experimentos con una rueda de construcción casera. 1.- Estudio de un movimiento uniformemente acelerado

Experimentos con una rueda de construcción casera. 1.- Estudio de un movimiento uniformemente acelerado Experimenos con un rued de consrucción cser 1.- Esudio de un movimieno uniformemene celerdo Meril Rued de mder con eje de rdio 5 mm Plno inclindo 1,10 m Cronómero Flexómero Fundmeno Sopore de elevción

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición L hipérbol es el lugr geométrico de todos los puntos del plno cuyo vlor bsoluto de l diferenci de ls distncis dos puntos fijos es constnte. Más clrmente: Ddos (elementos bses de l hipérbol)

Más detalles

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL

FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como

Más detalles

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola

3.1 Circunferencia 3.2 Parábola 3.3 Elipse 3.4 Hiperbola Moisés Villen Muñoz Cónis. Cirunfereni. Prábol. Elipse. Hiperbol Objetivos. Se persigue que el estudinte: Identifique, grfique determine los elementos de un óni onoiendo su euión generl. Ddo elementos

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 ÁLGR (Seleividd ) José Mrí Mríne Medino LGUNOS PROLMS D SLCTVDD PROPUSTOS N Mries deerinnes rgón, junio Deerin el rngo de l ri, que ree oninuión, según los vlores de : ) Deerin, si eise, un ri,, que verifique

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1) º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)

Más detalles

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX

OPCIÓN A. 1.A.- Dadas las matrices: a) Determinar la matriz inversa de B. b) Determinar una matriz X tal que A = BX IES Medierráneo de Málg Solución Seiembre Jun Crlos lonso Ginoni OPCIÓN..- Dds ls mrices: Deerminr l mri invers de b Deerminr un mri X l que X X X X X dj dj IES Medierráneo de Málg Solución Seiembre Jun

Más detalles

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08.

ESTE MODELO SUSTITUYE AL ANTERIOR. FECHA: MODELO DE RESPUESTAS Objetivos 01 al 08. ESTE MODELO SUSTITUYE AL ANTERIOR FECHA: 5-- Seund Prue Prcil Lso - 7 /7 Universidd Ncionl Aier Memáics III Cód 7 Vicerrecordo Acdémico Cód Crrer: 6-8 Áre de Memáic Fech: -- OBJ PTA Clcul MODELO DE RESPUESTAS

Más detalles

CAPÍTULO 2: DETERMINANTES 1. CONCEPTO DE DETERMINANTE 1.1. Definición

CAPÍTULO 2: DETERMINANTES 1. CONCEPTO DE DETERMINANTE 1.1. Definición CPÍTULO : DETERMINNTES. CONCEPTO DE DETERMINNTE.. Definiión Dd un mriz udrd de orden n,...... n n se llm deerminne de l mriz se represen por... n............... n............ n n... nn un número rel que

Más detalles

HIPÉRBOLA. Ecuación de la hipérbola

HIPÉRBOLA. Ecuación de la hipérbola Mtemátic 014 HIPÉRBOLA Definición: Se llm hipérol l conjunto de puntos del plno que cumplen con l condición de que l diferenci de ls distncis dos puntos fijos, llmdos focos, es constnte. pf p f ' = constnte

Más detalles

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA

Trabajo Práctico N 9: APLICACIONES A LA GEOMETRÍA Fultd Regionl Mendoz. UTN Álger Geometrí Anlíti 13 Trjo Prátio N 9: APLICACIONES A LA GEOMETRÍA Ejeriio 1: Hlle l euión norml generl de l irunfereni que tiene por diámetro el segmento de etremos ( - 1,

Más detalles

, verificar que x. vectores propios. Determinar los valores propios correspondientes. Solución: λ

, verificar que x. vectores propios. Determinar los valores propios correspondientes. Solución: λ re 7 Sen : definido por (, y ) ( + y, ) y f ( ) + Hllr f ( )(, y) f ( )(, y) ( y, + y) Pr l mriz A, verificr que (,,) y (,, ) son vecores propios Deerminr los vlores propios correspondienes λ, λ, respecivmene

Más detalles