EJERCICIOS Y PROBLEMAS DE COMBINATORIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS Y PROBLEMAS DE COMBINATORIA"

Transcripción

1 EJERCICIOS Y PROBLEMAS DE COMBINATORIA E estas hojas se preseta ua colecció variada de ejercicios y probleas de cobiatoria. Los ejercicios está ezclados de fora que o se prevea si se trata de variacioes, perutacioes o cobiacioes. Todos los ejercicios debe ser razoados. No basta co dar sólo el resultado.. Cuátas palabras diferetes de tres letras puede forarse co las letras de la palabra CIMA, si que se repita igua letra? Ua vez calculado el úero, escríbelas todas ordeadaete.. Calcula cuátas palabras diferetes de cuatro letras distitas puede forarse co las letras de la palabra MUSA. Después escríbelas ordeadaete. 3. Cuátos subcojutos distitos de tres eleetos puede forarse co u cojuto de 8 eleetos? 4. Calcular el valor de para que V,3 = V, 5. Escribir coo cociete de úeros factoriales las siguietes epresioes: a) 0 9 b) (+) (-) c) (p-) (p-3) (p-4) 6. Resolver la ecuació P - = 56 P Hallar sabiedo que C,- = 0 8. Resolver la ecuació 3 C,4 = 5 C, 9. E ua carrera e la que participa 0 caballos eiste dos tipos de apuesta: e la priera hay que acertar quié va a quedar priero, quié segudo y quié tercero; e la seguda hay que acertar cuáles va a ser los cuatro prieros caballos e llegar, pero o su clasificació. Cuál de los dos tipos de apuesta crees que es ás secilla? 0. Cuátos úeros de cuatro cifras distitas puede escribirse co las cifras 0,, 4, 6?. Dibuja ua circuferecia y arca sobre la isa doce putos. Uiedo parejas de esos putos Cuátos petágoos distitos se podría forar?. Co las cifras 0,, 4, 6 y 8 cuátos úeros distitos de tres cifras, todas ellas diferetes, puede forarse? 3. Recordado que ua diagoal de u polígoo coveo es el segeto que ue dos vértices o cosecutivos cuátas diagoales se puede trazar e u octógoo coveo? 4. Averiguar cuátas guardias de cico persoas se puede prograar co 4 soldados, co la codició de que el ás atiguo de ellos ha de participar e todas.

2 5. E ua fábrica hay varios cetros de alaceaieto, cada uo de los cuales está uido a los deás por ua cita trasportadora. Calcula el úero de cetros de la fábrica si se sabe que el úero de citas trasportadoras es Cuátos úeros distitos de tres cifras diferetes puede forarse co las cifras, 3, 5, 7, 8, teiedo que ser la priera cifra par? 7. Hallar cuátos úeros distitos de tres cifras diferetes puede forarse co las cifras, 3, 4, 5, 6, 7 que esté copredidos etre 400 y Calcula la sua de todos los úeros de cuatro cifras sigificativas, todas ellas pares y diferetes. 9. Se tiee ueve putos e u plao. Cuatro de ellos está alieados y los restates está dispuestos de fora que o hay uca 3 alieados. Cuátos triágulos puede forarse que tega sus vértices sobre esos 9 putos? Cuátas rectas distitas deteria esos putos? 0. Cuátas señales distitas puede hacerse co cico baderas distitas agrupádolas de tres e tres y si que se repita igua? Y agrupádolas de todas las foras posibles (es decir, de ua e ua, de dos e dos, etc)?. Halla la sua de todos los úeros de cico cifras diferetes que puede forase co las cifras 0,,, 3, 4.. Cuátas palabras (co setido o o) puede forarse que tega eactaete las isas letras de la palabra CASTO y que epiece y terie por vocal? 3. E u club de fútbol hay 3 jugadores, de los que 3 so porteros. Cuátas alieacioes diferetes puede hacer el etreador si cualquiera de los jugadores de capo puede jugar coo defesa, edio o delatero? 4. Cuátos equipos de balocesto de 5 jugadores cada uo puede hacerse e u club de jugadores, co la codició de que los jugadores A, B y C o puede estar siultáeaete e el iso equipo? 5. Averiguar cuátos úeros ayores que 00 y eores que 700 puede forarse co las cifras,, 3, 4, 5, 6, 7 si que tega cifras repetidas. Respode a la isa cuestió e el caso de que las cifras se pueda repetir. 6. Cuátas quiielas de fútbol habría que hacer para teer la certeza de teer ua de 4 aciertos? (No teeos e cueta la opció del pleo al 5). Cuátas apuestas habría que rellear e el Boo Loto o e la Lotería Priitiva para teer la certeza de teer ua de 6 aciertos? Cuátos úeros de la Lotería Nacioal tedría que adquirir para estar seguro de que e toca el gordo? Averigua los precios actuales de cada ua de esas apuestas y eplica por qué eiste esa variedad. 7. Co las letras de la palabra BRAVO, cuátas ordeacioes distitas puede hacerse de fora que o haya dos vocales jutas?

