Slide 1 / 39. Triángulos Rectángulos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Slide 1 / 39. Triángulos Rectángulos"

Transcripción

1 Slide 1 / 39 Triángulos Rectángulos

2 Slide 2 / 39 Las Matemáticas de los Triángulos Rectángulos Las matemáticas más allá del álgebra, solo es necesario para los triángulos rectángulos en el examen de Física AP B. Es importante tomar el tiempo para revisar el vocabulario y los conceptos de estos triángulos porque van hacer utilizados mucho.

3 Slide 3 / 39 Las matemáticas de los triángulos rectángulos La hipotenusa es el lado opuesto al ángulo recto. (No toca el ángulo recto) Se llaman catetos a los dos lados menores, los que conforman el ángulo recto. cateto cateto hipotenusa símbolo del ángulo recto

4 Slide 4 / 39 Las matemáticas de los triángulos rectángulos Las matemáticas más allá del álgebra, solo son necesarios para los triángulos rectángulos en el examen de Física AP B. Hay dos ideas básicas que se requieren. Teorema de Pitágoras Funciones Trigonométricas

5 Slide 5 / 39 Teorema de Pitágoras c 2 = a 2 + b 2 "C" es la hipotenusa "a" y "b" son las dos catetos; Cual cateto es "a" y cual es "b", no importa.

6 Slide 6 / 39 1 Los catetos de un triángulo rectángulo son de 7,0 y 3,0, cuál es la longitud de la hipotenusa? 7.6 Respuesta

7 Slide 7 / 39 2 Los catetos de un triángulo rectángulo son de 2,0 y 12, cuál es la longitud de la hipotenusa? 12.2 Respuesta

8 Slide 8 / 39 3 La hipotenusa de un triángulo rectángulo tiene una longitud de 4,0 y una de sus cateto tiene una longitud de 2,5. Cuál es la longitud de el otra cateto? Respuesta 3.1

9 Slide 9 / 39 4 La hipotenusa de un triángulo rectángulo tiene una longitud de 9,0 y una de sus cateto tiene una longitud de 4,5. Cuál es la longitud de el otra cateto? Respuesta 7.8

10 Slide 10 / 39 5 Cuál es la longitud del tercer lado? Respuesta

11 Slide 11 / 39 6 Cuál es la longitud del tercer lado? Respuesta

12 Slide 12 / 39 7 Cuál es la longitud del tercer lado? Respuesta

13 Slide 13 / 39 8 Cuál es la longitud del tercer lado? Respuesta

14 Slide 14 / 39 9 Cuál es la longitud del tercer lado? Respuesta 5 3 4

15 Slide 15 / 39 Pitágoras Trillizos El triángulo de lados es el más famoso de los trillizos: 3 5 Soluciones enteras de la Teorema de Pitágoras. 4 No necesitas una calculadora si reconoces que los lados están en esta proporción.

16 Slide 16 / Cuál es la longitud del tercer lado? Respuesta

17 Slide 17 / Cuál es la longitud del tercer lado? Respuesta

18 Slide 18 / 39 Las Razones Trigonométricas Los razones fundamentales trigonométricas son las siguientes: Seno, su abreviatura es "sin" Coseno, su abreviatura es "cos" Tangente, su abreviatura es "tan" Los ángulos se nombran θ: "theta" Por lo tanto verán estos: sinθ, cosθ, y tanθ

19 Slide 19 / 39 Razones trigonométricas lado opuesto hipotenusa θ Estas proporciones dependen a que ángulo estás llamando θ (nunca el ángulo recto) Ya sabes que el lado opuesto al ángulo recto se llama hipotenusa. lado adyacente El cateto al lado opuesto de θ se llama "opuesto" El cateto al lado adyacente de θ se llama "adyacente". (este forma el ángulo θ con la hipotenusa)

20 Slide 20 / 39 Razones trigonométricas θ adyacente lado hipotenusa lado opuesto Hay dos ángulos que se pueden llamar #. Una vez que elijas el ángulo #, los nombres de los catetos se definen. Puedes elegir cualquier de los dos ángulos con tal de que defines los catetos correctamente.

