Chapter 1 Integración por partes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Chapter 1 Integración por partes"

Transcripción

1 Chater 1 Integración or artes Este método de integración se debe a la alicación de la derivada de un roducto de funciones [f ()g()] 0 = f 0 ()g() + f ()g 0 () Puesto que la integración es la oeración inversa de la derivación; entonces [f ()g()] 0 d = f ()g() Como la integral de una suma es la suma de integrales se obtiene: Desejando f ()g() = [f ()g()] 0 d = f 0 ()g()d + f ()g 0 ()d f ()g 0 ()d obtendremos la regla de integración or artes: f()g 0 ()d = f ()g() f 0 ()g()d Nota 1: La elección de f() y g () es fundamental. Siemre es conveniente elegir g () de manera que se ueda integrar facilmente Nota : La segunda integral ha de ser más sencilla de resolver que la rimera Nota : En muchas ocasiones tendrás que reetir este método varias veces Ejemlos: 1. lnd f () = ln ; f 0 () = 1 g 0 () = 1 ; g() = 1d =. sind ln d = ln f () = ; f 0 () = g 0 () = sin ; g() = 1 d = ln sind = cos 1d = ln 1

2 Chater 1 Integración or artes sind = cos + Volvemos a integrar or artes ara calcular f () = ; f 0 () = 1 g 0 () = cos ; g() = cosd = sin cos d cos d = sin sin d = sin + tendremos: sind = cos + cosd = cos + (sin + cos ). d = 1 sind = cos + sin + cos 0 d 1 f () = ; f 0 () = 1 g 0 () = ; g() = 1 1 d = 1 1 d = d@ 1 1 d = d = 1 d d = arcsin d@@ 1 tendremos: d = 1 + arcsin d 1 1 Observa que la integral inicial I aarece a ambos lados de la igualdad. 1 + arcsin I Desejando I como si de una ecuación se tratase tendríamos 1 + arcsin (Integral cíclica)

3 La integración or artes, es muy útil ara calcular integrales del siguiente tio: Integral Elecci on ln d f () = ln ;g 0 () = 1 P n () ln d f () = ln ;g 0 () = P n () P ()e d f () = P ();g 0 () = e P () sin d f () = P ();g 0 () = sin P () cosd f () = P ();g 0 () = cos e sind f () = sin ;g 0 () = e (Cíclica) e cos d f () = cos;g 0 () = e (Cíclica) sec +1 d = sec 1 sec d f () = sec 1 ;g 0 () = sec (Cíclica) csc +1 d = csc 1 csc d f () = csc 1 ;g 0 () = csc (Cíclica) arctan d f () = arctan;g 0 () = 1 P n () arctan d f () = arctan ;g 0 () = P n () arcsin d f () = arcsin ;g 0 () = 1 P n () arcsin d f () = arcsin ;g 0 () = P n () sin d = sin sind f () = sin;g 0 () = sin (C {clica) cos d = cos cos d f () = cos ;g 0 () = cos (C {clica) d 1 f () = ;g0 () = (C {clica) 1 d f () = 1 + ;g0 () = (C {clica) d f () = ;g0 () = 1 (C {clica) etc, etc,...

4 Chater 1 Integración or artes Ejercicios de integracion or artes ln d = 1 1 (ln ) R 1 d = 1 ln 1 9 sind = cos + cos d = Volvemos ½ a integrar or artes la segunda integral considerando que: f () = f 0 () = 1 g 0 Con lo que () = cos g() = sin sind = cos + sin sin d sind = cos + [ sin + cos ]. cos d = 4 sin R sin d = 5 sin cos R ( cos) d = sin sin + cos e d = 6 e R e d = e e e d = 7 e R e d = e d = e (e R e d) = e + e cosd = 9 e cos + R sin e d = Volvemos a integrar or artes la segunda integral considerando que: >< f() = ln f 0 () = 1 >: g 0 ()= g() = ½ f()= f 0 ()= ½ g 0 () = sin g() = cos f()= f 0 ()= 1 ½ g 0 () = cos g()= sin f()= f 0 ()= ½ g 0 () = cos g()= sin f()= f 0 ()= 1 ½ g 0 () = sin g() = cos f()= f 0 ()= 1 ½ g 0 () =e g()=e f()= f 0 ()= ½ g 0 () =e g()=e f()= f 0 ()= 1 ½ g 0 () =e g()=e f()= cos f 0 () = sin g 0 () =e g() =e 4