3 8. Supoeos ordeadas e fora creciete todas las perutacioes que puede forarse co las cifras,, 3, 5, 8, 9 si que se repita igua. Qué lugar ocupará la perutació 5983? 9. Cuátos putos de itersecció produce 8 rectas coplaarias, sabiedo que dos de ellas so paralelas? 30. Cuátas palabras que cotega dos cosoates y dos vocales puede forarse co cico cosoates y cuatro vocales? 3 VR 3. Resolver la ecuació 9 V 3. Cuátos úeros de cico cifras puede forarse co las cifras 4, 5, 6 y 7? Cuátos de esos úeros teria e 5? Calcula la sua de todos los úeros obteidos e las dos pregutas ateriores? 33. Se supoe ordeadas e setido creciete todas las perutacioes posibles co las cifras,, 3, 5, 7, y 8 Qué lugar ocupará la perutació 7385? 34. Co, eactaete, las letras de la palabra FRANCISCO cuátas palabras puede forarse co la codició de que epiece por N y terie por ua cosoate? 35. De cierto úero de rectas coplaarias se sabe que o hay tres de ellas que cocurra e el iso puto y o hay igua pareja de rectas paralelas. Esas rectas produce 45 putos al cortarse. De cuátas rectas estaos hablado? 36. E cada uo de los ocho vértices del octógoo e que teria la torre de ado de u buque hay luces de colores diferetes. Cuátas señales distitas se podrá hacer ecediedo eos de cico luces? 37. Cuátas ultiplicacioes distitas de tres factores distitos co ua cifra cada uo puede hacerse co la codició de que el resultado debe ser distito de cero? Y si quitaos la codició de que los factores sea distitos? 38. Calcular de la fora ás rápida posible el valor de los siguietes úeros cobiatorios: a) b) Coprobar si la siguiete igualdad es correcta: 40. Cóo coprobarías, si hallar sus valores, que los úeros cobiatorios siguietes so iguales?

4 4. Resolver la ecuació Calcula el valor de para que se verifique la siguiete igualdad: Resolver la ecuació Resolver la ecuació Calcula el valor de Resuelve la ecuació Cuátos productos diferetes puede forarse co los úeros 7, 9,, 3 y 7 toados de tres e tres? 48. Co seis pesas de,, 5, 0, 0, y 50 kg Cuátas pesadas diferetes puede obteerse toádolas de tres e tres? 49. Cuátos úeros eteros distitos ayores que 0 y eores que 00 puede forarse co las cifras,, 3, 4, 5, 6, 7 y 8? 50. Cuátas palabras, co sigificado o o, puede forarse co todas las letras de la palabra "problea"? 5. Cuátos úeros distitos de cico cifras diferetes puede forarse co las cifras,, 3, 4 y 5 que sea eores que 54000? 5. U depósito de agua tiee 5 caños de desagüe, que arroja, 3, 5, 0 y 0 litros por iuto respectivaete. Abriedo idistitaete cuatro de estos caños, e cuátos tiepos diferetes se puede desaguar el depósito? 53. Se tiee 4 letras diferetes. De cuátas e cuátas habrá que toarlas para que el úero de sus cobiacioes sea el ayor posible? 54. Cuátas suas diferetes de dos suados se puede obteer co los úeros, 3, 5,, y 4? 55. Ua clase tiee 4 aluos y el profesor preguta cada día la lecció a dos de ellos. El profesor desea que o se repita uca la isa pareja Durate cuáto tiepo lo podrá coseguir?

