TEST. (20 puntos) Tiempo 30 minutos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEST. (20 puntos) Tiempo 30 minutos"

Transcripción

1 Mat II (GIB) - 3/4/207 Prueba (EC). 45 puntos (= 45 % NOTA FINAL) Apellidos Nombre DNI Grupo Tiempo 90 minutos TEST. (20 puntos) Tiempo 30 minutos Cada pregunta tiene una sola respuesta correcta. Marque con una cruz, a lo sumo una opción por pregunta. Puntuación: Correcto +2.5 Error -0.5 En blanco 0. SI NO. Todo subconjunto no vacio de reales tiene supremo que además es único. 2. Si a, b son irracionales, entonces a 2 + b 3 es irracional. 3. Si el conjunto A es numerable y el conjunto B es no numerable, entonces A B es no numerable. 4. Si a, b R a 0 entonces ab a 2 + b Si f() = l R, entonces a es un punto de acumulación de Dom(f). ( ) = e Si f : [a, b] R es derivable y tiene un mínimo local en 0, entonces f ( 0 ) = Si f () > 0 para todo de su dominio, entonces f es biyectiva.

2 Mat II (GIB) - 3/4/207 Prueba (EC) Problemas. (25 puntos) Apellidos Nombre DNI Grupo Tiempo 60 minutos Comience sus respuestas EN ESTA HOJA. Respuestas sin justicar recibiran muy poca o ninguna puntuación.. (0 puntos) Considere la función f() = e. Estudie su continuidad y derivabilidad. Halle sus etremos si los hubiere y clasifíquelos. Construya una representación gráca. 2. (0 puntos) Sea ahora la función g() = e si < 0 2 sen( ) si > 0 a) (3 puntos) Estudie su continuidad y derivabilidad. b) (3 puntos) Razone por qué es posible etenderla por continuidad al cero y dé su etensión continua h(). c) (4 puntos) Es ¾h() derivable en R? Y si lo es, ¾es la función h () continua?. 3. (5 puntos) Dé un enunciado riguroso del teorema que dice que el ite de la suma de funciones es la suma de los ites y demuéstrelo. SOLUCION:. Es claro que el dominio de f es Dom(f) = R\0}, ya que es composición de y la función eponencial; la primera tiene ese dominio, y su imagen está contenida en el dominio de la segunda. Por otro lado, al ser las funciones componentes continuas y derivables en dicho dominio, también f lo es. Ahora, por ser Dom(f) un abierto de R, y f derivable en todo su dominio, los etremos, de eistir, habrán de ser puntos críticos. Pero, f () = 2 e, que no se anula en Dom(f), por lo que no hay etremos. También observamos que la función f es decreciente en cada subintervalo < 0, 0 < de su dominio. Además, f () = e 3 ( 2 + ) A()B(). Claramente, el primer factor A() tiene el mismo signo que y no se anula, mientras que para el segundo tenemos: > 0 si < 2 ( ) 2 + = 0 si = 2 < 0 si 2 < < 0 > 0 si 0 <. Por tanto, tendremos que (A() < 0 B() > 0) si < 2 f () < 0 (A() < 0 B() = 0) si = 2 f () = 0 (A() < 0 B() < 0) si 2 < < 0 f () > 0 (A() > 0 B() > 0) si 0 <. f () > 0.

3 Así, como f es continua para < 0 ha de haber un punto de ineión en = 2, siendo, por tanto, f cóncava hacia abajo para < 2 y cóncava hacia arriba para > 2. Estudiemos ahora las asíntotas. Comencemos observando que el cambio de variable t = implica: 0 t 0 t 0 + t + + t 0 +. Puesto que se dan las hipótesis del teorema de composición del ite, podemos calcular los que nos interesan de la siguiente forma: e = t 0 et = ; e = t et = 0; e = + t + et = + ; e = + t 0 et =. + Como f() 0, 0, para poder dibujar correctamente la gráca, estudiemos con qué pendiente lo hace. Ello signica estudiar f () = 2 e, ya que f es continua para < 0. 2 e Calculemos, sin perdida de generalidad 2. Se trata de una indeterminación del tipo 0 0 y dado que se cumplen las hipótesis del teorema de L'Hôpital, podemos aplicarlo. Observemos, sin embargo, que al derivar el numerador siempre obtendremos un factor 2, mientras que al derivar el denominador sólo disminuiremos su eponente en una unidad, con lo que su grado aumentará en cada aplicación del teorema. Así, aplicar L'Hôpital, sin más, estará abocado al fracaso. Pero, observemos también que podemos escribir nuestra epresión como. e Ahora tenemos una indeterminación del tipo + + a la que de nuevo podemos aplicar L'Hôpital; pero ahora al derivar, las potencias de numerador y denominador podrían compensarse. En efecto, es así: Por tanto, 2 e = e = e = 6 e = 0. f () = 0. Ya podemos construir una representación gráca de f que tendría este aspecto:

4 2. Es claro, a partir de la denición, que el dominio Dom(g) es de nuevo R\0}.. a) Como g coincide con f en (, 0), ya sabemos por el ejercicio anterior, que es continua y derivable en este conjunto. En cuanto al subconjunto (0, + ), la función dada es derivable, y por tanto continua, pues se trata del producto de una función derivable, 2, multiplicada por la composición de funciones derivables, sen y ( ). Así, g es derivable, y por tanto continua, en su dominio. b) Obviamente, 0 / Dom(g), pero es un punto de acumulación de este conjunto, por lo que cabe hablar de g(). Para que g pueda etenderse a = 0 deberá de eistir dicho ite y para que la etensión h sea continua en 0 deberemos denir h(0) = g(). Que el ite eiste por la izquierda, ya lo sabemos del ejercicio anterior, pues g() = f() = 0. El ite por la derecha será, si eiste, g() = + 2 sen( ). Pero este ite es cero, ya que para + > 0: 0 g() = 2 sen( ) 2 0, 0 +, que, por el teorema del sandwich implica g() 0, 0 +, y por tanto: g() 0, 0 +. También podríamos haber razonado que este ite ha de ser cero, ya que se trata del producto de un innitésimo, 2 = o() = o(), 0, por una función localmente acotada en cero, sen( ) (de hecho, globalmente acotada en su dominio). Puesto que ambos ites eisten y coinciden, tendremos nalmente que g() = 0. Al eistir este ite, es posible etender g por continuidad al cero. Así, la función continua h que lo hace es: g() si 0 h() = 0 si = 0. c) Como h coincide con g en R\0} y ésta era derivable en ese conjunto, h también lo es. Queda por h(0 + ) h(0) estudiar el origen. Para que h sea derivable en = 0 deberá de eistir, es decir, 0 hemos de estudiar e para < 0, 0 h(0 + ) h(0) = 0 para > 0, 2 sen( ). 0 + El primer ite es cero, ya que < 2 <, y entonces, para < < 0 se tendrá: e 0 = e e 2 0, 0, como se vió al nal del ejercicio. También podríamos haber calculado el ite mediante el teorema de L'Hôpital, con las mismas salvedades que antes. Así: e 0 = 0 e = e = 0 e = 0. El segundo ite es también cero, pudiéndose razonar de manera análoga como lo hicimos antes. Con todo ello concluímos que la función h es derivable en todo R, siendo su derivada h g () si 0 () = 0 si = 0.