5 Section 1.1 Ejercicios de integracion or artes ½ f () = sin f 0 () = cos g 0 () = e g() = e Con lo que: e cosd = e cos + e sin R e cos d Cíclica: Si Desejas R e cos d tendrás e cosd = e cos + e sin e sin 4d = 10 1 e sin 4 4 e cos4d Volvemos ½ a integrar or artes la segunda integral considerando que: f () = cos 4 f 0 () = 4 sin4 g 0 () = e g() = 1 Con lo que: e e sin4d = 1 e sin4 4 1 e cos4 + 4 e sin 4d : Cíclica: 1 e sin4 4 9 e cos I Como e sin e cos4 ; entonces: e sin e cos4 0 = 4 5 e cos4 + 5 e sin4 cos 4cosd = ½ f () = cos 4 f 0 () = 4 sin 4 g 0 () = cos g() = 1 sin,con lo que cos 4 cos d = 1 sin cos4 + R sin 4 sind Volvemos ½ a integrar or artes la segunda integral considerando que: f () = sin4 f 0 () = 4 cos4 g 0 () = sin g() = 1 Con lo que: cos 1 sin cos cos sin 4 + I 1 sin cos 4 cos sin4 + 4I 1 sin cos 4 cos sin sin cos4 + 1 cos sin4 0 R sin d = cos cosd cos d = cos cosd cos d = 11 sin sin d = sin + cos sin( )d ½ f()= sin4 f 0 ()= 4sin4 ½ g 0 () =e g()= 1 e f()= f 0 ()= 1 g 0 () = cos g()= sin 5

6 Chater 1 Integración or artes 1. arctan d = arctan 1 ln arctan d = 1 arctan arctan 15. arcsind = arcsin + (1 ) 16. arcsin d = 1 arcsin (1 ) 1 4 arcsin 17. sec d = R sec sec d < f () = sec f 0 () = sectan : g 0 () = sec g() = sec,con lo que: d = tan sec tan sec tan d = sec tan sec sec 1 d = sec d = sec tan + sec d sec d sec tan + ln jsec + tan j I Desejando sec d tendremos sec sec tan + lnjsec + tanj d = 0 csc d = csc csc d < f () = csc f 0 () = csc cot : g 0 () = csc g() = csc,con lo que: d = cot csc cot csc cot d = csc cot csc csc 1 d = csc d = csc cot + cscd csc d csc cot + ln jcsc cotj I Desejando csc d tendremos csc csc cot + lnjcsc cotj d = 0 1 d = 1 1 1d 1 1d = d 1 f()=!f 0 ()= 1 g 0 () = 1!g()= 1 d = 1 6

7 Section 1.1 Ejercicios de integracion or artes I + 1 d! 1+ ln 1 + ln + ( 1) arcsin d = 1 arcsin 1 d 1 arcsin 1 d = 1 arcsin 1 J Calculemos J or artes J = d = d 1 q J = 1 (1 ) J = 1 (1 ) (1 ) (1 Sacando factor común ) ; tendremos: (1 J = ) (1 ) (1 ) J = Sustituyendo este valor eni tendremos à arcsin 1! (1 ) 0 1 arcsin (1 ) + 9 (1 ) 0 sin cos d = sin sin cos d < f () = sin f 0 () = cos : g 0 () = sin sin cos g() = cos d = 1 sec sin cos d = 1 sec sin 1 sec cos d sin cos d = 1 sec tan 1 secd : + ( 1),con lo que: 1 f()= arcsin!f 0 ()= g 0 () =!g()= 14 f()= ;f 0 () = g 0 () = ;g()= d = 1 d= 1 7

8 Chater 1 Integración or artes.. sin cos d = 1 sec tan 1 ln jsec + tan j (1 + ) d = (1 + ) d < f () = f 0 () = 1 : g 0 () = (1 + ) g() = (1 + ) d = 1,con lo (1+ ) que: (1 + ) d = (1+ ) (1+ ) d (1 + ) d = (1+ ) + 1 arctan cos sin d = cos cos sin d : < f () = cos f 0 () = sin : g 0 () = cos cos sin g() = sin d = 1,con lo que: csc cos sin d = 1 csc cos 1 csc sin d sin cos d = 1 csc cos 1 cscd : sin cos d = 1 csc cot 1 lnjcsc cotj