5 56. A ua persoa se le sirve e cada coida cuatro platos, de los ueve que so de su agrado. Cuátas coidas diferetes puede hacer esa persoa? 57. E ua fila de cie de 0 butacas, cuátas posicioes diferetes puede ocupar tres idividuos? 58. Cuátas palabras de dos vocales y dos cosoates puede forarse co cuatro cosoates y dos vocales, co la codició de que o puede figurar dos vocales seguidas? 59. De cuátas aeras diferetes puede setarse 0 persoas alrededor de ua esa? 60. E ua carrera de seis caballos, cuátas clasificacioes distitas puede producirse si se supoe que o hay igú tipo de epate? 6. El úero de variacioes de objetos toados de seis e seis es 70 veces ayor que el de cobiacioes de estos objetos toados de cuatro e cuatro. De cuátos objetos se trata? 6. La diferecia etre el úero de variacioes de objetos toados de dos e dos y el de cobiacioes de esos isos objetos toados tabié de dos e dos es 90. Cuátos objetos hay? 63. Co las cifras del úero cuátos úeros distitos de tres cifras se puede forar o repitiedo igua? y repitiedo? Cuátos de esos úeros so ayores que 500 (e abos casos)? 64. Se tiee los úeros 5874 y 369. Cuátos úeros eteros puede forarse que cotega dos cifras o repetidas del priero y tres cifras o repetidas del segudo? La isa cuestió pudiedo repetirse las cifras. La isa cuestió o repitiedo las cifras del priero pero sí las del segudo. 65. Co las cifras,, 3, 4 y 5 cuátos úeros distitos de cico cifras se puede forar co la codició de que etre todos y de que el 3 ocupe siepre la cifra de las ceteas? 66. Halla la sua de todas las posibles cobiacioes que puede hacerse co 0 letras toadas de dos e dos, de tres e tres, de cuatro e cuatro,, de ocho e ocho y de ueve e ueve.

EJERCICIOS Y PROBLEMAS DE COMBINATORIA

EJERCICIOS Y PROBLEMAS DE COMBINATORIA EJERCICIOS Y PROBLEMAS DE COMBINATORIA En estas hojas se presenta una colección variada de ejercicios y problemas de combinatoria. Los ejercicios están mezclados de forma que no se prevea si se trata de

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

Objetivo: Repasar los conceptos de análisis Combinatorio

Objetivo: Repasar los conceptos de análisis Combinatorio Objetivo: Repasar los conceptos de análisis Combinatorio 1. Con las letras de la palabra UNIVERSO se forman palabras de 6 letras distintas. a) Cuántas son? b) Cuántas empiezan con E? c) Cuántas tienen

Más detalles

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de:

I VARIACIONES. Una variación es un arreglo ordenado de n objetos diferentes, tomados de r a la vez se denota por medio de: ANALISIS COMBINATORIO. TEOREMA FUNDAMENTAL: Si u suceso puede teer lugar de m maeras distitas y cuado ocurre ua de ellas se puede realizar otro suceso imediatamete de formas diferetes, ambos sucesos, sucesivamete,

Más detalles

MATEMÁTICA DISCRETA I Año 2015 PRÁCTICO Calcule Probar que = 3. Probar la igualdad general. n + n n. n 1.