21 Slide 21 / 39 Razones trigonométricas θ sinθ = lado opuesto = hipotenusa opp HYP lado adyacente hipotenusa cosθ = lado adyacente hipotenusa = tanθ = adj HYP lado opuesto lado adyacente = opp adj lado opuesto SOH CAH TOA

22 Slide 22 / sin # = Respuesta ,0 θ 8,5 8,0

23 Slide 23 / cos # = 0.35 Respuesta 3,0 θ 8,5 8.0

24 Slide 24 / tan # = Respuesta 2.7 3,0 θ 8,5 8.0

25 Slide 25 / tan # = Respuesta 2 7 θ 16 14

26 Slide 26 / sin# = Respuesta θ 16 14

27 Slide 27 / cos # = Respuesta θ 16 14

28 Slide 28 / 39 Razones Trigonométricas Si tienes los dos catetos (lados) puedes encontrar el ángulo. Por lo tanto, si tienes un lado y un ángulo, con las razones trigonométricas también puedes encontrar el otro cateto (lado).

29 Slide 29 / 39 Razones trigonométricas Por ejemplo, vamos a buscar la longitud del lado x. x 7,0 El lado que estamos buscando es opuesto al ángulo dado; 30 o y la longitud indicada es la hipotenusa; Por lo tanto, vamos a utilizar la función trigonométrica que relaciona estos tres: sinθ = lado opuesto = hipotenusa opp HYP

30 Slide 30 / 39 Razones trigonométricas x 7,0 sinθ = lado opuesto = hipotenusa sinθ = opp HYP OPP = (hyp) (sinθ) opp HYP 30 o x = (7,0) (sin (30 o )) x = (7,0)(0,50) x = 3.5

31 Slide 31 / 39 Razones trigonométricas Ahora, vamos a encontrar la longitud de x; en este caso. 9,0 x 25 o El lado que estamos buscando es adyacente al ángulo dado; y la longitud indicada es la hipotenusa; así que vamos a utilizar la función trigonométrica que relaciona estos tres: cosθ = lado adyacente adj hipotenusa = HYP

32 Slide 32 / 39 Razones trigonométricas 9,0 cosθ = lado adyacente hipotenusa = adj cosθ = HYP ady = (hyp) (cosθ) adj HYP x 25 o x = (9,0) (cos (25 o )) x = (9,0)(0.91) x = 8,2

33 9,0 50 o Slide 33 / 39 Razones trigonométricas Ahora, vamos a encontrar la longitud de x, en este caso. El lado que estamos buscando es adyacente al ángulo dado; y el lado indicado es opuesto al ángulo dado; x así que vamos a utilizar la función trigonométrica que relaciona estos tres: tanθ = lado opuesto lado adyacente = opp adj

34 9,0 50 o Slide 34 / 39 Razones trigonométricas tanθ = tanθ = opp adj lado opuesto lado adyacente = opp adj OPP = (adj) (tanθ) x = (9,0) (tan (50 o )) x x = (9,0)(1,2) x = 10,8

35 Slide 35 / x =? 17.1 Respuesta 35 x 64 o

36 Slide 36 / x =? Respuesta x 36 o

37 Slide 37 / x =? Respuesta o 28 x

38 Slide 38 / x =? Respuesta 5.9 7,4 37 o x

39 Slide 39 / 39

Triángulos Rectángulos

Triángulos Rectángulos Triángulos Rectángulos Slide 1 / 39 Las Matemáticas de los Triángulos Rectángulos Slide 2 / 39 Las matemáticas más allá del álgebra, solo es necesario para los triángulos rectángulos en el eamen de Física

Más detalles

Triángulos Rectángulos

Triángulos Rectángulos Slide 1 / 39 Triángulos Rectángulos Slide 2 / 39 Las Matemáticas de los Triángulos Rectángulos Las matemáticas más allá del álgebra, solo es necesario para los triángulos rectángulos en el eamen de Física

Más detalles

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos 5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma

Más detalles

La lección de hoy es sobre Relaciones de las Funciones Trigonométricas. El cuál es la expectativa para el aprendizaje del estudiante -T.2.G.