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

Integrales por Sustitución (Cambio de Variable)

Integrales por Sustitución (Cambio de Variable) Integrales por Sustitución (Cambio de Variable) Sección Funciones algebraicas, trigonométricas y logarítmicas 40 () 4 5 5 5 5 5 5 5 (5 ) 5 5 5 5 5 4 4 9 9 9 9 9 8 6 6 (9 ) 9 9 9 9 9 44 " 4$ % 8 6& 8 6

Más detalles

duv = udv + vdu udv = uv vdu

duv = udv + vdu udv = uv vdu I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL INDEFINIDA. Actividad 1. DIFERENCIALES CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/ LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO ASIGNATURA PROFESOR SEMESTRE CÁLCULO INTEGRAL L. M. A. JUAN MANUEL VALDEZ CHÁVEZ 0 0 B SEXTO

Más detalles

1. Función primitiva e integral indefinida

1. Función primitiva e integral indefinida Entrenamiento Matemático Sesión 0 (4 -Octubre-00) Cálculo elemental de Primitivas GRUPO:. Función primitiva e integral indefinida Dada una función f: R-->R, se dice que una función derivable F es primitiva

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ).

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ). EDO ara Ingenieros CAPITULO 4 FACTORES ITEGRATES Suongamos que aora que nos dan una ecuación diferencial M (, ) + (, ) d = 0 ( I) Que no es eacta Eiste alguna forma de acerla eacta? Con más recisión, Eistirá

Más detalles

C 0 9LCULO DE DERIVADAS.

C 0 9LCULO DE DERIVADAS. Matem ticas II C 0 9LCULO DE DERIVADAS. Calcula las derivadas de las siguientes funciones, simplificando al m imo el resultado.. y ln tan Soluci n: y tan tan sin. y 5 Soluci n: y 5 5 4. y e e e Soluci

Más detalles

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa Elasticidad de la demanda. El término se reresenta or la letra griega η que reresenta x cccccccccccc eeee dddddddddddddd cccccccccccc eeee = 00( xx xx ) dddd 00( = ) xx dddd = ηη Deendiendo del valor que

Más detalles

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte

Primer curso de Ingeniero de Telecomunicación Examen de 12 de Septiembre de 2006 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen de 2 de Setiembre de 2 Primera arte Ejercicio. A medianoche, el barco Arrow se encuentra situado a kilómetros en dirección este del barco Blue.

Más detalles

ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1

ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1 ECUACIONES DIFERENCIALES GUIA DE EJERCICIOS NUMERO 1 ECUACIONES DIFERENCIALES GENERAL. INTRODUCCION. 1.- En las siguientes ecuaciones diferenciales, determine orden del diferencial si es una ecuación diferencial

Más detalles

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

Reglas de derivación (continuación)

Reglas de derivación (continuación) Derivaas Reglas e erivación Suma [f() + g()] = f () + g () Proucto Cociente [kf()] = kf () [f()g()] = f ()g() + f()g () [ ] f() = f ()g() f()g () g() g() Regla e la caena {f[g()]} = f [g()]g () {f(g[h()])}

Más detalles

GUÍA: INTEGRALES. Página 1 de 27

GUÍA: INTEGRALES. Página 1 de 27 GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La

Más detalles

Con estas hipótesis siempre se verificará la siguiente tesis. f(x) g(x) =lim

Con estas hipótesis siempre se verificará la siguiente tesis. f(x) g(x) =lim Regla de L Hôpital Regla de L Hôpital Sean f y g funciones que verifican las siguientes condiciones: ) f y g son continuas en [a, b] ) f y g son derivables en ]a, b[ salvo quizás en ( ]a, b[) ) g () 6=

Más detalles

Ecuaciones y sistemas ecuaciones

Ecuaciones y sistemas ecuaciones Ecuaciones y sistemas de ecuaciones trigonométricas Juan José Isach Mayo 7/0/007 Contents I Ecuaciones y sistemas ecuaciones trigonométricas Ecuaciones trigonométricas. Ejemlos de ecuaciones trigonométricas...............