MATEMÁTICA DISCRETA I Año 2015 PRÁCTICO Calcule Probar que = 3. Probar la igualdad general. n + n n. n 1. MATEMÁTICA DISCRETA I Año 5 PRÁCTICO. Calcule 5 5. Probar que =. Probar la igualdad geeral =.... Determiar tal que Resp. = 5 6 5. Cuátos equipos de football se puede formar co 8 persoas? 6. Cuátas líeas

Más detalles

el blog de mate de aida. MATEMÁTICAS ESO: COMBINATORIA pág. 1 COMBINATORIA

el blog de mate de aida. MATEMÁTICAS ESO: COMBINATORIA pág. 1 COMBINATORIA el blog de ate de aida. MATEMÁTICAS ESO: COMBINATORIA ág. COMBINATORIA Los étodos de coteo so estrategias utilizadas ara deteriar el úero de osibilidades diferetes ue existe al realizar u exerieto. MÉTODO

Más detalles

Permutaciones y combinaciones

Permutaciones y combinaciones Perutacioes y cobiacioes Cotaos posibilidades Coezaos co u secillo ejeplo E España los coches tiee ua atrícula que costa de cuatro dígitos deciales seguidos de tres letras sacadas de u alfabeto de 26 Cuátas

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Diédrico 15. Abatimientos

Diédrico 15. Abatimientos α 2 Dibujar las proyeccioes y verdadera agitud de u robo áureo, apoyado e el plao α, cuya diagoal ayor AC, que ide 70, tiee su vértice C e la traza horizotal, α1, del plao y a la izquierda del vértice

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tea Los úeros reales Mateáticas I º Bachillerato TEMA LOS NÚMEROS REALES. LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úeros racioales: Se caracteriza porque puede expresarse: E fora de fracció,

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

b n 1.8. POTENCIAS Y RADICALES.

b n 1.8. POTENCIAS Y RADICALES. .. POTENCIAS Y RADICALES. La potecia es ua epresió ateática que coprede dos partes: la base el epoete. b (b)(b)(b)(b)...dode b es la base el epoete. Para ecotrar el resultado de la potecia, la base se

Más detalles

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal

MATEMÁTICA 1 JRC La disciplina es la parte más importante del éxito. Exponente. Variables o Parte literal MATEMÁTICA JRC La disciplia es la parte ás iportate del éito POLINOMIOS EN R EXPRESIÓN ALGEBRAICA.- Es u cojuto de úeros letras, elazadas por cualquiera de las cuatro operacioes, adeás de la poteciació

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones.

Para obtener el número total de los resultados, es necesario desarrollar algunas técnicas de conteo, las cuales son: Permutaciones. Combinaciones. TÉNIAS DE ONTEO. ara obteer el úmero total de los resultados, es ecesario desarrollar alguas técicas de coteo, las cuales so:. ricipio fudametal de coteo. Diagramas de árbol.. Aálisis combiatorio. ermutacioes.

Más detalles

n! = n.(n 1).(n 2)

n! = n.(n 1).(n 2) 1.- PRINCIPIO DE MULTIPLICACIÓN Es ua técica que sirve para saber cuátos resultados tiee u experimeto que costa de dos o más etapas. El pricipio de multiplicació cosiste e multiplicar el úmero de resultados

Más detalles

Tema 9. Combinatoria

Tema 9. Combinatoria Tea 9. Cobiatoria. Defiició de cobiatoria. Estrategias de resolució.. Estrategia del producto y la sua.. Diagraa de árbol. Variacioes y perutacioes.. Variacioes siples u ordiarias.. Perutacioes.. Variacioes

Más detalles

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución

SISTEMAS DE ECUACIONES LINEALES: Igualación y Sustitución INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

COLEGIO INGLÉS NUMERO FACTORIAL PRINCIPIO DE LA SUMA

COLEGIO INGLÉS NUMERO FACTORIAL PRINCIPIO DE LA SUMA COLEGIO INGLÉS DEPARTAMENTO NIVEL: CUARTO MEDIO PSU. UNIDAD: COMBINATORIA PROFESOR: NATALIA MORALES A. ROLANDO SAEZ M. MIGUEL GUTIÉRREZ S. JAVIER FRIGERIO B. La combiatoria estudia las diferetes formas

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.