La lección de hoy es sobre Relaciones de las Funciones Trigonométricas. El cuál es la expectativa para el aprendizaje del estudiante -T.2.G. T.2G.6-Sarah Burnett-Trig. Function Ratios. La lección de hoy es sobre Relaciones de las Funciones Trigonométricas. El cuál es la expectativa para el aprendizaje del estudiante -T.2.G.6- Vamos a hablar

Más detalles

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA

MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA MINISTERIO DE EDUCACION CURSO DE POSTGRADO TERCER CICLO DE EDUCACION BASICA ESPECIALIDAD EN MATEMATICA CURSO 4 TRIGONOMETRIA Y TRANSFORMACIONES GEOMETRICAS EN EL PLANO CARTA DIDÁCTICA SABADO : 5/JUNIO/011

Más detalles

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS www.cedicaped.com CENTRO DE ESTUDIOS, DIDÁCTICA Y CAPACITACIÓN RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS 1. DEFINICIÓN Se dice que un triángulo es rectángulo

Más detalles

CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA

CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA 1.- CIENCIA QUE ESTUDIA LAS RELACIONES EXISTENTES ENTRE LOS ÁNGULOS Y LOS LADOS DE UN TRIÁNGULO: A) GEOMETRÍA

Más detalles

TEMA 3. TRIGONOMETRÍA

TEMA 3. TRIGONOMETRÍA TEMA 3. TRIGONOMETRÍA Este documento tiene como propósito que conozcas las funciones trigonométricas y las reglas que los norman. Para facilitar la comprensión del tema, se incluyen algunos ejemplos. Subtema

Más detalles

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas

UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo

Más detalles

La lección de hoy es sobre La Estructura Geométrica SLE T.2.G.6- El cual es funciones trigonométricas en triángulos rectos.

La lección de hoy es sobre La Estructura Geométrica SLE T.2.G.6- El cual es funciones trigonométricas en triángulos rectos. SLE T.2.G.6-Trigonometric Ratios in Right Triangles. La lección de hoy es sobre La Estructura Geométrica SLE T.2.G.6- El cual es funciones trigonométricas en triángulos rectos. La relación entre los ángulos

Más detalles

1 Trigonometría. Docente Matemáticas. Marzo 4 de Figure 1: Ángulo FED

1 Trigonometría. Docente Matemáticas. Marzo 4 de Figure 1: Ángulo FED Trigonometría Ana María Beltrán Docente Matemáticas Marzo de 0 Trigonometría. Ángulos Un ángulo se define como el conjunto de puntos determinados por dos rayos o semirrectas que tienen el mismo punto extremo.

Más detalles

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas

FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas FORMULARIO DE TRIGONOMETRIA PLANA 01.- Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas 03.- Razones trigonometricas de la suma de dos angulos

Más detalles

MÓDULO 7: TRIGONOMETRÍA PLANA

MÓDULO 7: TRIGONOMETRÍA PLANA MÓDULO 7: TRIGONOMETRÍA PLANA Física Los ángulos y sus medidas. Funciones trigonométricas. Cuadrantes. Teorema de Pitágoras. Áreas. Volúmenes. UTN Facultad Regional Trenque Lauquen 29/01/2015 MÓDULO 7:

Más detalles

Módulo 3-Diapositiva 19 Trigonometría. Universidad de Antioquia

Módulo 3-Diapositiva 19 Trigonometría. Universidad de Antioquia UdeA - última actualización: de octubre de 018 Módulo 3-Diapositiva 19 Trigonometría Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Temas Ángulos Medidas de ángulos Razones trigonométricas

Más detalles

27 de febrero de 2013

27 de febrero de 2013 1 / 52 Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 27 de febrero de 2013 2 / 52 Razones trigonométricas Considere

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

MATEMÁTICAS BÁSICAS. Profesoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza

MATEMÁTICAS BÁSICAS. Profesoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Profesoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 15 de junio de 2009 Razones trigonométricas Considere los triángulos

Más detalles

Matemáticas Propedéutico para Profesional. Ángulo

Matemáticas Propedéutico para Profesional. Ángulo Matemáticas Propedéutico para Profesional Tema. Medida de ángulos, ángulos coterminales, complementarios suplementarios, triángulos rectángulos funciones trigonométricas de ángulos especiales. 1 Ángulo

Más detalles

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES

Más detalles

TEMA 5 SEMEJANZA Y TRIGONOMETRÍA

TEMA 5 SEMEJANZA Y TRIGONOMETRÍA TEMA 5 SEMEJANZA Y TRIGONOMETRÍA. Objetivos / Criterios de evaluación O.5.1 Triángulos semejantes, criterios para la semejanza de triángulos O.5.2 Teorema de Tales. Aplicaciones. O.5.3 Teoremas de Pitágoras,