Más detalles

NÚMEROS RACIONALES Q

NÚMEROS RACIONALES Q NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,...

Más detalles

Ejercicios de derivadas e integrales

Ejercicios de derivadas e integrales Ejercicios e erivaas e integrales Este material puee escargarse ese http://wwwuves/~montes/biologia/matceropf Departament Estaística i Investigació Operativa Universitat e València Derivaas Reglas e erivación

Más detalles

REPASO DE CÁLCULO I INTEGRAL. Repaso General sobre Métodos de Integración Indefinida Guía Complementaria No.03

REPASO DE CÁLCULO I INTEGRAL. Repaso General sobre Métodos de Integración Indefinida Guía Complementaria No.03 Cálculo II c/geometría Analítica (MAT0), Secc.6 er Trimestre, er Semestre 06; er Parcial Documento Elaborado por: M.Sc. Ing. Julio César López Zerón CICH6 REPASO DE CÁLCULO I INTEGRAL Repaso General sobre

Más detalles

Repaso de integración

Repaso de integración TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()

Más detalles

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica

LA FUNCION SENO CONDOMINIO RESTRINGIDO. F(X)=sen x en el intervalo [, ] es creciente y por lo tanto inyectiva es. y el recorrido es [-1, 1] su grafica FUNCIONES TRIGONOMETRICAS INVERSAS Son necesarias para calcular los ángulos de un triangulo a partir de la medición de sus lados,aparecen con frecuencia en las soluciones de ecuaciones diferenciales Sin

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N. Objetivos a cubrir Código : MAT-CDI. Primitiva de una función real. Método de integración: Integrales directas. Demuestre que si

Más detalles

Técnicas de Integración

Técnicas de Integración Técnicas de Integración Índice Capítulo único: Técnicas de Integración. Integración Directa....................................... Integración por Sustitución.................................. Integración

Más detalles

Modelo analítico de rendimiento

Modelo analítico de rendimiento AT5128 Arquitectura e Ingeniería de Comutadores II Modelo analítico de rendimiento Curso 2011-2012 AT5128 Arquitectura e Ingeniería de Comutadores II Índice Fuentes de overhead en rogramas aralelos. Métricas

Más detalles

Geometría Plana y Trigonometría (SEP-INAOE)

Geometría Plana y Trigonometría (SEP-INAOE) Eamen -Dic-008 Geometría Plana y Trigonometría (SEP-INAOE) Nombre completo: Nombre instructor: No. de grupo: Calificación:.- Eplicar si son correctos o no los signos de las siguientes funciones: a) sec

Más detalles

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Integración por partes. Prof. Farith J. Briceño N. Objetivos a cubrir Integración : Integración por partes. Ejemplo : Integre ln d Código : MAT-CDI.6 Ejercicios resueltos

Más detalles

x + h x + h + 1 x + h +

x + h x + h + 1 x + h + Apéndice B Cálculo de derivadas Versión: 3 de noviembre de 05 B. Derivadas de las funciones elementales La derivada de las funciones elementales se calcula recurriendo directamente a la definición, como

Más detalles

DERIVADA DE UNA FUNCIÓN

DERIVADA DE UNA FUNCIÓN DERIVADA DE UNA FUNCIÓN 3URI/XLV~xH] Se estudia aquí uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. Además de la definición y su interpretación, se allarán las

Más detalles

Práctico N o 1. Números Complejos

Práctico N o 1. Números Complejos Práctico N o. Números Comlejos ) Clasi car los siguientes números comlejos en reales o imaginarios. Eseci car en cada caso cuál es la arte real y cuál es la imaginaria: a) 5 + 7i b) c) 5 d) i e) f) + g)

Más detalles

Cálculo de límites. Continuidad

Cálculo de límites. Continuidad Chapter 8 Cálculo de límites. Continuidad 8. Definición Una función f () tiene límite l en a, siparatodasucesióndevalores n a las imágines correspondientes f ( n ) l. Sediceentoncesque f () f (a) a 8.2

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?.

INTEGRAL INDEFINIDA. Una pregunta inicial para hacerse. Cuál es una función F(x), que al haber sido derivada se obtuvo f ( x) B?. es INTEGRAL INDEFINIDA UConcepto e antierivaau: Una pregunta inicial para hacerse. Cuál es una función F(), que al haber sio erivaa se obtuvo f ( ) =?. La repuesta es: F ( ) =. Una nueva pregunta. Es la

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II UNIVERSIDAD DIEGO PORTALES Autores: Sara Arancibia C Viviana Schiappacasse C PROGRAMA OBJETIVOS Comprender y aplicar los conceptos fundamentales del Cálculo Integral y Series Usar el Cálculo Integral y

Más detalles

UNIDAD I. DIFERENCIALES E INTEGRAL DEFINIDA. Tema: INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIERENCIALES

UNIDAD I. DIFERENCIALES E INTEGRAL DEFINIDA. Tema: INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIERENCIALES UNIDAD I. DIFERENCIALES E INTEGRAL DEFINIDA Tema: INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIERENCIALES INTEGRAL INDEFINIDA Y REGLAS PARA LA INTEGRACIÓN DE DIFERENCIALES ALGEBRAICAS Con fundamento

Más detalles

Técnicas de Integración, preparado por: Gil Sandro Gómez

Técnicas de Integración, preparado por: Gil Sandro Gómez Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica

Más detalles

6. Métodos para resolver la ecuación completa.

6. Métodos para resolver la ecuación completa. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 6. Métodos ara resolver la ecuación comleta. Dedicamos esta sección a ver dos métodos que nos ermiten hallar una solución articular de la ecuación comleta y +

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/2 LIC. JESÚS REYES HEROLES

CENTRO DE ESTUDIOS DE BACHILLERATO Nº 4/2 LIC. JESÚS REYES HEROLES CENTRO DE ESTUDIOS DE BACHILLERATO Nº / LIC. JESÚS REYES HEROLES GUÍA DE ESTUDIO DEL EXAMEN EXTRAORDINARIO DE CÁLCULO INTEGRAL ELABORÓ: PROF. L. M. A. JUAN MANUEL VALDEZ CHÁVEZ SEMESTRE: A SEXTO INSTRUCCIONES.

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

Matemáticas CÁLCULO DE DERIVADAS

Matemáticas CÁLCULO DE DERIVADAS Matemáticas Derivada de un cociente de funciones CÁLCULO DE DERIVADAS Considérense, como en los casos precedentes, dos funciones f y g definidas y derivables en un punto x. Además, en este caso, se tiene

Más detalles

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES

INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Y POR DESCOMPOSICIÓN EN FRACCIONES SIMPLES INTEGRACIÓN POR PARTES Este método permite resolver un gran número de integrales no inmediatas. 1. Sean u y v dos funciones dependientes

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

Funciones exponenciales y logarítmicas

Funciones exponenciales y logarítmicas Funciones eonenciales y logarítmicas EJERCICIOS Realiza una tabla de valores y reresenta las funciones eonenciales. y = c) y = y = d) y = (,) 5 c) d) y =,,7,, 9 7 8 y = y = 5 8 7 9,,,7, 9,65 5,65 6,5,5,,6,6,56

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada CAPÍTULO 8 Alicaciones de la derivada 8.3 Concavidad conveidad Observemos que f 00./ > 0 en un intervalo ) f 0./ es creciente en dicho intervalo, or lo tanto, al recorrer la gráfica de la función f de

Más detalles

Se ordena el numerador en la expresión de la derecha, se factoriza y se agrupan términos independientes

Se ordena el numerador en la expresión de la derecha, se factoriza y se agrupan términos independientes TALLER DE INTEGRACION POR FRACCIONES PARCIALES Docente : YAMILE MEDINA CASTAÑEDA El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el

Más detalles

Capítulo 4: Derivada de una función

Capítulo 4: Derivada de una función Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

GUIA DE EJERCICIOS MATEMÁTICAS 2

GUIA DE EJERCICIOS MATEMÁTICAS 2 GUIA DE EJERCICIOS MATEMÁTICAS 2 La presente guía representa una herramienta para el estudiante para que practique los temas dictados en matemáticas 2. Al final están las soluciones a los ejercicios para

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar

Derivabilidad. Cálculo de Derivadas. 1 o Bach. Ciencias Dpto Matemáticas. 6. Derivar Derivabilidad Sea f una función y a Dom(f). Definimos derivada de f en = a al siguiente límite cuando eiste y es finito f (a) = lím h 0 f(a+h) f(a) h Cálculo de Derivadas 1. Derivar una potencia 2. Derivar

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

LA INTEGRAL COMO ANTIDERIVADA

LA INTEGRAL COMO ANTIDERIVADA UNIDAD II La integral como antiderivada LA INTEGRAL COMO ANTIDERIVADA La integración tiene dos interpretaciones distintas ) como procedimiento inverso de la diferenciación, y ) como método para determinar

Más detalles

1 Técnicas elementales para el cálculo de límites

1 Técnicas elementales para el cálculo de límites Técnicas elementales para el cálculo de límites. Límites de una función en un punto Todas las funciones elementales son continuas en todos los puntos en los que están definidas. Por lo tanto; para calcular

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

Procesamiento Digital de Imágenes

Procesamiento Digital de Imágenes Visión or Comutadora Unidad III Procesamiento Digital de Imágenes Rogelio Ferreira Escutia Contenido 1) Oeraciones Individuales a) Transformaciones Punto a Punto b) Transformaciones de 2 Imágenes Punto

Más detalles

Integrales de algunas funciones trigonométricas

Integrales de algunas funciones trigonométricas Integrales de algunas funciones trigonométricas Temas Integrales de potencias de algunas funciones trigonométricas. Capacidades Conocer algunos tipos de integrales de funciones trigonométricas y técnicas

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

2 x

2 x FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Importante: Visita regularmente ttp://www.dim.ucile.cl/~calculo. Aí encontrarás las guías de ejercicios

Más detalles

1. Resolver las siguientes ecuaciones o inecuaciones.

1. Resolver las siguientes ecuaciones o inecuaciones. . Resolver las siguientes ecuaciones o inecuaciones. a) + ; b) + 9 + 6 + ; c) + + ; d) = + + ; e) + = 0; f) 5 < + ; g) + > ; h) < < ; i) + < ; j) + ; b) < ó c) 05 9 05 9 ó < ó > 0

Más detalles

Cálculo Integral Enero 2015

Cálculo Integral Enero 2015 Cálculo Integral Enero 015 Laboratorio # 1 Antiderivadas I.- Halle las siguientes integrales indefinidas. 10) ) 6) 1 1 1 1 16) 1 8) 9) 18) II.- Calcule 1.. 1 Cálculo Integral Enero 015 Laboratorio # Aplicaciones

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

LOGARITMOS página 147

LOGARITMOS página 147 LOGARITMOS página 147 página 148 INSTITUTO VALLADOLID PREPARATORIA 8 LOGARITMOS 8.1 CONCEPTOS Y DEFINICIONES Una función exponencial es aquella en la que la variable está en el exponente. Ejemplos de funciones

Más detalles

GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES

GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES GUÍA DE APLICACIÓN POR FRACCIONES PARCIALES El método de fracciones parciales se utiliza cuando quiere integrarse una expresión de la forma, donde el numerador y el denominador son polinomios y el grado

Más detalles

LÍMITES. REGLA DE L HOPITAL

LÍMITES. REGLA DE L HOPITAL LÍMITES. REGLA DE L HOPITAL EJERCICIOS RESUELTOS Calcula los valores de k de modo que sean ciertas las siguientes igualdades: k 7 5 k k a) b) 4 7 3 3 a) El límite de una función racional, cuando tiende

Más detalles

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios.

Instituto Tecnológico Autónomo de México. Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT14100) Lista de Ejercicios. Instituto Tecnológico Autónomo de Méico Departamento de Matemáticas Cálculo Diferencial e Integral I (MAT400) Lista de Ejercicios La derivada Cálculo Diferencial e Integral I La derivada La derivada Antes

Más detalles

Integral indefinida (CCSS)

Integral indefinida (CCSS) ntegral indeinida SS achillerato SS ntegral indeinida (SS). Primitiva de una unción Deinición: Sea () una unción deinida en el intervalo (a,b), llamaremos primitiva de la unción () a toda unción real de

Más detalles

Linealización de Modelos

Linealización de Modelos Caítulo Linealización de Modelos Debido a que la mayoría de herramientas ara el análisis de sistemas y diseño de sistemas de control requieren que el modelo sea lineal, es necesario entonces disoner de

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

PRÁCTICA 3. , se pide:

PRÁCTICA 3. , se pide: 3 3.- Dada la función de utilidad U, se ide: a) Calcular la función de la familia de curvas de indiferencia corresondientes a dicha función de utilidad Para calcular la familia de curvas de indiferencia

Más detalles

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.

Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves. 1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio

Más detalles

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES

INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO 2 étodos de solución de E de primer orden 2.7 Factor integrante Como puede observarse en todas las E resueltas hasta ahora, es frecuente que hagamos manipulaciones algebraicas para simplificar

Más detalles

Integración por Partes II. Integrales Cíclicas

Integración por Partes II. Integrales Cíclicas Integración por Partes II Integrales Cíclicas Para este tema utilizamos la misma fórmula de integración por partes, no hay casi nada nuevo. Para comenzar con esta sección usaré un ejemplo. Ejemplo 1: Integra

Más detalles

ECUACIONES PARAMÉTRICAS

ECUACIONES PARAMÉTRICAS ECUACIONES PARAMÉTRICAS CONTENIDO. De la elise. De la circunferencia 3. De la arábola 4. De la hiérbola 5. Ejercicios 6. Trazado de una curva dadas sus ecuaciones aramétricas Hemos visto, que si un lugar

Más detalles

DERIV. DE UNA FUNC. EN UN PUNTO

DERIV. DE UNA FUNC. EN UN PUNTO DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado

Más detalles

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA Prof. Juan Gutiérrez Césedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se enera or la rotación de un rayo desde una osición inicial hasta otra osición final, siemre alrededor de un unto

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Que debo de saber antes de empezar el tema? -Concepto de derivada. -Reglas de derivación para funciones algebraicas. -Regla de la cadena. -Regla del producto. -Regla del cociente.

Más detalles

Métodos de integración

Métodos de integración Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =

Más detalles

OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS

OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS 60 LECCIÓN 3: OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS JUSTIFICACIÓN: En el curso de Análisis Matemático II, cuando se resuelven integrales indefinidas se obtienen primitivas o

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES SISTEMS E ECUCIONES Ejemplos 1 Resuelva por el método de sustitución el sistema x 8 16 8x Solución Se despeja de la segunda ecuación 8x 8x Se sustitue la expresión 8x en la x 8 16 primera ecuación x 8

Más detalles

Unidad I Funciones Expresar una función. Dominios

Unidad I Funciones Expresar una función. Dominios Unidad I Funciones Epresar una función 1. Un rectángulo tiene un perímetro de 0m. Eprese el área del rectángulo como función de la longitud de uno de sus lados.. Un rectángulo tiene un área de 16 m. Eprese

Más detalles

Área La integral definida Propiedades de la integral definida Teorema del valor medio para la integral definida Teoremas fundamentales del cálculo Aplicaciones de la integral definida: Área de una región

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 1. Cinemática de partícula

Tema 1. Cinemática de partícula Tema 1. Cinemática de artícula Cinemática de artícula Tema 1 1. Introducción. Vectores osición, velocidad y aceleración 3. 4. Método gráfico en movimiento rectilíneo 5. de varias artículas Mecánica II

Más detalles

CLASES DE CÁLCULO II (0252)

CLASES DE CÁLCULO II (0252) Universidad Central de Venezuela Facultad de Ingeniería Ciclo Básico Departamento de Matemática Aplicada CLASES DE CÁLCULO II (05) Semestre -009 José Luis Quintero Julio - Agosto 009 Cálculo II (05) Semestre

Más detalles

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2.

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2. PROBLEMAS DE LÍMITES Y CONTINUIDAD MÉTODOS ALGEBRAICOS) Cálculo de ites or métodos algebraicos Resuelve los siguientes ites: a) 8 b) 8 c) a) ) ) 6) ) 8 Se reite el roceso) ) ) ) ) Las descomosiciones factoriales

Más detalles