TEMA 3: TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA. TEMA : TÉCNICAS DE RECUENTO. COMBINATORIA OMBINATORIA.. Itroducció...... Itroducció histórica...... Defiició de factorial.... Técicas de recueto...... Pricipio del producto...... Pricipio de adició o regla

Más detalles

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509

COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS SEGUNDO GRADO SECCIÓN SECUNDARIA ACTIVIDADES PARA DESARROLLAR EN CLASE CURSO 2015-2016

Más detalles

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+

Solución: Se observa que en su perímetro e interior, el primer cuadrilátero tiene cinco puntos y además 5 = 1+ Problema. E el diagrama se preseta los tres primeros cuadriláteros de ua secuecia que iicia e u puto e el cetro del tablero crece desde ese puto hacia fuera, cuál es el úmero de putos que está e el perímetro

Más detalles

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II)

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II) PÍTULO 5: SEGMENTOS PROPORIONLES (II) Date Guerrero-haduví Piura, 2015 FULTD DE INGENIERÍ Área Departaetal de Igeiería Idustrial y de Sisteas PÍTULO 5: SEGMENTOS PROPORIONLES (II) Esta obra está bajo ua

Más detalles

Ejercicios de Combinatoria

Ejercicios de Combinatoria Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: Combinatoria Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

Ejercicios de Sucesiones y Progresiones

Ejercicios de Sucesiones y Progresiones Ejercicios de Sucesioes y Progresioes 1. Escribe los siguietes térmios de estas sucesioes: a) 5,6,8,11,15, b) 0,20,10,0, c) 7,14,21,28,... d) 1,5,25,125,.. Qué criterio de formació ha seguido cada uo?

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

EJERCICIOS DE REPASO AMPLIACIÓN CURSO e) =

EJERCICIOS DE REPASO AMPLIACIÓN CURSO e) = EJERCICIOS DE REPASO AMPLIACIÓN CURSO 0-0 PRIMERA EVALUACIÓN.- Operar simplificar el resultado al máimo: a) b) 7 c) 7 d) : f). g) 0 e) :..- Operar epresar el resultado co potecias cuas bases sea úmeros

Más detalles

Unidad 10: LÍMITES DE FUNCIONES

Unidad 10: LÍMITES DE FUNCIONES Uidad 1: LÍMITES DE FUNCIONES LÍMITES 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Ua sucesió de úmeros reales es u cojuto ordeado de iiitos úmeros reales. Los úmeros reales a1, a,..., a,... se llama térmios,

Más detalles

TEMA 4: COMBINATORIA

TEMA 4: COMBINATORIA TEMA 4: OMBINATORIA La ombiatoria es la parte de las Matemáticas que tiee por objeto cotar el úmero de agrupacioes diferetes, y co uas determiadas características, que se puede formar co los elemetos de

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

CAPÍTULO 7: GENERALIDADES SOBRE TRANSFORMACIONES (V)

CAPÍTULO 7: GENERALIDADES SOBRE TRANSFORMACIONES (V) PÍTULO 7: GENERLIDDES SORE TRNSFORIONES (V) Date Guerrero-haduví Piura, 015 FULTD DE INGENIERÍ Área Departaetal de Igeiería Idustrial y de Sisteas PÍTULO 7: GENERLIDDES SORE TRNSFORIONES (V) Esta obra