5 d) La función h es, eplícitamente: ( e ) = e h 2 si < 0 () = 0 si = 0 ( 2 sen( )) = 2 sen( ) cos( ) si > 0 Puesto que = 0 es un punto de acumulación del dominio de h, para que ésta sea continua en dicho punto debe de eistir el ite h () y coincidir con el valor h (0) = 0. Sin embargo, es claro a partir de la epresión eplícita de h anterior, que el ite h () no eiste, pues la función cos( + ) no tiene ite cuando 0 +. Así, la función h no es continua en = 0, y por tanto, no lo es en R. Sin embargo, es fácil razonar que sí lo es en R\0} 3. Eisten diversas variantes, más o menos generales, del teorema referido. Aquí daremos la más habitual: Sean A R, A y a R un punto de acumulación de A. Sean también f, g : A R funciones tales que f() = F R y g() = G R. Entonces, la función f + g : A R tiene ite en a, y éste vale F + G, es decir: (f + g)() = F + G. Demostración: Pueden darse diversas demostraciones de este resultado. Aquí daremos dos. La primera se basa en el hecho de que f() = F R si y sólo si se puede escribir f() = F + α(), donde α() = o(), a, es decir α es un innitésimo en a. Haciendo lo mismo con g, tendremos que g() = G + β(), con β() = o(), a. Por tanto, (f + g)() = f() + g() = F + α() + G + β() = (F + G) + α() + β() = (F + G) + γ(), siendo γ() α()+β() = o(), a, también un innitésimo en a. Esto implica (f+g)() = F +G. Que la suma de dos inntésimos sobre la misma base es de nuevo un innitésimo podría probarse, si se desea, modicando trivialmente la demostración ɛ, que sigue a continuación. La segunda será la clásica demostración ɛ,. Por ser f() = F R se tiene que: ε > 0, > 0 A, 0 < a < f() F < ε. Análogamente, por ser g() = G R se tiene que: ε 2 > 0, 2 > 0 A, 0 < a < 2 g() G < ε 2. Dado un ε > 0 arbitrario, tomemos un que corresponda a ε = ε 2, y un 2 que corresponda a ε 2 = ε 2. Entonces, deniendo mín, 2 }, tendremos que si ( A) 0 < a <, se cumplirá que (f + g)() (F + G) = (f() F ) + (g() G) f() F + g() G < ε 2 + ε 2 = ε

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Unidad 9. Límites, continuidad y asíntotas

Unidad 9. Límites, continuidad y asíntotas Unidad 9. Límites, continuidad y asíntotas. Límite de una función en un punto Piensa y calcula Halla mentalmente y completa la tabla siguiente:,9,99,,00,0, f () =,9,99,,00,0, f () =,9,99 3, 3 3,00 3,0

Más detalles

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno: Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas

Más detalles

E.U.I.T. Minas. Cálculo.

E.U.I.T. Minas. Cálculo. CURSO 009/00 E.U.I.T. Minas. Cálculo. Primera Prueba 9--009 Segunda Prueba --009 Tercera Prueba 6-0-00 Eamen Final 8--00 EXAMEN CÁLCULO -9-XI-009 Primera Prueba + + sen. a) Estudiar la paridad de la función:

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

Interogación 3-07/11/2017

Interogación 3-07/11/2017 PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICA Curso: Cálculo I Sigla: MAT6 - Segundo Semestre 07 Profesor: Giuseppe De Nittis gidenittis@mat.puc.cl Ayudante: Manuel Concha maconcha5@uc.cl

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

Estudio y gráficas de funciones

Estudio y gráficas de funciones PROBLEMAS RESUELTOS DE SELECTIVIDAD DE ESTUDIO Y GRÁFICAS DE FUNCIONES ) Sea f: R R la función definida por f() ( ) e. a) Halla las asíntotas de la gráfica de f. A.H. Hay que calcular ( ) e. Pero como

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

Límites y continuidad

Límites y continuidad Límite funcional 6 6. Límite funcional 79 6.2 Límites infinitos y en el infinito 8 6.3 Cálculo de límites 83 6.4 Continuidad 84 6.5 Teorema del valor intermedio 87 6.6 Monotonía 89 6.7 Ejercicios 9 La

Más detalles

I.- Representación gráfica de una función polinómica

I.- Representación gráfica de una función polinómica Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Departamento de Economía Eamen Final de Matemáticas I 22 de Enero de 2010 Duración del Eamen: 2 horas. APELLIDOS: NOMBRE: DNI: Titulación: Grupo: 2 + 1 1. Sea la función

Más detalles

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a 3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función

Más detalles

S11: Funciones continuas. Limites con dos variables.

S11: Funciones continuas. Limites con dos variables. S11: Funciones continuas. Limites con dos variables. Una función f() es continua en un punto interior a X si: 1) f = a B 2) f = A A = B = f(a) a + Discontinuidad de 1ª especie: A y B Si A = B f(a) (Discontinuidad

Más detalles

Límite de Funciones [1/35] Límite de Funciones. 24 de mayo de Límite de Funciones

Límite de Funciones [1/35] Límite de Funciones. 24 de mayo de Límite de Funciones [1/35] 24 de mayo de 2007 hacia el infinito [2/35] Introducción En este capítulo nos interesa extender el concepto de límite de sucesiones a funciones reales de variable real. La primera extensión natural

Más detalles

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x.

