C 0 9LCULO DE DERIVADAS.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "C 0 9LCULO DE DERIVADAS."

Transcripción

1 Matem ticas II C 0 9LCULO DE DERIVADAS. Calcula las derivadas de las siguientes funciones, simplificando al m imo el resultado.. y ln tan Soluci n: y tan tan sin. y 5 Soluci n: y y e e e Soluci n: y e e e 4. y sin ln 5 Soluci n: y 0 5. y arcsincos Soluci n: y sin cos 6. y Soluci n: y ln 7. y 8. y sin ln Soluci n: y Soluci n: y cos ln ln 9. y ln 5 Soluci n: y y cos sin cos Soluci n: y sin. y sin cos tan Soluci n: y cos tan sin tan sin cos tan tan sin cos sin. y sin cos Soluci n: y sin coscos sin cos. y e sin Soluci n: y e sin cose sin 4. y arccos Soluci n: y 4 5. y arcsin Soluci n: y 6. y Soluci n: y 7. y sin Soluci n: y sin cos ln sin 8. y e e e e Soluci n: y e e e e 9. y ln Soluci n: y 0. y 5 5 Soluci n: y ln 5. y cos cos Soluci n: y sin sin. y arctan Soluci n: y

2 Matem ticas II. y e ln Soluci n: y ln e ln e ln e 4. y Soluci n: y ln ln 5. y sin cos cos sin Soluci n: y cos cos sin sin 6. y Soluci n: y 7. y ln cos5 7 Soluci n: y sin5 7 5 cos y Soluci n: y 9. y tan cos Soluci n: y tan cos tan tan cos sin 0. y Soluci n: y y arctan Soluci n: y. y Soluci n: y. y sin cos Soluci n: y 0 4. y 5 Soluci n: y 5 ln 5 5. y ln Soluci n: y 6. y 5 Soluci n: y y e e Soluci n: y 6e 8. y cos ln Soluci n: y sinln 9. y arcsin Soluci n: y arcsin 40. y tan Soluci n: y tan tan ln tan 4. y sin sin Soluci n: y 6sin cos 6cos 4. y Soluci n: y ln 4. y tan cot Soluci n: y 0 cot gg g 44. y e e Soluci n: y e e e e e e 45. y 5 7 Soluci n: y y arctan ln4 Soluci n: y arctan 47. y ln e Soluci n: y 48. y cos cos Soluci n: y cos cos 49. y ln arctan Soluci n: y 50. y Soluci n: y ln 5. y Soluci n: y 5. y arctan Soluci n: y 5. y ln Soluci n: y ln arctan sin cos cos cos sin cos arctan arctan

3 Matem ticas II 54. y arctan Soluci n: y 55. y e Soluci n: y e 4 e 56. y e sin sin e Soluci n: y cose sin cose e 57. y 6 Soluci n: y y ln arctan Soluci n: y 59. y cos Soluci n: y 60. y Soluci n: y 6. y sin cos sin Soluci n: y sin coscos sin cos 6. y tan tan Soluci n: y tan tan tan lntan tan tan tan 6. y tan tan Soluci n: y y e e Soluci n: y e e 65. y tan ln cos. Soluci n: y tan tan cos sin 66. y arctan Soluci n: y y 6 Soluci n: y cos lntan cos 68. y ln Soluci n: y ln 69. y e ln 8 Soluci n: y y tan tan Soluci n: y tan tan 7. y sin 4 Soluci n: y sin 4 cos 4 7. y cos tan Soluci n: y cos tan sin tan tan tan tan 7. y Soluci n: y 74. y sin Soluci n: y sin cos 75. y e 0 Soluci n: y y sin cos Soluci n: y 77. y sin Soluci n: y 78. y e Soluci n: y e 79. y arcsin 4 cos cos sin cos cos cos Soluci n: y 6 ln 80. y e ln sin Soluci n: y e lnsin e cos sin 8. y tan sec Soluci n: y tan sec tan sec tan 8. y tan tan Soluci n: y tan tan tan 8. y Soluci n: y 84. y arctan Soluci n: y 4 4

4 Matem ticas II 85. y ln Soluci n: y 86. y lnln Soluci n: y ln 87. y Soluci n: y 88. y ln Soluci n: y ln ln 89. y arcsin Soluci n: y arcsin 90. y arctan Soluci n: y 9. y lnsin Soluci n: y cos sin 9. y 0 tan Soluci n: y 0 tan tan tan ln 0 9. y sin cos Soluci n: y cos 94. y ln tan 4 Soluci n: y tan 4 tan y e arctan Soluci n: y earctan 96. y sin cos Soluci n: y cos sin 97. y ln 98. y Soluci n: y Soluci n: y ln 99. y ln sin Soluci n: y y ln Soluci n: y ln 0. y arctan cos cos Soluci n: y cos cos 0. y arccos Soluci n: y 4 0. y 4 Soluci n: y y ln ln Soluci n: y ln ln ln 05. y Soluci n: y 06. y sincos Soluci n: y coscossin 4 sin cos cos cos sin cos cos 07. y Soluci n: y ln ln 08. y tan Soluci n: y tan tan sin cos 09. y Soluci n: y 4 0. y. y Soluci n: y 4 5 cos sin cos sin Soluci n: y sin cos cos sin cos sin sin cos cos sin 4