Más detalles

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton

Dinámica compleja. Conjuntos de Julia y Mandelbrot Método de Newton Estalmat Madrid Miguel Reyes Diámica compleja Cojutos de Julia y Madelbrot Método de Newto Los úmeros complejos Los úmeros complejos so los úmeros de la forma a dode a y b so úmeros reales e i es la uidad

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA : CONCEPTOS PREVIOS. INTRODUCCIÓN. Se va a aalizar los itercabios fiacieros cosiderado u abiete de certidubre. El itercabio fiaciero supoe que u agete etrega a otro u capital (o capitales) quedado

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n

, como el cociente = (n k)!k! Propiedades de los números combinatorios: n k = n. k x n k y k +... ( ) Dando valores x=y=1, se obtiene la igualdad n NÚMEROS COMBINATORIOS Def:Dado u úmero etero o egativo, se defie el factorial de (! como el producto! = ( 1...1 Def: Dados dos úmeros,k eteros o egativos tales que k, se defie el úmero combiatorio sobre

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva TEMA 1 Estadística Descriptiva 1. Variables estadísticas uidimesioales a) Itroducció b) Estudio descriptivo de ua variable c) Represetacioes gráficas d) Medidas de tedecia cetral

Más detalles

MATEMÁTICAS: 4ºB de ESO Capítulo 13: Combinatoria

MATEMÁTICAS: 4ºB de ESO Capítulo 13: Combinatoria MATEMÁTICAS: 4ºB de ESO Capítulo 3: Cobiatoria www.aputesareaverde.org.es Revisores: Adrés Hierro y Sergio Herádez Ilustracioes: Baco de Iágees de INTEF y María Molero 372 Cobiatoria: 4ºB de ESO Ídice.

Más detalles

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean

ESTADÍSTICA. Estadística: Es una rama de la matemática que comprende Métodos y Técnicas que se emplean ESTADÍSTICA Estadística: Es ua rama de la matemática que comprede Métodos y Técicas que se emplea e la recolecció, ordeamieto, resume, aálisis, iterpretació y comuicació de cojutos de datos. Població:

Más detalles

TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA FACTORIAL DE UN NÚMERO NÚMEROS COMBINATORIOS. C n m = =

TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA FACTORIAL DE UN NÚMERO NÚMEROS COMBINATORIOS. C n m = = Tema 10 Combiatoria -Matemáticas B 4º E.S.O. 1 TEMA 10 - COMBINATORIA NOCIONES GENERALES DE COMBINATORIA m º de elemetos que dispoemos. ORDEN º de elemetos que cogemos. SI NO m VARIACIONES NO Vm m.(m 1).(m

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10

Aptitud Matemática 5 RPTA.: E SUCESIONES RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN 5 4 7 6 9 8 11 ; ; ; ; ; ; 4 5 6 7 8 9 10 SUCESIONES I. Determiar el térmio que cotiúa e cada ua de las siguietes sucesioes: 1. ; 5; 11; 0; 4. - ; 5; - 9 ; 19; A) 8 B) - 7 C) 7 D) - 8 E) 14 A) 8 B) 0 C) D) 1 E) 5. 5 4 7 6 9 8 ; ; ; ; ; ;... 4

Más detalles

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series.

Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 5. Series. CÁLCULO Igeiería Idustrial. Curso 2009-200. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Lecció 5. Series. Resume de la lecció. 5.. Sucesioes y series. Sucesió covergete. Se de e ua sucesió

Más detalles

PREGUNTA 1. 2x 5. x + (x + 1) 2x + 1. x (x 1) x x Indica con una X si son correctas o incorrectas las siguientes expresiones:

PREGUNTA 1. 2x 5. x + (x + 1) 2x + 1. x (x 1) x x Indica con una X si son correctas o incorrectas las siguientes expresiones: PREGUNTA 1 Idica co ua X si so correctas o icorrectas las siguietes expresioes: Leguaje ordiario Expresió algebraica Correcta Icorrecta A) Dismiuimos e cico uidades el doble del úmero de videojuegos de