Más detalles

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO

EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO EJERCICIOS DE VERANO MATEMÁTICAS 4º ESO NOTA IMPORTANTE: Estos ejercicios se entregarán en el mes de septiembre el mismo día del examen de recuperación de matemáticas. La entrega de los mismos será condición

Más detalles

Seno (matemáticas) Coseno Tangente

Seno (matemáticas) Coseno Tangente Seno (matemáticas), una de las proporciones fundamentales de la trigonometría. En un triángulo rectángulo, el valor del seno (que suele abreviarse sen) de un ángulo agudo es igual a la longitud del cateto

Más detalles

Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet

Funciones trigonométricas (en el triángulo) α b. Trigonometría Física I, Internet. Trigonometría Física I, Internet Funciones trigonométricas (en el triángulo) c B a A α b C Funciones trigonométricas (en el triángulo) Algunas consideraciones sobre el triángulo rectángulo Sea un triángulo rectángulo cualquiera ABC Se

Más detalles

Módulo 3-Diapositiva 20 Trigonometría. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales

Módulo 3-Diapositiva 20 Trigonometría. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales Módulo 3-Diapositiva 20 Trigonometría Facultad de Ciencias Exactas y Naturales Temas Ángulos Medidas de ángulos Razones trigonométricas Ángulos Ángulos Un ángulo es la figura geométrica formada por dos

Más detalles

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21

Lección 3.1. Funciones Trigonométricas de Ángulos. 21/02/2014 Prof. José G. Rodríguez Ahumada 1 de 21 Lección 3. Funciones Trigonométricas de Ángulos /0/0 Prof. José G. Rodríguez Ahumada de Actividades 3. Referencia Texto: Seccíón 6. Ángulo; Ejercicios de Práctica: Problemas impares -33 página 09 (375

Más detalles

Medidas angulares: grados, radianes. La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal.

Medidas angulares: grados, radianes. La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal. Medidas angulares: grados, radianes La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal. Una forma de definir un grado, es que una vuelta entera son 360 grados, media

Más detalles

RESOLUCIÓN DE TRIÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RESOLUCIÓN DE TRIÁNGULOS Resolver un triángulo consiste en determinar la longitud de sus tres lados y la amplitud de sus tres ángulos. Vamos a recordar primero la resolución para triángulos rectángulos

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles

Las funciones trigonométricas

Las funciones trigonométricas Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.

Más detalles

Nociones elementales de trigonometría

Nociones elementales de trigonometría Nociones elementales de trigonometría La parte de la Matemática que se basa en las propiedades especiales de un triángulo rectángulo se llama trigonometría. Muchos conceptos de trigonometría son muy importantes

Más detalles

UTILIZAMOS LA TRIGONOMETRÍA.

UTILIZAMOS LA TRIGONOMETRÍA. UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios

Más detalles

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos

TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360

Más detalles

SECRETARÍA de EDUCACIÓN de MEDELLÍN INSTITUCIÓN EDUCATIVA JUAN XXIII

SECRETARÍA de EDUCACIÓN de MEDELLÍN INSTITUCIÓN EDUCATIVA JUAN XXIII Área y/o asignatura: Algebra Identifico una familia de funciones teniendo en cuenta el cambio de sus parámetros y las diferencias en las gráficas que las representa, como una manera de caracterizarlas.

Más detalles

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:

Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos: Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama

Más detalles

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?

1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m? º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo

Más detalles

CONSTRUCCIÓN GENERAL DE TRIÁNGULOS RECTÁNGULOS MEDIANTE LENGUAJE LOGO. PARA 4º DE ESO (Op. B)

CONSTRUCCIÓN GENERAL DE TRIÁNGULOS RECTÁNGULOS MEDIANTE LENGUAJE LOGO. PARA 4º DE ESO (Op. B) EL MACROMUNDO DE LOGO http://roble.pntic.mec.es/~apantoja CONSTRUCCIÓN GENERAL DE TRIÁNGULOS RECTÁNGULOS MEDIANTE LENGUAJE LOGO. PARA 4º DE ESO (Op. B) Para determinar un triángulo rectángulo, basta con

Más detalles

INSTITUTO SALESIANO NUESTRA SEÑORA DE LUJAN 2008 TRIGONOMETRÍA

INSTITUTO SALESIANO NUESTRA SEÑORA DE LUJAN 2008 TRIGONOMETRÍA INSTITUTO SLESINO NUESTR SEÑOR DE LUJN 008 TRIGONOMETRÍ Vamos a estudiar ahora, una parte de la matemática que se ocupa de las relaciones que eisten entre los lados de un triángulo rectángulo. Recordemos