5 Matem ticas II 4 sin cos 4 sin 4. y log 6 Soluci n: y ln ln. y sin Soluci n: y sin cos ln 4. y 5. y ln 6. y tan a Soluci n: y Soluci n: y Soluci n: y sin cos ln a a tan cos 7. y sin sin 4 cos cos4 Soluci n: y cos 4cos4 cos cos4 6 4cos cos 8. y a b 4 Soluci n: y 8aa b 9. y Soluci n: y sin sin 4 sin 4sin4 cos cos4 0. y 4 4 Soluci n: y 4 4 ln ln. y 4 arcsin Soluci n: y 4 ln4arcsin 4. y e e Soluci n: y e e e e e e e. y ln Soluci n: y ln 4 ln 4 4. y ln ln Soluci n: y ln ln 5. y e sin e cos Soluci n: y e cos e cos 6. y e ln Soluci n: y e ln e ln e e ln ln 7. y arctan Soluci n: y arctan arctan arctan 8. y Soluci n: y ln 9. y ln sin Soluci n: y sin ln cos ln sin ln 0. y arcsin e Soluci n: y e e e e e. y 5 Soluci n: y 5. y Soluci n: y y ln arcsin arcsin ln Soluci n: y arcsin ln 4. y 5 e 6 Soluci n: y 5 4 e 6 6 e y 8 arcsin Soluci n: y 8 arcsin ln 8 6. y cos Soluci n: y cos sin 5

6 Matem ticas II 7. y ln Soluci n: y 9 ln 8. y e 9 Soluci n: y e 9 e e y ln Soluci n: y 40. y arctancos Soluci n: y sin cos 4. y sin Soluci n: y cos sin 4. y sec5 Soluci n: y 5sin5 5sec5 tan5 cos 5 4. y tan 5 Soluci n: y tan 55 5tan 5 5 sin 5 cos y Soluci n: y 45. y a a Soluci n: y a a a ln a 46. y ln tan Soluci n: y tan tan 47. y 4 Soluci n: y y Soluci n: y y sin Soluci n: y sin lnsin cos sin 50. y 5 Soluci n: y y sin ln Soluci n: y cos ln ln 5. y cos sin Soluci n: y 0 5. y ln Soluci n: y 54. y sin cos Soluci n: y y ln y arctan 57. y y a b c 6 Soluci n: y 7 7 Soluci n: y 4 Soluci n: y 4 8 Soluci n: y ac b c 59. y tan cot Soluci n: y tan cot sin 60. y sine sin Soluci n: y cose sin cose sin 6

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

Ejercicios de derivadas e integrales

Ejercicios de derivadas e integrales Ejercicios e erivaas e integrales Este material puee escargarse ese http://wwwuves/~montes/biologia/matceropf Departament Estaística i Investigació Operativa Universitat e València Derivaas Reglas e erivación

Más detalles

. Aplicar esa expresión para calcular a 10. Solución:

. Aplicar esa expresión para calcular a 10. Solución: Álgebra elemental Cuestiones de álgebra elemental Ecuaciones e inecuaciones Una serie de números se define como sigue: a = ; a n a n a) Halla a, a, a 4 y a b) Determina la epresión general, en función

Más detalles

SEGUNDO EXAMEN PARCIAL CÁLCULO. I Parte. Respuesta Breve. Considere la siguiente gráfica de la función : tal que.

SEGUNDO EXAMEN PARCIAL CÁLCULO. I Parte. Respuesta Breve. Considere la siguiente gráfica de la función : tal que. Universidad de Costa Rica Instituto Tecnológico de Costa Rica SEGUNDO EXAMEN PARCIAL CÁLCULO 18 de junio de 2016 Este examen consta de dos partes: respuesta breve y desarrollo, para un total de 53 puntos.

Más detalles

Este taller es la base fundamental para el Primer Parcial y por lo tanto es un deber su realización y presentación.

Este taller es la base fundamental para el Primer Parcial y por lo tanto es un deber su realización y presentación. Universidad del Norte Facultad de Ciencias Básicas Departamento de Matemáticas Taller de Cálculo II Segundo Parcial Profesor Coordinador: Javier de la Cruz Periodo 0 de 08 Nombre: Fecha: Observación: Recuerde

Más detalles

Integrales por Sustitución (Cambio de Variable)

Integrales por Sustitución (Cambio de Variable) Integrales por Sustitución (Cambio de Variable) Sección Funciones algebraicas, trigonométricas y logarítmicas 40 () 4 5 5 5 5 5 5 5 (5 ) 5 5 5 5 5 4 4 9 9 9 9 9 8 6 6 (9 ) 9 9 9 9 9 44 " 4$ % 8 6& 8 6

Más detalles

Matemáticas II: Cálculo diferencial

Matemáticas II: Cálculo diferencial Matemáticas II: Cálculo diferencial Javier Segura Universidad de Cantabria Javier Segura (Universidad de Cantabria) Matemáticas II: Cálculo diferencial 1 / 22 Tema 1 1. NÚMEROS REALES, SUCESIONES Y SERIES.

Más detalles

Matemática I (BUC) - Cálculo I

Matemática I (BUC) - Cálculo I Matemática I (BUC) - Cálculo I Práctica 5: DERIVADAS Matemática I (BUC) / Cálculo I.. Calcular la derivada en el punto indicado, aplicando la definición: + 5 en ln( + ) en - + 7 en en. Calcular la recta

Más detalles

PAIEP. Regla de L Hôpital

PAIEP. Regla de L Hôpital Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Regla de L Hôpital Los límites de la forma a f( g( cuando f(a = g(a = 0, pueden evaluarse utilizando el teorema

Más detalles

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar Derivabilidad Sea f una función y a Dom(f). Definimos derivada de f en = a al siguiente límite cuando eiste y es finito f (a) = lím h 0 f(a+h) f(a) h Cálculo de Derivadas 1. Derivar una potencia 2. Derivar

Más detalles

Ejercicios para aprender a integrar Propiedades de las integrales:

Ejercicios para aprender a integrar Propiedades de las integrales: Julián Morno Mstr www.juliwb.s Ejrcicios para aprndr a intgrar Propidads d las intgrals: af d = a f d f ± g( ) d = f d ± g( ) d b a b f d = f d = [ F( ) ] a = F( b) F( a) a b Rglas d intgración: ad = a

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

MATEM - Precálculo Undécimo Año

MATEM - Precálculo Undécimo Año Universidad de Costa Rica Instituto Tecnológico de Costa Rica MATEM - Precálculo III EXAMEN PARCIAL 016 Nombre: código: Colegio: Miércoles 1 de setiembre INSTRUCCIONES 1. El tiempo máximo para resolver

Más detalles

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas

UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof. Jorge Ruiz Castillo. 1.1 Repaso de propiedades de funciones inversas Funciones Inversas UNIVERSIDAD DE CONCEPCION DEPARTAMENTO DE MATEMATICA Prof Jorge Ruiz Castillo Repaso e propieaes e funciones inversas Sea f : A B una función biectiva sea f : B A su función inversa

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

Chapter 1 Integración por partes

Chapter 1 Integración por partes Chater 1 Integración or artes Este método de integración se debe a la alicación de la derivada de un roducto de funciones [f ()g()] 0 = f 0 ()g() + f ()g 0 () Puesto que la integración es la oeración inversa

Más detalles

2. Funciones reales de una variable real Funciones elementales PROPIEDADES

2. Funciones reales de una variable real Funciones elementales PROPIEDADES . Funciones reales de una variable real.1. Funciones elementales.1.1. POPIEDADES Definiciones Se llama función real de una variable real a cualquier aplicación f : D, D, que hace corresponder a cada D

Más detalles

REGLAS DE DERIVACIÓN

REGLAS DE DERIVACIÓN REGLAS DE DERIVACIÓN.- DERIVADA DE UNA FUNCIÓN REAL DE VARIABLE REAL. Consideremos una función f definida en un conjunto abierto D un punto 0 Se dice que f es derivable en el punto 0 si el cociente f (

Más detalles

Con estas hipótesis siempre se verificará la siguiente tesis. f(x) g(x) =lim

Con estas hipótesis siempre se verificará la siguiente tesis. f(x) g(x) =lim Regla de L Hôpital Regla de L Hôpital Sean f y g funciones que verifican las siguientes condiciones: ) f y g son continuas en [a, b] ) f y g son derivables en ]a, b[ salvo quizás en ( ]a, b[) ) g () 6=

Más detalles

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato

TRABAJO DE SEPTIEMBRE Matemáticas 1º Bachillerato Trabajo de Verano 04 º BACHILLERATO TRABAJO DE SEPTIEMBRE Matemáticas º Bachillerato. Página Trabajo de Verano 04 º BACHILLERATO BLOQUE I: CÁLCULO TEMA (UNIDAD DIDÁCTICA 9): Propiedades globales de las

Más detalles

Ejercicios para aprender a integrar

Ejercicios para aprender a integrar Ejrcicios para aprndr a intgrar Propidads d las intgrals: af ) d = a f d b f ) d = Rglas d intgración: ad = a ( f ± g( ) d = f d ± g( ) d a a b [ F( ) ] = F( b) F( ) ( f d = a b Polinomios y sris d potncias

Más detalles

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

Soluciones de la relación de ejercicios del TEMA 0

Soluciones de la relación de ejercicios del TEMA 0 Soluciones de la relación de ejercicios del TEMA 0. Indica a que conjunto o conjuntos pertenecen los siguientes números: 0, 9, 4 5, 8, i,, 7, 7, +i,, π, 4 4 56 Para este ejercicio hay que tener en cuenta

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas Torma Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto Utilizando la dfinición, calcula la drivada d f ( ) n l punto = Utilizando la dfinición, halla la

Más detalles

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos

Matemáticas II TEMA 8 Derivadas. Teorema. Regla de L Hôpital Problemas Propuestos Matmáticas II TEMA 8 Drivadas. Torma. Rgla d L Hôpital Problmas Propustos Drivada d una función n un punto. Utilizando la dfinición, calcula la drivada d f ( ) n l punto. +. Utilizando la dfinición, halla

Más detalles

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad.

Definición de derivada Observación: Algunos de los enunciados de estos problemas se han obtenido de Selectividad. Definición de derivada Observación: Algunos de los enunciados de estos problemas se an obtenido de Selectividad Halla, utilizando la definición, la derivada de la función f ( ) en el punto = Comprueba

Más detalles

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV

DERIVACIÓN. mtan. y x x. lim lim y ' f '( x) CAPÍTULO IV 75 CAPÍTULO IV DERIVACIÓN. LA DERIVADA COMO PENDIENTE DE UNA CURVA La peniente e una curva en un punto ao, es iual a la peniente e la recta tanente a la curva en icho punto. Δ Q, Δ Q Q P, La peniente e

Más detalles

FUNCIONES RECUERDE QUE EL USO DE GRAFICADORES ES UNA HERRAMIENTA ÚTIL PARA CORROBORAR SUS RESULTADOS

FUNCIONES   RECUERDE QUE EL USO DE GRAFICADORES ES UNA HERRAMIENTA ÚTIL PARA CORROBORAR SUS RESULTADOS FUNCIONES mathspace.jimdo@gmail.com www.mathspace.jimdo.com RECUERDE QUE EL USO DE GRAFICADORES ES UNA HERRAMIENTA ÚTIL PARA CORROBORAR SUS RESULTADOS 1. Eprese la regla dada en forma de función y determine

Más detalles

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario Ciclo:01- Tema: Integrales Indefinidas (Ejercicios Adicionales) En los siguientes ejercicios calcule la integral indefinida por cualquier método de los vistos en clase: 1. xe x Haciendo [u x, dv e x ]

Más detalles

x x = 4 ( x + 6) 2 = (4 2 x) 2 x + 6 = 16 + ( 2 x) x 2x 12 = 8 2 x x 6 = 4 2 x (x 6) 2 = ( 4 2 x) 2 x x = 16(2 x)

x x = 4 ( x + 6) 2 = (4 2 x) 2 x + 6 = 16 + ( 2 x) x 2x 12 = 8 2 x x 6 = 4 2 x (x 6) 2 = ( 4 2 x) 2 x x = 16(2 x) Capítulo Problemas de Álgebra. Números Reales.. Ecuaciones Racionales Problema Halla las soluciones reales de: + 6 + = 4 + 6) = 4 ) + 6 = 6 + ) 8 = 8 6 = 4 6) = 4 ) + 36 = 6 ) + 4 + 4 = 0 = = 4 ± 6 6 =

Más detalles

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES

2. FUNCIONES REALES DE UNA VARIABLE REAL 2.1. FUNCIONES ELEMENTALES Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM.... Definición. FUNCINES REALES DE UNA VARIABLE REAL.. FUNCINES ELEMENTALES Se llama función real de una variable real a cualquier aplicación

Más detalles

) tan tan + tan tan + tan tan = (10 puntos c/u) Resuelva cada ecuación siguiente:

) tan tan + tan tan + tan tan = (10 puntos c/u) Resuelva cada ecuación siguiente: Universidad Católica de Valaraíso. a Prueba de Cátedra Instituto de Matemáticas MAT 46-00 Licenciatura y Pedagogía en Matemáticas. lunes 6 de octubre, 009 Tiene 90 ara resolver la rueba. Justi que todas

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

Tabla de derivadas. ...r'=o - """'"'" Y=X Y=X. '= u' ~' -y,-- --~6:x::-----! y=~ (2x+lf. , u' r;- j, 5 Y'=1 IY'=1.

Tabla de derivadas. ...r'=o - '' Y=X Y=X. '= u' ~' -y,-- --~6:x::-----! y=~ (2x+lf. , u' r;- j, 5 Y'=1 IY'=1. Función Derivada Tabla de derivadas Constante r y:k Jr =o -- - - "- oooo oooo... r-..-- - - - -...- _,,,_,,,.LY=B,_,,,,,,...! dentidad Y=X Y'= Funciones potenciales Y=X Ejemplos -------...r'=o - """'"'"-

Más detalles

DERIVADAS. Problemas con Solución.

DERIVADAS. Problemas con Solución. DERIVADAS. Problemas con Solución. Aplica la definición de derivada como un límite, para calcular f siendo fx = x + x +. 4. Sea la función fx = x/x, halla la derivada de f en el punto de abcisa usando

Más detalles

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES.

EJERCICIOS RESUELTOS TEMA 2: DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. EJERCICIOS RESUELTOS TEMA : DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. APLICACIONES. Ejercicio 1 Calcula las funciones derivadas de las siguientes funciones y simplifícalas: a) f ( ) sine b)

Más detalles

1 3PROBLEMARIO RESUMEN

1 3PROBLEMARIO RESUMEN PROBLEMARIO RESUMEN GUIAS PUBLICADAS POR EL DEPARTAMENTO DE MATEMATICAS PURAS Y APLICADAS DE LA UNIVERSIDAD SIMON BOLIVAR TRIMESTRE: ENERO C MARZO 8. DISPONIBILIDAD http://ma.usb.ve/cursos/ La gu as a

Más detalles

Métodos y técnicas de integración

Métodos y técnicas de integración Métodos y técnicas de integración (º) Integración por sstitción o cambio de variable En mchas ocasiones, cando la integración directa no es tan obvia, es posible resolver la integral simplemente con hacer

Más detalles

100 derivadas resueltas

100 derivadas resueltas 00 derivadas resueltas Cuaderno elaborado por Miguel Ángel Ruiz Domínguez Tabla de Derivadas #YSTP Con esta primera tabla lo que te ofrecemos son las reglas básicas para derivar. De este modo podemos realizar

Más detalles

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos

UNIVERSIDAD DIEGO PORTALES GUÍA N 11 CÁLCULO I. Profesor: Carlos Ruz Leiva DERIVADAS. Derivadas de orden superior. Ejemplos UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS Profesor: Carlos Ruz Leiva GUÍA N CÁLCULO I DERIVADAS Derivaas e oren superior Ejemplos Hallar las siguientes

Más detalles

CÁLCULO I (0251) GUIA DE PROBLEMAS PARCIAL 2

CÁLCULO I (0251) GUIA DE PROBLEMAS PARCIAL 2 Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada CÁLCULO I (05) GUIA DE PROBLEMAS PARCIAL Semestre -00 Noviembre 00 U.C.V. F.I.U.C.V. CÁLCULO I (05)

Más detalles

Exercicis de derivades

Exercicis de derivades Variació mitjana d'una funció 1. Calcula la variació mitjana de la funció f (x) = x 2 2 x als següents intervals: a) [ 1, 3 ] b) [0, 4 ] c) [1, 5 ] 2. Donada la funció següent: a) Quina és la variació

Más detalles

w w w. i c h. e d u. p e

w w w. i c h. e d u. p e wwwichedupe Identidades trigonométricas I Si cosn=ncos, calcule + n cos n cos n + sen cos n n cos n n n+ n De acuerdo a las siguientes condiciones pcos=psencot (I) qcos=qsencot (II) Calcule sen α senθ

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque PROBLEMARIO DE CÁLCULO 0 Semestre A-010 Prof. Cosme Duque TEMA 1 DERIVADAS 1. Derivada en un punto. Derivabilidad. Derivadas laterales. (a) Encuentre las pendientes de las recta tangente a la curva y =

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y Elaborado por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales de Primer orden Aplicaciones. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: ' 0 Solución:

Más detalles

Práctico 4: Funciones inversas

Práctico 4: Funciones inversas Práctico 4: Funciones inversas 1. Averiguar acerca e la inyectivia e las siguientes funciones en sus ominios naturales: 1.- y = ax + bx + c con a 6= 0.- y = x + ax + b con a>0.- y = x + ax + b con a

Más detalles

Métodos de Integración

Métodos de Integración CAPÍTULO Métodos de Integración.8 Combinación de métodos de integración.8. Introducción En las secciones anteriores hemos tratado con tres métodos de integración: cambio de variable, or artes y fracciones

Más detalles

CURSO CERO DE MATEMÁTICAS

CURSO CERO DE MATEMÁTICAS CURSO CERO DE MATEMÁTICAS Dr. José A. Reyes - Dra. Mónica Cortés - Dr. Fernando García RESUMEN TEORÍA DE CÁLCULO DIFERENCIAL Derivadas La derivada de una función se puede interpretar geométricamente como

Más detalles

Clasificación y transformación de funciones

Clasificación y transformación de funciones Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación

Más detalles

Linealidad. f, para toda función f ytodoescalarα. Primitivas de tipo inmediato. n+1 [f(x)] n f 0 (x)dx = [f(x)]n+1 + K dx =log x + K.

Linealidad. f, para toda función f ytodoescalarα. Primitivas de tipo inmediato. n+1 [f(x)] n f 0 (x)dx = [f(x)]n+1 + K dx =log x + K. Tabla de primitivas Linealidad (f + g) = f + g αf = α f, para toda función f todoescalarα Primitivas de tipo inmediato Potencia Logaritmo Eponencial Trigonométricas n d = n+ n+ [f()] n f ()d = [f()]n+

Más detalles

LA DERIVADA. Tan(ax)dx = - ln( Cos(ax) ) +C a. Cot(ax)dx = ln( Sen(ax) ) + C a. Sec(ax)dx = ln( Sec(ax)+Tan(ax) ) +C a

LA DERIVADA. Tan(ax)dx = - ln( Cos(ax) ) +C a. Cot(ax)dx = ln( Sen(ax) ) + C a. Sec(ax)dx = ln( Sec(ax)+Tan(ax) ) +C a LA DERIVADA ) m+ m +C, m = m+ ln(), m=- ) Sen() = - Cos()+ C ) Cos() = Sen() + C ) Tn() = - ln( Cos() ) +C ) Cot() = ln( Sen() ) + C ) Sec() = ln( Sec()+Tn() ) +C Csc() = - ln Csc()+Cot() +C 7) ( ) 8)

Más detalles

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014

Universidad de Costa Rica. Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO. Miércoles 3 de setiembre de 2014 Universidad de Costa Rica Instituto Tecnológico de Costa Rica TERCER EXAMEN PARCIAL CÁLCULO Miércoles 3 de setiembre de 04 INSTRUCCIONES Lea cuidadosamente, cada instrucción y pregunta, antes de contestar.

Más detalles

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA

CÁLCULO INTEGRAL INTEGRAL INDEFINIDA CÁLCULO INTEGRAL INTEGRAL INDEFINIDA Función primitiva : Una función F( se dice que es primitiva de otra función f( cuando F'( f( Por ejemplo F( es primitiva de f( Otra primitiva de f( podría ser F( +

Más detalles

Decimos que f es derivable en dicho punto si existe y es finito: Lím. En tal

Decimos que f es derivable en dicho punto si existe y es finito: Lím. En tal UNIDAD : DERIVADAS Y APLICACIONES.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO. Definición : Sea f una función definida en un a, b Dom f. Se llama tasa de intervalo [ ] variación media de f en dicho intervalo

Más detalles

Análisis Matemático 2006 Trabajo Práctico N 1 Representación de funciones Funciones lineales

Análisis Matemático 2006 Trabajo Práctico N 1 Representación de funciones Funciones lineales Análisis Matemático 006 Trabajo Práctico N Representación de funciones Funciones lineales ) Escriba la ecuación de la recta con pendiente m 0 que pase por el punto Q (,). Realice la representación gráfica

Más detalles

2. Funciones reales de una variable real Límites DEFINICIONES Y PROPIEDADES

2. Funciones reales de una variable real Límites DEFINICIONES Y PROPIEDADES .. Límites..1. DEFINICIONES Y PROPIEDADES Límite de una función en un punto Sea y = f() definida en un entorno del punto a R (aunque no, necesariamente, en el punto). Se dice que f tiene límite l en el

Más detalles

Universidad de Costa Rica Instituto Tecnológico de Costa Rica. Nombre: código: Colegio: Fórmula

Universidad de Costa Rica Instituto Tecnológico de Costa Rica. Nombre: código: Colegio: Fórmula Universidad de Costa Rica Instituto Tecnológico de Costa Rica Nombre: código: Colegio: Fórmula 1 Miércoles 07 de octubre 1. El tiempo máximo para resolver este examen es de horas.. Lea cuidadosamente cada

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

TEMA 3. TRIGONOMETRÍA

TEMA 3. TRIGONOMETRÍA TEMA 3. TRIGONOMETRÍA Este documento tiene como propósito que conozcas las funciones trigonométricas y las reglas que los norman. Para facilitar la comprensión del tema, se incluyen algunos ejemplos. Subtema

Más detalles

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica FUNCIONES TRIGONOMETRICAS INVERSAS Son necesarias para calcular los ángulos de un triangulo a partir de la medición de sus lados,aparecen con frecuencia en las soluciones de ecuaciones diferenciales Sin

Más detalles

TEMA 3: Funciones de varias variables: ĺımites y continuidad

TEMA 3: Funciones de varias variables: ĺımites y continuidad TEMA 3: Funciones de varias variables: ĺımites y continuidad Cálculo Ingeniero de Telecomunicación Cálculo () TEMA 3 Ingeniero de Telecomunicación 1 / 69 1 Funciones Elementales 2 El conjunto R n Estructuras

Más detalles

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD:

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD: . Resolver la inecuación: Solución: empleando la siguiente propiedad de valor absoluto a a a, tenemos lo siguiente: Resolviendo por el método de puntos críticos, para cada caso tenemos: 0 0 0 Entonces

Más detalles

CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/2 LIC. JESÚS REYES HEROLES

CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/2 LIC. JESÚS REYES HEROLES CENTRO DE ESTUDIOS DE BACHILLERATO Nº / LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO DEL EXAMEN EXTRAORDINARIO DE CÁLCULO INTEGRAL ELABORÓ: PROF. L. M. A. JUAN MANUEL VALDEZ CHÁVEZ SEMESTRE: A SEXTO INSTRUCCIONES.

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

CÁLCULO INTEGRAL 1/er Parcial

CÁLCULO INTEGRAL 1/er Parcial CÁLCULO INTEGRAL /er Parcial sen cos. El integrando en la epresión: es: ( ) a) b) sen cos sen cos c) d). Se dice que una función F es una anti derivada de una función f si: ( ) a) F () = f() b) F() = f()

Más detalles

Se define la derivada de una función f(x) en un punto "a" como el resultado, del siguiente límite:

Se define la derivada de una función f(x) en un punto a como el resultado, del siguiente límite: TEMA: DERIVADAS. Derivada de una función en un punto Se define la derivada de una función f() en un punto "a" como el resultado, del siguiente límite: f ( a + ) f ( a) f '( a) lim Si el límite eiste es

Más detalles

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x

= en los puntos (0;1) y (1;0,5) Determine la razón de cambio promedio de la función en cada intervalo: x Trabajo Práctico N : DERIVADA Y DIFERENCIAL Ejercicio : Halle la pendiente de la gráfica de la función en los puntos dados aplicando la definición de derivada de una función en un punto. Después halle

Más detalles

Introducción a las derivadas

Introducción a las derivadas Introducción a las derivadas Esquema Tasa de variación media en un intervalo Para una función f(x) se define la tasa de variación media de f en un intervalo [a, b], contenido en el dominio f(x), mediante

Más detalles

Problemas de Cálculo Matemático E.U.A.T. CURSO Segundo cuatrimestre. Problemas del Tema 9. Funciones de dos variables.

Problemas de Cálculo Matemático E.U.A.T. CURSO Segundo cuatrimestre. Problemas del Tema 9. Funciones de dos variables. 1 Problemas de Cálculo Matemático E.U.A.T. CURSO 2003-2004 Segundo cuatrimestre Problemas del Tema 9. Funciones de dos variables. 1. Determinar el dominio de cada una de las siguientes funciones: f(x,

Más detalles

SOLUCIONARI Unitat 2. Comencem. Exercicis

SOLUCIONARI Unitat 2. Comencem. Exercicis SOLUCIONARI Unitat Comencem Representa en paper mil limetrat la funció f() + 4. Traça amb la màima cura possible la recta tangent a la paràbola en el punt P(, ). Mesura amb un transportador l angle que

Más detalles

Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas

Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas Cuaderno de ejercicios INTEGRALES Lic. F.M. José Luis Estrada Pantía Andahuaylas - Perú 0 A: Yris Stephany E.

Más detalles

Asignatura : Análisis Numérico Grupo : ::Tarea 1::.

Asignatura : Análisis Numérico Grupo : ::Tarea 1::. .::Tarea 1::. Ejercicios Teóricos 1. Convertir los siguientes Números Binarios en forma decimal. (a) 11111110 dos (b) 1000000111 dos (c) 0.1010101 dos (d) 0.110110110 dos (e) 1.0110101 dos (f) 11.00100100001

Más detalles

GUIA DE EJERCICIOS MATEMÁTICAS 2

GUIA DE EJERCICIOS MATEMÁTICAS 2 GUIA DE EJERCICIOS MATEMÁTICAS 2 La presente guía representa una herramienta para el estudiante para que practique los temas dictados en matemáticas 2. Al final están las soluciones a los ejercicios para

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

2.5 Ecuaciones diferenciales homogéneas

2.5 Ecuaciones diferenciales homogéneas .5 Ecuaciones diferenciales homogéneas 59.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de sus variables..

Más detalles

Fundación Uno A)300 B)200 C)100 D)250 E)150

Fundación Uno A)300 B)200 C)100 D)250 E)150 ENCUENTRO # 55 TEMA:Trigonometría. CONTENIDOS: 1. Ley de Senos. 2. Ley de cosenos. Ejercicio reto 1. En la figura, el rectángulo EFGH se encuentra inscrito en el rectángulo ABCD de maneraque AD = E H =

Más detalles

CÁLCULO 40 ECUACIONES DIFERENCIALES. ECUACIONES DIFERENCIALES DE 1er ORDEN A. ECUACIONES DEFERENCIALES DE VARIABLES SEPARADAS

CÁLCULO 40 ECUACIONES DIFERENCIALES. ECUACIONES DIFERENCIALES DE 1er ORDEN A. ECUACIONES DEFERENCIALES DE VARIABLES SEPARADAS CÁLCULO 40 ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DE er ORDEN A. ECUACIONES DEFERENCIALES DE VARIABLES SEPARADAS Resolver las siguientes Ecuaciones Diferenciales:. c = - + Ln = + +. = e -e -

Más detalles

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x)

1. Hallar la derivada por definición de f ( x) x x 1. Solución: para resolver la derivada aplicaremos la definición de la derivada: f '( x) . Hallar la erivaa por efinición e f ( ) Solución: para resolver la erivaa aplicaremos la efinición e la erivaa: f '( ) lim 0 f ( ) f ( ) f ( ) f '( ) lim 0 ara allar la erivaa meiante efinición ebemos

Más detalles

DERIVADAS DE LAS FUNCIONES ELEMENTALES

DERIVADAS DE LAS FUNCIONES ELEMENTALES Universia Metropolitana Dpto. e Matemáticas Para Ingeniería Cálculo I (FBMI0) Proesora Aia Montezuma Revisión: Proesora Ana María Roríguez Semestre 08-09A DERIVADAS DE LAS FUNCIONES ELEMENTALES DERIVADAS

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de E de variable separables, llamadas así porque es práctrica

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

2.2 Ecuaciones diferenciales de variables separables

2.2 Ecuaciones diferenciales de variables separables 38 Ecuaciones diferenciales. Considerado a t como la variable independiente: s 0 ds dt s 3ts s 4 9ts.s/.s 3t/.s/.s3 9t/ s 3t s 3 9t ; excepto los puntos que están en la curva s 3 9t 0 en el eje t.s 0/.

Más detalles

Funciones Transcendentes

Funciones Transcendentes Funciones Transcendentes Unidad Gil Sandro Gómez Santo Domingo 04 de diciembre de 0 Contenido Introducción....0 Función logaritmo natural... 3. Propiedades de la función logaritmo natural... 3. El número

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y ' + y = 0 Elaborao por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales e Primer oren Aplicaciones. Grafique la familia e curvas que representa la solución general e la ecuación iferencial: ' + = 0 Solución:

Más detalles

Unidad I Funciones Expresar una función. Dominios

Unidad I Funciones Expresar una función. Dominios Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

1. Función primitiva e integral indefinida

1. Función primitiva e integral indefinida Entrenamiento Matemático Sesión 0 (4 -Octubre-00) Cálculo elemental de Primitivas GRUPO:. Función primitiva e integral indefinida Dada una función f: R-->R, se dice que una función derivable F es primitiva

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca Sesión Temas Método de sustitución o cambio de variable.. Introducción Capacidades Conocer y comprender el método de cambio de variable. Calcular integrales indefinidas que se pueden obtener aplicando

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial

Funciones elementales. A.1 Funciones potenciales. A.2 Función exponencial Funciones potenciales A A. Funciones potenciales La función potencial f : R + R definida como f (x) = x b tiene sentido para cualquier exponente b real. En el caso particular de potencias naturales, se

Más detalles

Semana 3 [1/28] Derivadas. 2 de agosto de Derivadas

Semana 3 [1/28] Derivadas. 2 de agosto de Derivadas Semana 3 [1/28] 2 de agosto de 2007 Funciones derivables Semana 3 [2/28] Derivabilidad en un punto Función derivable en un punto Diremos que f : (a, b) Ê es derivable en el punto x (a, b), si existe el

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de E de primer orden 2.8 Miscelánea En este apartado queremos responder a la pregunta cómo proceder cuando se nos pide resolver una ecuación diferencial ordinaria de primer

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE EDUCACIÓN Y CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE EDUCACIÓN Y CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO FACULTAD DE CIENCIAS EXACTAS Y APLICADAS JEFATURA DE EDUCACIÓN Y CIENCIAS BÁSICAS TALLER CÁLCULO DIFERENCIAL EJE TEMÁTICO : LÍMITES Y CONTINUIDAD OBJETIVO Comprender

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad Funciones, límites y continuidad Funciones Las funciones de una variable real son el principal objeto de estudio de este curso. Notación. Sea f : D f R R una función de una variable real. Entonces: D f

Más detalles