Más detalles

Ejercicios Matemáticas I Pendientes 1 BCT

Ejercicios Matemáticas I Pendientes 1 BCT Ejercicios Matemáticas I Pedietes BCT ª Parte Uidad 7 Álgebra. Dado el poliomio P( ) = + k 5, calcula el valor de k para que el valor umérico del poliomio e = sea.. Halla u poliomio de tercer grado cuyo

Más detalles

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO:

ALGEBRA 9. Curso: 3 E.M. Progresiones aritméticas y geométricas. Colegio SSCC Concepción - Depto. de Matemáticas. Nombre: CURSO: Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: Progresioes aritméticas y geométricas Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS

PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS PREPARACIÓN OLIMPIADAS DE LA RSME UNIVERSIDAD DE ALMERÍA RELACIÓN PRIMERA DE EJERCICIOS A RESOLVER MEDIANTE DIFERENTES ESTRATEGIAS. Qué es cierto: 3 < 3 o 3 < 3? 2. Sea a 2 R tal que a 3 2a 2 0a = 20.

Más detalles

Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE

Unidad 4 Ecuaciones de segundo grado. 1 EJERCICIOS PARA ENTRENARSE Uidad Ecuacioes de segudo grado. Escribe co ua icógita los siguietes datos: EJERCICIOS PARA ENTRENARSE a U úmero su cuadrado. b U úmero su raíz cuadrada. c Los cuadrados de dos úmeros cosecutivos. d Los

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM.

4. TÉCNICAS PARA CONTAR Cardinal de un conjunto. Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. .1. Cardial de u cojuto. TÉCNICAS PARA CONTAR Fucioes etre cojutos Se llama fució o aplicació del cojuto A e el cojuto B a cualquier relació f : A B que a cada elemeto a A le hace correspoder u úico elemeto

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

ÁNGULOS ENTRE PARALELAS - TRIÁNGULOS ÁNGULOS ENTRE PARALELAS. es convexo. es cóncavo

ÁNGULOS ENTRE PARALELAS - TRIÁNGULOS ÁNGULOS ENTRE PARALELAS. es convexo. es cóncavo ÁNGUOS ENTRE PRES - TRIÁNGUOS OMPETENI Resuelve probleas de fora oviieto y localizació ÁNGUOS ENTRE PRES TEORÍ DE RO IRIS a priera teoría sobre la foració del arco iris se debe a ristóteles Para él sipleete

Más detalles

Pre-PAES 2016 Media aritmética, moda y mediana.

Pre-PAES 2016 Media aritmética, moda y mediana. Pre-PAES 016 Media aritmética, moda y mediaa. Nombre: Secció: Las medidas de tedecia cetral (MTC) so ciertos valores alrededor de los cuáles tiede a cocetrarse los datos de ua població, esto se debe a

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

Walter Orlado Gozales Caicedo Secuecias Lógicas OBJETIVO: Lograr habilidad y destreza e el alumo practicado u razoamieto abstracto PROCEDIMIENTOS: INICIAL: Halla el valor del térmio que cotiúa e:,,,, 0,

Más detalles

ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS

ACTIVIDAD INTEGRADORA Nº PROGRESIONES ARITMÉTICAS ACTIVIDAD INTEGRADORA Nº 5-7 PROGRESIONES ARITMÉTICAS Y GEOMÉTRICAS PROGRESIONES ARITMÉTICAS Teemos: Diferecia d = a - a -1 Térmio geeral de ua progresió aritmética: a = a k + ( - k)d Iterpolació de térmios:

Más detalles

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA

SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA SEGUNDA EDICIÓN DEL CURSO DE CAPACITACION EN MATEMATICA PARA PROFESORES DE PRIMARIA MODULO IV ESTADISTICA DESCRIPITVA ENCUENTRO NÚMERO UNO TECNICAS DE CONTEO. 28 DE SEPTIEMBRE DE 2014 MANAGUA FINANCIADO

Más detalles