2) (1p) Demuestra que la derivada de y=ln x es y'=1/x. CURSO 00-0 6 de noviembre de 00. ) (p) Define función derivada. ) (p) Demuestra que la derivada de yln es y'/. 3) (p) Enuncia el criterio de la derivada segunda para el estudio de la curvatura y los puntos

Más detalles

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos

Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,

Más detalles

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) :

f : R R Definición 2. Se llama dominio de una función f (lo denotaremos por Dom f) al conjunto de valores para los que está bien definida f(x) : Resumen Tema 2: Funciones Concepto de función. Gráficas Definición. Se llama función (real de variable real) a toda aplicación f : R R que a cada número le hace corresponder otro valor f(). f() Definición

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

2. FUNCIONES CONTINUAS.

2. FUNCIONES CONTINUAS. . FUNCIONES CONTINUAS. En este capítulo nos centraremos en el estudio de las funciones continuas. Para ello, necesitamos estudiar el concepto de ite y algunas de sus propiedades..1. Límites de una función.1.1.

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Tema 4 Funciones(IV). Aplicaciones de la Derivada.

Tema 4 Funciones(IV). Aplicaciones de la Derivada. Tema 4 Funciones(IV). Aplicaciones de la Derivada. 1. Monotonía. Crecimiento y decrecimiento de una función. Etremos relativos 3. Optimización 4. Curvatura 5. Punto de Infleión 6. Propiedades funciones

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES 1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

Reglas para el cálculo de límites

Reglas para el cálculo de límites Reglas para el cálculo de ites Pedro González Ruiz Sevilla, diciembre 9. Introducción El objetivo de éste artículo es ofrecer al alumno un conjunto de reglas para tener éito en el cálculo de ites. El profesor,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

SOLUCIONES Límites y continuidad de funciones de varias variables 06-07

SOLUCIONES Límites y continuidad de funciones de varias variables 06-07 SOLUCIONES Límites continuidad de funciones de varias variables 6-7 Determinar las guientes funciones son acotadas: a z sen ( + ) cos( - e ), sen ( + ) cos( - e ), luego, es acotada: b z sen + sen Es acotada,

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

2.1 Derivadas Tipo Función Simple Función Compuesta

2.1 Derivadas Tipo Función Simple Función Compuesta Tema 2: Derivadas, Rectas tangentes y Derivabilidad de funciones. 2.1 Derivadas Tipo Función Simple Función Compuesta Constante Identidad Potencial Irracional Exponencial Logarítmica Suma Resta Producto

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS EJERCICIOS RESUELTOS 3 si Si la función f está definida mediante f (), calcula a y b para que sea a b si > continua. La función es continua en (, ) (, ), pues en

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Estudia la continuidad derivabilidad de las funciones f() g() si f() si < Estudiamos la continuidad en. f() ( ) - - f() ( ) + + La función f() es continua

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

Tema 7. Límites y continuidad. 7.1 Definición de límite de una función

Tema 7. Límites y continuidad. 7.1 Definición de límite de una función Tema 7 Límites y continuidad 7.1 Definición de límite de una función Sea f : I R, I R yseaa I un punto de acumulación de I, decimos que f() tiene límite l R en el punto a f() =l si ε > 0, η > 0: a < η

Más detalles

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón

Unidad 5. Funciones. Representación de funciones TEMA 5. REPRESENTACIÓN DE FUNCIONES. José L. Lorente Aragón TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

en su construcción sea mínima. Sol: r = 3, h =

en su construcción sea mínima. Sol: r = 3, h = RELACIÓN DE PROBLEMAS ) Encontrar los etremos absolutos de y 6+ definida en [0, ]. Sol. Má en 0 y ; mín -/ en,5. ) Hallar dos números positivos cuya suma sea 0, sabiendo que su producto es máimo. Sol.:

Más detalles

Tema 6: Límites y continuidad

Tema 6: Límites y continuidad Tema 6: Límites y continuidad March 25, 217 Contents 1 *Conceptos relativos a funciones 2 1.1 Dominio de funciones usuales........................................ 2 1.2 Funciones periódicas.............................................