Más detalles

M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O /

M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O / C O N C E P T O S B Á S I C O S M AT E M Á T I C A S 4 º E S O D E I S Y M O L I N A C U R S O 2 0 1 7 / 2 0 1 8 Q U É E S L A T R I G O N O M E T R Í A? R A M A D E L A S M A T E M Á T I C A S Q U E S

Más detalles

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como:

TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como: TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Dado el siguiente triángulo rectángulo: Deducimos las razones trigonométricas como: Seno α = cateto opuesto

Más detalles

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE BELEN

INSTITUCION EDUCATIVA NUESTRA SEÑORA DE BELEN RAZONES TRIGONOMÉTRICAS EN EL TRIÁNGULO RECTÁNGULO Las funciones trigonométricas estudiadas en la circunferencia unitaria se pueden describir en triángulos rectángulos a partir de las relaciones entre

Más detalles

Fundación Uno. Ejercicio reto. Razones trigonométricas. ENCUENTRO # 54 TEMA:Trigonometría. CONTENIDOS: 1. Razones trigonométricas.

Fundación Uno. Ejercicio reto. Razones trigonométricas. ENCUENTRO # 54 TEMA:Trigonometría. CONTENIDOS: 1. Razones trigonométricas. ENCUENTRO # 54 TEMA:Trigonometría. CONTENIDOS: 1. Razones trigonométricas. 2. Resolución de triángulo rectángulo. Ejercicio reto 1. En la figura ABC es isósceles. C A AD y B AD. ADC = 30 circ. Haciendo

Más detalles

La lección de hoy es sobre Ángulos de Elevación y Ángulos de Depresión. El cuál es la expectativa para el aprendizaje de del estudiante T.2.G.

La lección de hoy es sobre Ángulos de Elevación y Ángulos de Depresión. El cuál es la expectativa para el aprendizaje de del estudiante T.2.G. T.2.G.6-Pam Beach-Angles of Elevation and Depression. La lección de hoy es sobre Ángulos de Elevación y Ángulos de Depresión. El cuál es la expectativa para el aprendizaje de del estudiante T.2.G.6 Qué

Más detalles

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES

REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES VECTORES REPRESENTACIÓN DE UERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) 5 m m

Más detalles

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas

Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Trigonometría: Ángulos y sus Medidas; Razones Trigonométricas Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido Contenido anes : Contenido Discutiremos: ángulo trigonométrico : Contenido Discutiremos:

Más detalles

José Antonio Jiménez Nieto

José Antonio Jiménez Nieto TRIGONOMETRÍA. UNIDADES PARA MEDIR ÁNGULOS Un ángulo es una porción de plano limitada por dos semirrectas que tienen un origen común. Las unidades que más frecuentemente se utilizan para medir ángulos

Más detalles

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:

TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula: Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera

Más detalles

TRIGONOMETRÍA. Los griegos y los hindúes la consideraron como una básica herramienta de la Astronomía.

TRIGONOMETRÍA. Los griegos y los hindúes la consideraron como una básica herramienta de la Astronomía. TRIGONOMETRÍA La trigonometría es una rama de la matemática, cuyo significado etimológico, proveniente del griego, es medida del triángulo". Estudia las relaciones entre los ángulos y los lados de los

Más detalles

TEOREMA DE PITÁGORAS

TEOREMA DE PITÁGORAS TEOREMA DE PITÁGORAS 1. Triángulos rectángulos. Teorema de Pitágoras.. Demostraciones visuales del Teorema de Pitágoras. 3. Ternas pitagóricas. 4. Aplicaciones del teorema de Pitágoras. 4.1.Conocidos los

Más detalles

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS

TRIGONOMETRÍA: MEDIDA DE ÁNGULOS el blog de mate de aida: trigonometría º ESO pág. 1 TRIGONOMETRÍA: MEDIDA DE ÁNGULOS Ángulo es la porción del plano limitada por dos semirrectas de origen común. Medidas de ángulos Medidas en grados Un

Más detalles

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara

Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD II: RESOLUCIÓN DE TRIÁNGULO CUALESQUIERA U OBLICUÁNGULOS Ing. Pablo Marcelo Flores Jara

Más detalles

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS

GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos

Más detalles

Unidad I Triángulos rectángulos

Unidad I Triángulos rectángulos Unidad I Triángulos rectángulos Última revisión: 07-Enero-2010 Elaboró: Ing. Víctor H. Alcalá-Octaviano Página 1 Tema 1. Teorema de Pitágoras Matemáticas II El Teorema de Pitágoras lleva este nombre porque

Más detalles

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas Trigonometría

Herramienta de Alineación Curricular - Resumen a través de las unidades Departamento de Educación de Puerto Rico Matemáticas Trigonometría Unidad 7 (Trigonometria Inversa Unidad 6 (Leyes de Senos y Cosenos) Unidad 5 (Resolver Ecuaciones Unidad 4 (Identidades Trigonometricas) Unidad 3 (Funciones trigonométricas y sus Unidad 2 ( en el triángulo

Más detalles

Razones trigonométricas DE un ángulo agudo de un triángulo

Razones trigonométricas DE un ángulo agudo de un triángulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades

Más detalles

SOLUCIONES TRIGONOMETRÍA19

SOLUCIONES TRIGONOMETRÍA19 SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

Sin hacer uso de la calculadora, halla el valor exacto de las razones trigonométricas que faltan o del ángulo, sabiendo que 0 90 :

Sin hacer uso de la calculadora, halla el valor exacto de las razones trigonométricas que faltan o del ángulo, sabiendo que 0 90 : EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Ejercicio nº 2.- Sin hacer uso de la calculadora, halla el

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en gos sexagesimales y ianes Un ángulo de 1 ián es aquel cuyo arco tiene longitud igual al io - 60º = ianes (una vuelta completa) - Un ángulo recto mide

Más detalles

Trigonometría. 1. Ángulos

Trigonometría. 1. Ángulos Trigonometría Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, la medida de un ángulo está comprendida

Más detalles

ES.G.33.3 Destreza Dado el valor de una función trigonométrica, hallar el valor de las otras.

ES.G.33.3 Destreza Dado el valor de una función trigonométrica, hallar el valor de las otras. Semana 1 Actividades para el logro de las tareas de desempeño Día:1 Día: 2 Día:3 Día:4 Día:5 ES.G.33.1 Que por semejanza, las razones entre los lados de un triángulo rectángulo son una propiedad de los

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza

Más detalles

TRIGONOMETRIA. Trigonometría plana

TRIGONOMETRIA. Trigonometría plana TRIGONOMETRIA Trigonometría, rama de las matemáticas que estudia las relaciones entre los lados y los ángulos de triángulos, de las propiedades y aplicaciones de las funciones trigonométricas de ángulos.

Más detalles

Según la figura los rayos OA y OB determinan un ángulo simbolizado AOB

Según la figura los rayos OA y OB determinan un ángulo simbolizado AOB UNIDAD : TRIGONOMETRÍA El termino Trigonometría procede del griego y significa medida de triángulos. Por lo tanto se considera la trigonometría como la rama de la matemática que estudia los elementos de

Más detalles

17. Trigonometría, parte I

17. Trigonometría, parte I Matemáticas II, 2012-II La definición de las funciones trigonométricas Dos triángulos rectángulos que tienen otro ángulo igual tienen los tres lados iguales. Por ello son triángulos semejantes. La siguiente

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Utiliza correctamente el lenguaje algebraico, geométrico y trigonométrico.. Identifica la simbología propia de la geometría y la trigonometría. Saberes

Más detalles

Ejercicios resueltos Matemáticas Universitaras II

Ejercicios resueltos Matemáticas Universitaras II Ejercicios resueltos Matemáticas Universitaras II Genaro Luna Carreto Octubre 06 Profesor de la Benemérita Universidad Autónoma de Puebla, Méico. OBJETIVO La finalidad de éste documento es resolver problemas

Más detalles

Teorema del Seno. Teorema del Coseno

Teorema del Seno. Teorema del Coseno Para ver una explicación de cada Teorema y algunos ejemplos de solución de triángulos y problemas de aplicación, haga Click sobre el nombre: Teorema del Seno Teorema del Coseno Teorema del Seno Para aclarar

Más detalles

Ministerio del Poder Popular para la Educación Unidad Educativa Nacional Domitila Flores Curso: 5to Año Área de Formación: Física UNIDAD DE NIVELACIÓN

Ministerio del Poder Popular para la Educación Unidad Educativa Nacional Domitila Flores Curso: 5to Año Área de Formación: Física UNIDAD DE NIVELACIÓN Ministerio del Poder Popular para la Educación Unidad Educativa Nacional Domitila Flores Curso: 5to Año Área de Formación: Física UNIDAD DE NIVELACIÓN Elaborado por: Prof. Ronny Altuve Raga 1 Lagunillas,

Más detalles

Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico

Materia: Matemática de 5to Tema: Producto Punto. Marco Teórico Materia: Matemática de 5to Tema: Producto Punto Marco Teórico En términos comunes, el producto punto de dos vectores es un número que describe la cantidad de fuerza que dos vectores diferentes contribuyen

Más detalles

LA TRIGONOMETRÍA y su objeto de estudio

LA TRIGONOMETRÍA y su objeto de estudio INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N 0

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución

Más detalles

UNIDAD DIDÁCTICA 6: Trigonometría

UNIDAD DIDÁCTICA 6: Trigonometría accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 6: Trigonometría ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4.

Más detalles

TEMA 9. TRIGONOMETRÍA

TEMA 9. TRIGONOMETRÍA TEMA 9. TRIGONOMETRÍA 1. LOS ÁNGULOS Y SU MEDIDA. La trigonometría es la parte de las matemáticas que se encarga de la medida de los lados y los ángulos de un triángulo. ÁNGULO Un ángulo en el plano es

Más detalles

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS

RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS SEMANA 03 RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS I. IDENTIDADES TRIGONOMÉTRICAS 1.1 Razones trigonométricas de la suma de dos ángulos Sen (α+β) = senα*cosβ + cosα*senβ Cos (α+β) = cosα*cosβ

Más detalles

Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés

Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés Introducción a la trigonometría y a las funciones trigonométricas Shirley Bromberg Raquel Valdés Un poquito de historia Trigonometría es una palabra de etimología griega, aunque no es una palabra griega.

Más detalles

Ejercicios resueltos de trigonometría

Ejercicios resueltos de trigonometría Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: a) 3 b) 1º 0º c) 15 0º 2) Desde lo alto de una torre de 0m se observa, cuando se mira hacia delante, un árbol. Cuando se mira

Más detalles

Trigonometría y Análisis Vectorial

Trigonometría y Análisis Vectorial Unidad Educativa enezuela Trigonometría nálisis ectorial Prof. Ronn J. ltuve Unidad Educativa enezuela Trigonometría nálisis ectorial 1. Teorema de Pitágoras: establece que en un triángulo rectángulo el

Más detalles

UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA.

UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA. UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA http://www.uaeh.edu.mx/virtual ELEMENTOS BASICOS DE TRIGONOMETRÍA. Introducción. La trigonometría es el área de las matemáticas que se encarga de calcular los

Más detalles

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES

(tema 9 del libro) 1. FUNCIÓNES EXPONENCIALES (tema 9 del libro). FUNCIÓNES EXPONENCIALES Son funciones de la forma f ( ) a donde a 0 y a. Su dominio es todo R y van a estar acotadas inferiormente por 0, que es su ínfimo. Todas pasan por el punto

Más detalles

TRIGONOMETRÍA 1. ÁNGULO

TRIGONOMETRÍA 1. ÁNGULO UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE ODONTOLOGÍA CURSO: FÍSICA MATEMÁTICA DOCENTE: Dr. Edwin López Año 2017 Documento de apoo a la docencia 1. ÁNGULO TRIGONOMETRÍA Ángulo es la porción de

Más detalles

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables

Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.

Más detalles

Matemáticas Aplicadas

Matemáticas Aplicadas Matemáticas Aplicadas para Diseño de Videojuegos 4. Trigonometría Contenidos Ángulos: unidades de medida. Razones trigonométricas. Funciones trigonométricas. Coordenadas polares y esféricas. Identidades

Más detalles

UNIDAD DIDÁCTICA CONTENIDO

UNIDAD DIDÁCTICA CONTENIDO UNIDAD DIDÁCTICA CONTENIDO TRIÁNGULOS CLASIFICACIÓN DE TRIÁNGULO - SEGÚN SUS LADOS - SEGÚN SUS ÁNGULOS ÁNGULOS INTERIORES Y EXTERIORES DE UN TRIÁNGULO 1 ANALIZA LAS SIGUIENTES FIGURAS: Son polígonos: No

Más detalles

TEMAS 4 Y 5 TRIGONOMETRÍA

TEMAS 4 Y 5 TRIGONOMETRÍA Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales 1. Identifica la simbología propia de la geometría y la trigonometría. 2. Identifica las unidades para medir ángulos. 3. Clasifica adecuadamente las identidades

Más detalles

Matemática 3 Colegio N 11 B. Juárez

Matemática 3 Colegio N 11 B. Juárez Unidad 4: RAZONES Y PROPORCIONES Definición de RAZÓN: Se denomina razón entre dos números racionales a y b, al cociente (división) entre ambos, siendo b distinto de 0. a se denomina antecedente Ejemplo

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO. Matemáticas Básicas Grupo de docentes de Matemáticas Básicas

INSTITUTO TECNOLÓGICO METROPOLITANO. Matemáticas Básicas Grupo de docentes de Matemáticas Básicas INSTITUTO TECNOLÓGICO METROPOLITANO Matemáticas Básicas Grupo de docentes de Matemáticas Básicas 1. Trigonometría 1.1. Ángulos y sus medidas Definición 1.1. 1. Un ángulo es la figura que se forma con dos

Más detalles

José Gómez Penas 1 UNIDAD DIDÁCTICA. GEOMETRÍA : Triángulos y Cuadriláteros. Autor : José Gómez Penas 1º ESO.Matemáticas.

José Gómez Penas 1 UNIDAD DIDÁCTICA. GEOMETRÍA : Triángulos y Cuadriláteros. Autor : José Gómez Penas 1º ESO.Matemáticas. 1 UNIDAD DIDÁCTICA GEOMETRÍA : Triángulos y Cuadriláteros Autor : 1º ESO.Matemáticas. IES Miraflores CONTENIDOS: Triángulos: Teorema de Pitágoras. Áreas y Perímetros OBJETIVOS: -Comprender el teorema de

Más detalles

Capitulo I. Trigonometría

Capitulo I. Trigonometría Capitulo I. Trigonometría Objetivo. El alumno reforzará los conceptos de trigonometría para lograr una mejor comprensión del álgebra. Contenido: 1.1 Definición de las funciones trigonométricas para un

Más detalles

Módulo 26: Razones trigonométricas

Módulo 26: Razones trigonométricas INTERNADO MATEMÁTICA 2016 Guía del estudiante Módulo 26: Razones trigonométricas Objetivo: Conocer y utilizar las razones trigonométricas para resolver situaciones problemáticas. Trigonometría Es la rama

Más detalles

MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7)

MAGNITUDES FISICAS. Es una flecha o segmento orientado que tiene los siguientes elementos gráficos que lo representan: (fig. 7) 1 MGNITUDES FISICS Magnitudes escalares Son aquellas cantidades que quedan determinadas por un número una unidad exclusivamente. Ej: el tiempo, la densidad, el trabajo, la temperatura, etc. Magnitudes

Más detalles

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos

TALLER DE ENTRENAMIENTO PARA SEMIFINAL Sábado 6 de mayo y jueves 11 de mayo Elaborado por: Gustavo Meza García. Ángulos Ángulos Ejercicios: 1) Si un triángulo tiene 2 ángulos que miden 25 y 75 Cuánto mide el tercer ángulo? 2) Cuánto suman los ángulos internos de un cuadrilátero cualquiera? Teorema: 1) La suma de los ángulos

Más detalles

El teorema de Pitágoras

El teorema de Pitágoras El teorema de Pitágoras Son muchas las situaciones de la vida real en las que nos encontramos ante figuras geométricas. Saber identificarlas, nombrarlas y realizar cálculos con sus componentes son objetivos

Más detalles

PÁGINA 76. sen 34 = BC AB = = 0,56. cos 34 = AC AB = = 0,82. tg 34 = BC AC = = 0,68. Pág mm. 35 mm. 51 mm

PÁGINA 76. sen 34 = BC AB = = 0,56. cos 34 = AC AB = = 0,82. tg 34 = BC AC = = 0,68. Pág mm. 35 mm. 51 mm Soluciones a las actividades de cada epígrafe PÁGIN 76 Pág. 1 1 Dibuja sobre un ángulo como el anterior, 34, un triánguo rectángulo mucho más grande. Halla sus razones trigonométricas y observa que obtienes,

Más detalles