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CT NOMBRE: IES Fernando de Herrera Curso / 5 Primer trimestre - Primer eamen º Bach CT NOMBRE: ) Sea la función f : R R definida por f() e ( + ) a) Calcular dominio, cortes con los ejes y asíntotas ( punto) b) Estudiar

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0.

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0. Matemática Aplicada - Licenciatura de Farmacia - Curso 005/006 - HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1) Estudiemos cada caso: x = x+5 a) El único número que verifica la condición es x =

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

Límites y continuidad

Límites y continuidad Límites elementales Límites y continuidad Límites elementales Ejercicio. a) 7+4 b) 5+3 2 2 + c) 2 2 4 2 d) 2 + 2 +4 2 Solución. a) 7+4 = 7 b) 5+3 2 2 + = 0 c) 2 2 4 2 d) 2 + 2 +4 2 = + Ejercicio 2. a)

Más detalles

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1)

Matemáticas Problemas resueltos de gráficas de funciones (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) PROBLEMAS RESUELTOS DE GRÁFICAS DE FUNCIONES (1) 1) Halle los intervalos de monotonía y los etremos relativos, los intervalos de curvatura y los puntos de infleión de la función g() + +. Represéntela gráficamente.

Más detalles

PROYECTO MATEM. Formas indeterminadas y la regla de L`Hôpital. En secciones anteriores se calcularon límites de algunas formas indeterminadas del tipo

PROYECTO MATEM. Formas indeterminadas y la regla de L`Hôpital. En secciones anteriores se calcularon límites de algunas formas indeterminadas del tipo Formas indeterminadas y la regla de L`Hôpital En secciones anteriores se calcularon ites de algunas formas indeterminadas del tipo, y, recurriendo a procesos algebraicos de factorización y racionalización.

Más detalles

Índice: Criterio de la variación del signo de la derivada primera. Condición necesaria de extremo relativo. Problemas.

Índice: Criterio de la variación del signo de la derivada primera. Condición necesaria de extremo relativo. Problemas. DERIVADAS LECCIÓN 6 Índice: Criterio de la variación del signo de la derivada primera. Condición necesaria de etremo relativo. Problemas..- Criterio de la variación del signo de la derivada primera Si

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.2. LÍMITES Y CONTINUIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD . FUNCIONES REALES DE VARIABLE REAL.. LÍMITES Y CONTINUIDAD... LÍMITE DE UNA FUNCIÓN EN UN PUNTO... LÍMITES INFINITOS... LÍMITES EN EL INFINITO..4.

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Tema 2 Funciones(II). I). Continuidad.

Tema 2 Funciones(II). I). Continuidad. Unidad. Funciones (II).Continuidad Tema Funciones(II). I). Continuidad. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones elementales. Operaciones con funciones continuas

Más detalles

TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos.

TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos. TEMA 2: DERIVADAS 1. Conocer el concepto de tasa de variación media de una función y llegar al concepto de derivada como límite de la tasa de variación media. 2. Conocer, sin demostración, las reglas dederivación

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1

1) (1,6p) Estudia la continuidad y clasifica las discontinuidades de la función: f(x)= e x -1. x-1 CURSO 2009-200 6 de diciembre de 2009. ) (,6p) Estudia la continuidad y clasifica las discontinuidades de la función: x - x- 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función: 3) (2p)

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Función Real de variable Real. Definiciones

Función Real de variable Real. Definiciones Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad 8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.

Más detalles

x + y + bz = a x + y + az = b bx + ay + 4z = 1

x + y + bz = a x + y + az = b bx + ay + 4z = 1 UC3M Matemáticas para la Economía Eamen Final, 3 de junio de 017 RESUELTO 1 Dados los parámetros a y b, se considera el sistema de ecuaciones lineales + y + bz = a + y + az = b b + ay + 4z = 1 (a) (5 puntos)

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es:

ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es: ANÁLIS. MAT. ING. - EXACTAS C 7 APELLIDO: NOMBRES: SOBRE Nº: Duración del eamen: hs DNI/CI/LC/LE/PAS. Nº: E-MAIL: CALIFICACIÓN: TEMA - --7 TELÉFONOS part: cel: Apellido del evaluador: + Ej. ( puntos) Sea

Más detalles

PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones. f(x) = x4 x 2 + 4x 4 2x 3 2x 2

PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones. f(x) = x4 x 2 + 4x 4 2x 3 2x 2 UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-) Elaborado por Miguel Labrador 2-0423 Ing. Electrónica PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones.

Más detalles

3 LÍMITE - Teoría y Ejemplos

3 LÍMITE - Teoría y Ejemplos 3 LÍMITE - Teoría y Ejemplos Introducción A partir del concepto de ite, podemos analizar el comportamiento de una función tanto en intervalos muy pequeños alrededor de un número real como cuando los valores

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N.

Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N. Cálculo Diferencial e Integral - Límite y continuidad. Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI.5 Límites laterales. Cálculo de límites. Límites en el infinito. Límites infinitos Límites

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím

a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que

Más detalles

Completar con letra clara, mayúscula e imprenta

Completar con letra clara, mayúscula e imprenta ANÁLIS. MAT. ING. - EXACTAS C 7 R TEMA - 4--7 APELLIDO: NOMBRES: DNI/CI/LC/LE/PAS. Nº: E-MAIL: TELÉFONOS part: cel: Completar con letra clara, maúscula e imprenta SOBRE Nº: Duración del eamen: hs CALIFICACIÓN:

Más detalles

1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO.

1.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. º Bachillerato Matemáticas I Tema 8:Límites y continuidad.- CONCEPTO DE LÍMITE. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. En ocasiones interesa saber hacia qué valor se aproima una función cuando la variable

Más detalles

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0.

Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1. x = x + 5 si x < 0. Matemática Aplicada - Licenciatura de Farmacia- HOJA 1 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 1 1. Estudiemos cada caso: a) El único número que verifica la condición es x = 5, ya que: x = x + 5 { x

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad Funciones, límites y continuidad Funciones Las funciones de una variable real son el principal objeto de estudio de este curso. Notación. Sea f : D f R R una función de una variable real. Entonces: D f

Más detalles

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0. PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

CÁLCULO DE DERIVADAS

CÁLCULO DE DERIVADAS TEMA 4 CÁLCULO DE DERIVADAS Contenidos Criterios de Evaluación 1. Función derivada.. Derivadas sucesivas. 3. Derivadas elementales. 4. Álgebra de derivadas. 5. La Regla de la Cadena. 6. Continuidad y derivabilidad.

Más detalles

RESUMEN DE APLICACIONES DE LA DERIVADA

RESUMEN DE APLICACIONES DE LA DERIVADA U U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESUMEN DE APLICACIONES DE LA DERIVADA

Más detalles

FUNCIONES. entonces:

FUNCIONES. entonces: FUNCIONES. Si f ( ) para y g( ), entonces: + g f ( ), para + B) g f ( ), para + C) g f ( ), para + D) g f ( ), para + (Convocatoria septiembre 00. Eamen tipo B) La composición de funciones es una operación

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. -CONTENIDOS: FUNCIONES REALES DE VARIABLE REAL. 1.1 Definición y terminología. 1. Funciones conocidas. 1. Operaciones con funciones. 1.4 Funciones recíprocas. 1.5 Funciones monótonas y funciones acotadas.

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente.

3) Halla el punto de la curva y=x 3-3x 2 +6x-4 en el que la recta tangente tiene pendiente mínima. Calcula la ecuación de dicha recta tangente. CURSO 4-5. Septiembre de 5. ) De la siguiente función f, se pide: a) Dominio. b) Derivada. c) Continuidad y discontinuidades. + f()= ln ) De la función del problema anterior, se pide. a) Asíntotas verticales.

Más detalles

Universidad Carlos III de Madrid

Universidad Carlos III de Madrid Universidad Carlos III de Madrid Eercise 2 3 4 5 6 Total Points Departmento de Economía Mathematicas I Eamen Final 22 enero 208 APELLIDOS: Duración: 2 horas. NOMBRE: ID: GRADO: GRUPO: () Sea la función

Más detalles

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.

3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz. 21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles