Estabilidad en el Plano Complejo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estabilidad en el Plano Complejo"

Transcripción

1 Cpítulo Etili e el Plo Complejo Itrouió L etili e u item liel e lzo erro e etermi prtir e l uiió e lo polo e lzo erro e el plo Si lguo e eto polo e euetr e el emiplo ereho el plo, etoe oforme umet el tiempo, prouirá el moo omite y l repuet tritori umetrá e form mooto u oilrá o u mplitu reiete; e tl etio el item erá ietle jω Etle Frio M Gozález-Logtt, Septiemre Ietle plo E ét oiioe t proto omo e efetú l exitió ete item, l li umet o el tiempo (e form ivergete) Si e el item o poee u rteríti e turió o o e iluye u meimo eguri pr otr l li, el item puee termir por etrr e u omportmieto que puee ivolurr poteil ño o fll, o que l repuet e u item fíio rel o puee umetr iefiimete Por ee, e el item e otrol liel orml o e permite lo polo e lzo erro e el emiplo ereho el plo Si too lo polo e lzo erro e euetr l izquier el eje jω, ulquier repuet tritori termi por lzr el equilirio Eto repreet u item etle Que u item liel e etle o ietle e u propie el item mimo y o epee e l etr i e l fuió e exitió el item Lo polo e l etr, o e l fuió e exitió, o fet l propie e etili el item, io ólo otriuye lo térmio e repuet e eto etle e l oluió Por tto, el prolem e etili olut e oluio o fili l o elegir polo e lzo erro e el emiplo ereho el plo, iluyeo el eje jω, (Mtemátimete, lo polo e lzo erro ore el eje jω prouirá oilioe, uy mplitu o e reue i ree o el tiempo) Si emrgo, e lo o prátio e lo que hy ruio, l mplitu e l oilioe umet u veloi etermi por el ivel e l potei el ruio Por tto, u item e otrol o ee teer polo e lzo erro e el eje jω) Oerve que el olo heho e que too lo polo e lzo erro e euetre e el emiplo izquiero el plo o grtiz rteríti tiftori e repuet tritori Si lo polo omite omplejo ojugo e lzo erro e euetr er el eje jω, l repuet tritori exhiirá oilioe exeiv o erá muy let Por tl rzó, fi e grtizr rteríti e repuet tritori rápi y ie mortigu, e eerio que lo polo e lzo erro el item e euetre e u regió etermi el plo omplejo, tl omo l regió elimit por el áre omre e l Figur Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg

2 Etili e el Plo Complejo Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg Do que l etili reltiv y el eempeño tritorio e u item e otrol e lzo erro e relio iretmete o el ptró e polo y ero e lzo erro e el plo, o freuei e eerio jutr uo o má prámetro pr oteer lo ptroe oveiete E et regio ζ > t < jω Figur Regió el plo omplejo que tife l oiioe ζ > y t < u Criterio e Etili e Routh El prolem má importte e lo item e otrol liel tiee que ver o l etili Ete prolem e fumetlmete repoer l pregut jo qué oiioe e vuelve ietle u item? Y e el o e que i e ietle, ómo e puee her pr etilizrlo? Como y e ooe u item e otrol e etle i y ólo i too lo polo e lzo erro e euetr e el emiplo izquiero el plo Do que i too lo item liele e lzo erro tiee fuioe e trferei e lzo erro e l form: m m C() + + K+ m + m B( ) R() + + K+ + A() e oe l { } j j y l { } m j j o otte y m <, primero e ee ftorizr el poliomio A() pr eotrr lo polo e lzo erro U riterio imple, ooio omo el riterio e etili e Routh, permite etermir l ti e polo e lzo erro que e euetr e el emiplo ereho el plo i teer que ftorizr el poliomio El riterio e etili e Routh ie i exite o o ríe ietle e u euió poliomil, i teer que oteerl e reli Ete riterio e etili ólo e pli lo poliomio o u ti fiit e térmio Cuo e pli el riterio u item e otrol, l iformió er e l etili olut e otiee iretmete e lo oefiiete e l euió rteríti El proeimieto e el riterio e etili e Routh e el iguiete: Eriir el poliomio e e l form iguiete: + + K + + () e oe lo oefiiete o tie rele Supoemo que ; e eir, e elimi ulquier ríz ero Si lguo e lo oefiiete e ero o egtivo, te l preei e l meo u oefiiete poitivo, hy u ríz, o ríe imgiri o que tiee prte rele poitiv E tl o, el item o e etle Si ólo o itere l etili olut, o e eerio otiur o el proeimieto Oerve que too lo oefiiete ee er poitivo Ét e u Frio M Gozález-Logtt, Septiemre

3 Teorí e Cotrol Frio M Gozález-Logtt, Septiemre Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg oiió eeri, omo e prei prtir el rgumeto iguiete: u poliomio e o oefiiete rele iempre puee ftorizre e ftore liele y urátio tle omo ( + ) y ( + + ), e oe, y o úmero rele Lo ftore liele proue l ríe rele y lo ftore urátio proue l ríe omplej el poliomio El ftor (z + + ) proue l ríe o prte rele egtiv ólo i y o m poitiv Pr to l ríe que tiee prte rele egtiv, l otte,,, ee er poitiv e too lo ftore El prouto e ulquier ti e ftore liele y urátio que oteg ólo oefiiete poitivo iempre proue u poliomio o oefiiete poitivo E importte eñlr que l oiió e que too lo oefiiete e poitivo o e ufiiete pr egurr l etili L oiió eeri, pero o ufiiete, pr l etili e que too lo oefiiete e l euió () eté preete y teg u igo poitivo (Si to l o egtiv, e he poitiv multiplio mo miemro e l euió por -) Si too lo oefiiete o poitivo, oree lo oefiiete el poliomio e regloe y olum e uero o el ptró o rreglo iguiete: 6 g f e e Lo oefiiete l,,, et, e evlú el moo iguiete: 6 L evluió e l otiú ht que to l rette o ero Se igue el mimo ptró e multipliió ruz e lo oefiiete e lo o regloe teriore l evlur l, l, l e, et E eir, M

4 Etili e el Plo Complejo Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg Ete proeo otiú ht que e omplet el -éimo regló El rreglo ompleto e lo oefiiete e trigulr Oerve que, l errollr el rreglo, u regló ompleto e ivie etre, o e multipli por, u úmero poitivo pr implifir el álulo umério u-euete i lterr l oluió e l etili El riterio e etili e Routh plte que el úmero e ríe e l euió () o prte rele poitiv e igul l úmero e mio e igo e lo oefiiete e l primer olum el rreglo Dee eñlre que o e eerio ooer lo vlore exto e lo térmio e l primer olum; ólo e eeit lo igo L oiió eeri y ufiiete pr que to l ríe e l euió () e euetre e el emiplo izquiero el plo e que too lo oefiiete e l euió () e poitivo y que too lo térmio e l primer olum el rreglo teg igo poitivo Ejemplo Aplir el riterio e etili e Routh l iguiete poliomio e terer ore: e oe too lo oefiiete o úmero poitivo El rreglo e oefiiete e ovierte e L oiió e que to l ríe teg prte rele egtiv e otiee meite > Ejemplo Coiere el iguiete poliomio: Se igue el proeimieto que e e preetr y e otruye el rreglo e oefiiete (Lo primero o regloe e otiee iretmete el poliomio o Lo térmio rette e otiee e éto Si flt oefiiete e el rreglo, e utituye o ero) 6 / / E éte ejemplo, hy o mio e igo e lo oefiiete e l primer olum Eto igifi que exite o ríe o prte rele poitiv Oerve que el reulto o e moifi uo lo oefiiete e ulquier regló e multipli por, o e ivie etre, u úmero poitivo pr implifir el álulo / Frio M Gozález-Logtt, Septiemre

5 Teorí e Cotrol Co Epeile Si el térmio e l primer olum e ulquier regló e ero, pero lo térmio rette o o ero, o o hy térmio rette, el térmio ero e utituye o u úmero poitivo muy pequeño ε y e evlú el reto el rreglo Por ejemplo, oiere l euió () El rreglo e oefiiete e ε Si el igo el oefiiete que etá eim el ero (ε) e igul l igo que etá jo e él, quiere eir que hy u pr e ríe imgiri E reli, l euió () tiee o ríe e ± j Si emrgo, i el igo el oefiiete que etá eim el ero (ε) e opueto l el que etá jo, quiere eir que hy u mio e igo Por ejemplo, pr l euió: el rreglo e oefiiete e U mio e igo: U mio e igo: Frio M Gozález-Logtt, Septiemre ε ε ( ) ( + ) Hy o mio e igo e lo oefiiete e l primer olum Eto oiie o el reulto orreto iio por l form ftoriz e l euió poliomil Si too lo oefiiete e ulquier regló o ero igifi que exite ríe e igul mgitu que e euetr rilmete opuet e el plo, e eir, o ríe o mgitue igule y igo opueto y/o o ríe imgiri ojug E ete o, l evluió el reto el rreglo otiú meite l formió e u poliomio uxilir o lo oefiiete el último regló y meite el empleo e lo oefiiete e l eriv e ete poliomio e el regló iguiete Tle ríe o mgitue igule y rilmete opuet e el plo e euetr epejo el poliomio uxilir, que iempre e pr Pr u poliomio uxilir e gro, exite pre e ríe igule y opuet Por ejemplo, oiere l euió: rreglo e oefiiete e 8 Poliomio uxilir P() Too lo térmio el regló o ero Depué e form el poliomio uxilir prtir e lo oefiiete el regló El poliomio uxilir P() e: P() lo ul ii que hy o pre e ríe e igul mgitu y igo opueto Eto pre e otiee reolvieo l euió el poliomio uxilir P() L eriv e P() o repeto e: P( ) Lo oefiiete e l últim euió, e eir, 8 y 96, utituye lo térmio el regló Por oiguiete, el rreglo e oefiiete e ovierte e: Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg

6 6 Etili e el Plo Complejo Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg Coefiiete e P()/ - - Se ve que hy u mio e igo e l primer olum el rreglo uevo Por tto, l euió origil tiee u ríz o u prte rel poitiv Depejo l ríe e l euió el poliomio uxilir Se otiee o ie, - ±, ±j Eto o pre e ríe o u prte e l ríe e l euió origil De heho, l euió origil e erie e form ftoriz el moo iguiete: ( + l)( - l)( + j)( - j)( + ) Aálii e Etili Reltiv El riterio e etili e Routh proporio l repuet l pregut e l etili olut Eto, e muho o prátio, o e ufiiete Por lo geerl, e requiere iformió er e l etili reltiv el item U efoque útil pr exmir l etili reltiv e mir el eje el plo y plir el riterio e etili e Routh E eir, e erie ˆ ( otte) e l euió rteríti el item, e erie el poliomio e térmio e ŝ, y e pli el riterio e etili e Routh l uevo poliomio e L ti e mio e igo e l primer olum el rreglo errollo pr el poliomio e ŝ e igul l ti e ríe que e loliz l ereh e l líe vertil - Por tto, et prue revel l ti e ríe que e euetr l ereh e l líe vertil - Apliió el riterio e etili e Routh l álii e u item e otrol El riterio e etili e Routh tiee u utili limit e el álii e u item e otrol liel, ore too porque o ugiere ómo mejorr l etili reltiv i ómo etilizr u item ietle Si emrgo, e poile etermir lo efeto e mir uo o o prámetro e u item i e exmi lo vlore que proue ietili A otiuió e oier el prolem e etermir el rgo e etili pr el vlor e u prámetro Coiere el item e l Figur R() + K ( + + )( + ) + K Figur Sitem e Cotrol pr lizr l etili reltiv Se ee etermir el rgo e vlore e K pr l etili L fuió e trferei e lzo erro e: C( ) K R() ( + + )( + ) + K L euió rteríti e K El rreglo e oefiiete e ovierte e: C( ) Frio M Gozález-Logtt, Septiemre

7 Teorí e Cotrol K / K -9/K K Pr l etili, K ee er poitiv (K > ), y too lo oefiiete e l primer olum ee erlo tmié Por tto, e ee umplir: > K > 9 Cuo K /9, el item e vuelve oiltorio y, mtemátimete, l oilió e mtiee e u mplitu otte Referei Doumetle [] Ogt, K, Igeierí e Cotrol Moer, Pretie Hll, 98 [] Aero, PM & Fu, AA Power Sytem Cotrol Stility Seo Eitio IEEE Pre [] Kuur, P Power Sytem Stility Cotrol M Grw Hill, 999 Frio M Gozález-Logtt, Septiemre Solo pr er empleo o ojetivo e evluió, o émio Prohiio l reprouió totl o pril e ete oumeto Dereho e Autor Reervo Copyright Frio M Gozlez-Logtt fglogtt@ieeeorg

CRITERIO DE ESTABILIDAD DE ROUTH

CRITERIO DE ESTABILIDAD DE ROUTH CRITERIO DE ESTABIIDAD DE ROUTH INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. INGENIERÍA DE CONTRO.C. EIZABETH GPE. ARA HDZ. Criterio e etili e Routh-Hurwitz El prolem má importte e lo item e otrol liel

Más detalles

ESTABILIDAD. estable, si sometido a una perturbación, éste, luego de un tiempo, vuelve a su

ESTABILIDAD. estable, si sometido a una perturbación, éste, luego de un tiempo, vuelve a su ESTABIIDAD El álii de lo ite de otrol e e gr prte e el ooiieto de u etilidd olut y reltiv ESTABIIDAD ABSOUTA: u ite liel ivrite e el tiepo e etle, i oetido u perturió, éte, luego de u tiepo, vuelve u odiió

Más detalles

Criterios de Estabilidad de Routh y Jury. M.I. Ricardo Garibay Jimenez 2006

Criterios de Estabilidad de Routh y Jury. M.I. Ricardo Garibay Jimenez 2006 Criterio de Etbilidd de Routh y Jury M.I. Rirdo Griby Jimeez 6 Criterio de Routh U poliomio (... A tiee ríe etble (o prte rel egtiv i e umple odiioe. Neeidd todo lo oefiiete y o poitivo Sufiiei El igo

Más detalles

Definiciones de estabilidad BIBO

Definiciones de estabilidad BIBO Tem. Etilidd de Sitem Itroducció TEORÍA DE ONTROL L oció de etilidd e fudmetl e el derrollo de item de cotrol y e prticulr pr lo item retrolimetdo. L ueci de et propiedd vuelve iútil e l práctic culquier

Más detalles

Criterio de Estabilidad de Routh-Hurwitz

Criterio de Estabilidad de Routh-Hurwitz Criterio de Etbilidd de Routh-Hurwitz F Pr l etbilidd BIBO, l ríce de l ecució crcterític, o lo polo de C()/R(), o puede etr loclizdo e el emiplo derecho del plo o e eje j, todo debe quedr e el emiplo

Más detalles

ESTABILIDAD. 1. Concepto de estabilidad. 2. Criterio de Routh-Hurwitz. Métodos algebraicos para el análisis de estabilidad.

ESTABILIDAD. 1. Concepto de estabilidad. 2. Criterio de Routh-Hurwitz. Métodos algebraicos para el análisis de estabilidad. Uiveridd Crlo III de Mdrid Señle y Sitem ESTABILIDAD Método lgerio pr el álii de etilidd.. Coepto de etilidd.. Criterio de Roth-Hrwitz. Dolore Blo, Rmó Brer, Mrí Mlfz y Migel Ágel Slih Uiveridd Crlo III

Más detalles

MATEMÁTICAS 2º DE ESO LOE

MATEMÁTICAS 2º DE ESO LOE MATEMÁTICAS º DE ESO LOE TEMA II: FRACCIONES Los sigifios e u frió. Frioes propis e impropis. Equivlei e frioes. Amplifiió y simplifiió. Frió irreuile. Reuió e frioes omú eomior. Comprió e frioes. Operioes

Más detalles

Teoría de Sistemas y Señales

Teoría de Sistemas y Señales Teorí de Sitem y Señle Criterio lgerio de etilidd Criterio de Routh Autor Dr. Jun Crlo Gómez Criterio Algerio de Etilidd pr SE en TC Promo que l ondiión neeri y ufiiente pr que un SE en TC repreentdo por

Más detalles

tiene derivada continua hasta de orden 1

tiene derivada continua hasta de orden 1 Cálulo Numério Progrmió Apli INTERPOLACIÓN SEGMENTARIA O SPLINES L otruió e poliomio e iterpolió e gro lto uque utifile teórimete plte muo prolem Por u lo, l form e l fuió poliómi e gro lto meuo o repoe

Más detalles

Criterio de Estabilidad de Routh-Hurwitz

Criterio de Estabilidad de Routh-Hurwitz Criterio de Etbilidd de Routh-Hurwitz F Pr l etbilidd BIBO, l ríce de l ecució crcterític +G()H() =, o lo polo de C()/R(), o puede etr loclizdo e el emiplo derecho del plo o e eje j, todo debe quedr e

Más detalles

1) CONCEPTOS 2) MONOMIOS TEMA : EXPRESIONES ALGEBRAICAS

1) CONCEPTOS 2) MONOMIOS TEMA : EXPRESIONES ALGEBRAICAS TEMA EXPRESIONES ALGEBRAICAS CONCEPTOS U EXPRESIÓN ALGEBRAICA es el ojuto e úmeros letrs que se omi o los sigos e ls operioes mtemátis sum, rest, multipliió, ivisió poteiió. Ejemplo El VALOR NUMÉRICO e

Más detalles

Operaciones con Fracciones

Operaciones con Fracciones Operioes o Frioes Reuió e frioes Frioes o igul eomior: De os frioes que tiee el mismo eomior es meor l que tiee meor umeror. Frioes o igul umeror: De os frioes que tiee el mismo umeror es meor l que tiee

Más detalles

Clase 16. Tema: Racionalización de expresiones. Matemáticas 9. Bimestre: I Número de clase: 16. Tipo 1. Esta clase tiene video.

Clase 16. Tema: Racionalización de expresiones. Matemáticas 9. Bimestre: I Número de clase: 16. Tipo 1. Esta clase tiene video. Bimestre: I Número de lse: 16 Mtemátis Clse 16 Est lse tiee video Tem: Riolizió de expresioes Atividd 46 1 Le l siguiete iformió sore l riolizió. E mtemátis es omú eotrros o expresioes rioles que otiee

Más detalles

Algunas propiedades de los Números reales. Números reales (R) c d

Algunas propiedades de los Números reales. Números reales (R) c d Profesoro e Nivel Meio y Superior e Biologí Mtemáti º Cutrimestre Año 0 Prof. Mrí Ele Ruiz Algus propiees e los Números reles (Este mteril tiee omo ojeto presetr u seleió e oeptos orrespoietes l Ui, pr

Más detalles

entonces A.B es: A) 4 B) 2 C) 1 D) 1/2 E) 1/4 a b. a b a b 4... Calcula: A) 1 B) 2 C) 2 D) 3 E) 2 2 x x A) 1 B) x C) A) 7 B) 8 C) 9 D) 10 E) 6

entonces A.B es: A) 4 B) 2 C) 1 D) 1/2 E) 1/4 a b. a b a b 4... Calcula: A) 1 B) 2 C) 2 D) 3 E) 2 2 x x A) 1 B) x C) A) 7 B) 8 C) 9 D) 10 E) 6 Rzomieto Lógio. Efetú: E = ÁLGEBRA DOENTE: Dr. Rihrd Herrer A. TEORIA DE EXPONENTES 8 A 0, B 0, D E 6. Simplifi: 6..80 9..0 A B D E. Hll el vlor de: M A B 6 D / E. Simplifi: ; si: > 0 A B D E. lul: S :

Más detalles

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS PRODUCTOS NOTABLES

FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS PRODUCTOS NOTABLES FACULTAD DE CIENCIAS EXACTAS Y NATURALES SEMILLERO DE MATEMÁTICAS GRADO 8 TALLER Nº SEMESTRE II RESEÑA HISTÓRICA PRODUCTOS NOTABLES Psl, Blise (-: filósofo, mtemátio físio frés, osiderdo u de ls metes

Más detalles

El proeso de idetifiió E tr d s 5 Defiiió del experimeto reoleió de dtos Es orreto el experimeto? Dtos ideudos H que filtrr los dtos? Limp

El proeso de idetifiió E tr d s 5 Defiiió del experimeto reoleió de dtos Es orreto el experimeto? Dtos ideudos H que filtrr los dtos? Limp Idetifiió de Sistems 5 Ojetivo de l Idetifiió de Sistems: Oteer u ue modelo (geerlmete liel del sistem empledo u tidd de trjo rzole. Perturioes o ruido: e(t 8 6 4 4 6 8 4 6 Etrds: u(t Desripió del sistem?

Más detalles

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie

a se denomina serie a es convergente y SERIES = si r <1 S n La suma de los términos de una sucesión infinita { } n n=1 infinita o simplemente serie SERIES L sum de los térmios de u suesió ifiit { } = ifiit o simplemete serie se deomi serie Y se represet o el símbolo = Defiiió: = 4 KK Dd l serie = ésim sum pril = 4 K K, se desigrá S su S = = = 4 K

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

D E T E R M I N A N T E S M A T R I Z I N V E R S A

D E T E R M I N A N T E S M A T R I Z I N V E R S A º DE BACHILLERATO DETERMINANTES D E T E R M I N A N T E S ----------- M A T R I Z I N V E R S A DETERMINANTES I. Determites. II. Primers pliioes de los determites. I. Determites.. Defiió álulo de u determite.

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fult e Igeierí UCV Álger Liel Geometrí líti 5 Cilo Básio GUÍ DE EJECICIOS III rsformioes lieles: Demuestre e so si l trsformió el esio vetoril V e el esio vetoril W es liel e w : B oe B es g u mtri fij

Más detalles

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Deprtmeto de Igeierí de Sitem y Automátic Tem 4. Aálii de l Repuet Temporl de Sitem LTI Automátic º Curo del Grdo e Igeierí e Tecologí Idutril Deprtmeto de Igeierí de Sitem y Automátic Coteido Tem 4.-

Más detalles

UNIDAD 1.- Números reales (temas 1 del libro)

UNIDAD 1.- Números reales (temas 1 del libro) UNIDAD.- Núeros reles (tes el libro). NUMEROS NATURALES Y ENTEROS Co los úeros turles otos los eleetos e u ojuto (úero ril). O bie expresos l posiió u ore que oup u eleeto e u ojuto (oril). Se represet

Más detalles

COSAS DE DIVISORES Y HOTELES

COSAS DE DIVISORES Y HOTELES COSAS DE DIVISORES Y HOTELES E est sesió trtremos de resolver el siguiete rolem: Prolem: El hotel de ls mil hitioes. Cuet ue e ierto ís hí u gr hotel ue teí 000 hitioes y otros ttos emledos. Estos, u dí

Más detalles

I.E.S Padre Juan Ruíz Aritmética Hinojosa del Duque

I.E.S Padre Juan Ruíz Aritmética Hinojosa del Duque I.E.S Pdre Ju Ruíz Aritméti Hiojos del Duque PROPIEDADES DE LA ARITMÉTICA Y ERRORES MÁS COMUNES NÚMEROS ENTEROS Elimir prétesis: Del mismo sigo, sle + De distito sigo, sle + (+) = + ( ) = + + ( ) = (+)

Más detalles

FUNCIONES POLINÓMICAS

FUNCIONES POLINÓMICAS Prof.: Lui Tfererry FUNCIONES POLINÓMICAS POLINOMIOS Los poliomios so importtes. El volume de u ilidro r h y su áre totl es rh r. ic El pitl fil produido por u pitl C durte t meses l i% ul, es C. t. 00

Más detalles

Temario Curso Propedéutico de Matemáticas

Temario Curso Propedéutico de Matemáticas Terio Curso Propeéutio e Mteátis Sesió, Sesió Sesió.- El Cojuto e Núeros Reles. Operioes o úeros rioles. Propiees. Operioes leris. Su, Rest, Lees e los Epoetes pr el Prouto l Divisió Aleri. Sesió. -Riles

Más detalles

TEMA 2: NÚMEROS RACIONALES: FRACCIONES.

TEMA 2: NÚMEROS RACIONALES: FRACCIONES. TEMA NÚMEROS RACIONALES FRACCIONES.. Cojuto e los Núeros Rioles, Q. El ojuto e los úeros rioles es u pliió e los úeros eteros, los que se le ñe uevos úeros que se ostruye o úeros eteros y se ll FRACCIONES.

Más detalles

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir,

{ } + S = = S, para S. a converge si su sucesión de sumas parciales converge, es decir, Esuel de Igeierí Cetro de Ciei Bási Cálulo de Vrile Rel Guí teóri Series Series Iiits: Deiiió: Se { } u suesió iiit. L epresió, se deoi serie iiit o serie y se deot por: { } S S S S S S S S - U serie es

Más detalles

MATEMÁTICAS LOS NÚMEROS REALES 4º DE ESO

MATEMÁTICAS LOS NÚMEROS REALES 4º DE ESO MATEMÁTICAS LOS NÚMEROS REALES º DE ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis

Más detalles

Los siguientes son ejemplos de expresiones algebraicas:

Los siguientes son ejemplos de expresiones algebraicas: UNIDAD : EXPRESIONES ALGÉBRAICAS Se deoi vrile rel u síolo geerlete u letr que se us pr represetr u úero rel ritrrio. Se deoi ostte rel u síolo que se us pr represetr u úero rel fijo. Se deoi epresió lgeri

Más detalles

tiene dimensión 3 2. El elemento a 21 = 3.

tiene dimensión 3 2. El elemento a 21 = 3. Tem. MTRICES Defiiió e mtriz U mtriz e imesió m es u ojuto e úmeros ispuestos e fils y m olums. sí:... m... m : : : :... m L mtriz terior tmié se puee eotr por ( ) m El elemeto ij es el que oup l fil i

Más detalles

3. Se ha observado que el acero de compresión contribuye a reducir las Deformaciones a Largo Plazo.

3. Se ha observado que el acero de compresión contribuye a reducir las Deformaciones a Largo Plazo. VIGS RENGULRES DOBLEENE RDS. El ero de ompreió vee e eerio por:. L dimeioe de l eió o retrigid por oiderioe rquitetói. E ete o, el oreto e ompreió o e pz de reitir el mometo tute por lo tto, e ñde ero

Más detalles

NÚMEROS REALES Clasificación. Acerca de las operaciones

NÚMEROS REALES Clasificación. Acerca de las operaciones NÚMEROS REALES Clsifiió Aer de ls oerioes - Prioridd. Prétesis de detro fuer.. Poteis y ríes.. Multiliioes y divisioes de izquierd dereh. Sums y rets, de izquierd dereh o ositivos or u ldo y egtivos or

Más detalles

Utilizando la fórmula que nos proporciona el número de divisores se tiene que:

Utilizando la fórmula que nos proporciona el número de divisores se tiene que: Hoj de Prolems º Alger IV /. Hllr u úmero etero A que o teg ms ftores primos que, y 7, siedo demás que ª tiee divisores más que A y que ª tiee divisores ms que A. Clulr tmié l sum de todos los divisores

Más detalles

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial

Tema 4. Análisis de la Respuesta Temporal de Sistemas LTI. Automática. 2º Curso del Grado en Ingeniería en Tecnología Industrial Tem 4. Aálii de l Repuet Temporl de Sitem LTI de Sitem y Automátic Automátic º Curo del Grdo e Igeierí e Tecologí Idutril Coteido de Sitem y Automátic Tem 4.- Aálii de l repuet temporl de item LTI 4..

Más detalles

REGLAS PARA DETERMINAR EL TÉRMINO GENERAL DE UNA SUCESIÓN:

REGLAS PARA DETERMINAR EL TÉRMINO GENERAL DE UNA SUCESIÓN: REGLAS PARA DETERMINAR EL TÉRMINO GENERAL DE UNA SUCESIÓN: Pese que o existe u proedimieto geerl pr determir el térmio geerl de u suesió vmos reopilr lgus herrmiets de álulo útiles que podemos poer e práti.

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Ju Atoio Goále Mot Profesor de Mtemátis del Colegio Ju XIII Zidí de Grd ESPACIOS VECTORIALES CONCEPTO DE ESPACIO VECTORIAL. Se V u ojuto ulquier R el ojuto de úmeros reles. E V defiimos dos lees de omposiió:

Más detalles

CAPITULO 3 SISTEMAS DE ECUACIONES LINEALES ...

CAPITULO 3 SISTEMAS DE ECUACIONES LINEALES ... LGEBR SUPERIOR Y LINEL.. INTRODUCCION. CPITULO SISTEMS DE ECUCIONES LINELES Se llm ecució liel ó ecució de primer grdo, u ecució que relcio cierto úmero coocido, co u ó má icógit, e et ecució cd icógit

Más detalles

Tema 9. Determinantes.

Tema 9. Determinantes. Uidd.Determites Tem. Determites.. Coeptos previos, permutioes. Defiiió geerl de determites. Determite de mtries de orde y orde.. Determite mtries udrds de orde. Determite mtries udrds de orde. Determite

Más detalles

Definiciones. Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales.

Definiciones. Los valores de los términos necesarios para empezar a calcular se llaman condiciones iniciales. Deprtmeto de Mtemáti plid. ETSIIf. UPM. Vitori Zrzos Rodríguez RELCIONES DE RECURRENCI Defiiioes Relió de reurrei o reursiv pr l suesió { } es u epresió que relio el térmio geerl de l suesió o uo o más

Más detalles

Análisis de Sistemas Lineales. Modelado en variables de fase

Análisis de Sistemas Lineales. Modelado en variables de fase Aálii e Sitem Liele Moelo e vrile e fe A B Coteio C D Moelo e vrile e fe Co : Si eriv e l fció e etr Co : Co geerl Ejemplo ejercicio Moelo e vrile e fe A B pr el co, q C D E moelo e vrile e eto, e el cl

Más detalles

CURIOSIDADES MATEMATICAS EL TRIANGULO DE PASCAL GENERALIZADO

CURIOSIDADES MATEMATICAS EL TRIANGULO DE PASCAL GENERALIZADO CURIOSIDADES MATEMATICAS EL TRIANGULO DE PASCAL GENERALIZADO JOSÉ FRANCISCO LEGUIZAMÓN ROMERO GRUPO DE INVESTIGACIÓN PIRÁMIDE LÍNEA MEDIOS EDUCATIVOS EN MATEMÁTICAS FACULTAD DE CIENCIAS DE LA EDUCACIÓN

Más detalles

Sucesiones de Números Reales

Sucesiones de Números Reales Apédice A Sucesioes de Números Reles A.. Defiicioes U sucesió de úmeros reles es u correspodeci A que soci, cd úmero turl, u úmero rel A ( ) El cojuto de los úmeros turles, cotiee ifiitos elemetos e u

Más detalles

TP: "POTENCIACIÓN" exponente. "n" veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0 : a

TP: POTENCIACIÓN exponente. n veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0 : a TP: "POTENCIACIÓN" Defiiió Ddo u ierto úmero rel, llmremos "potei eésim de " l produto de por sí mismo u tidd de vees; siedo u úmero turl. E símolos: se expoete........ p POTENCIA ENÉSIMA de Ej:.. 8 ""

Más detalles

σ c de los conductores metálicos es alta,

σ c de los conductores metálicos es alta, EC3 ORIA DE ONDAS 4.5 GUÍAS DE ONDAS METÁLICAS CON CONDUCTORES REALES 4.5. Eeto e l outivi iit el outor e los s e propgió Tl oo se estleió e l seió 3.6. pr el so e ls líes e trsisió reles el eeto e l outivi

Más detalles

7. Fallas Asimétricas

7. Fallas Asimétricas Friso M. Gozlez-Lott Cpítulo 7 7. Flls Asimétris 7. troduió U r proporió de ls flls e lo sistems elétrios de potei so simétrios, flls simétris trvés de impedis (ortoiruitos moofásios, ifásios, ifásios

Más detalles

Determine las ecuaciones vectorial, paramétricas y simétricas de la recta que., siendo D(4, 0, -1) y T(2, -3, 1).

Determine las ecuaciones vectorial, paramétricas y simétricas de la recta que., siendo D(4, 0, -1) y T(2, -3, 1). Vetores Cooreos Ilustrió 38 Determie ls euioes vetoril prmétris y simétris e l ret que ps por el puto A- 3 y es prlel l vetor DT sieo D4 0 - y T -3. Soluió Desigemos est ret por L A DT Se Px y z tl que

Más detalles

POTENCIA DE UN NÚMERO.

POTENCIA DE UN NÚMERO. INSTITUCION EDUCATIVA DISTRITAL RODRIGO DE BASTIDAS Resoluió Nº de oviere./0 Seretri De Eduió Distritl REGISTRO DANE Nº00-00099 Teléfoo Brrio Bstids St Mrt DEPARTAMENTO DE MATEMATICAS DOCENTE: LIC-ING.

Más detalles

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte

Departamento de Ingenierías Eléctrica y Electrónica Universidad del Norte chritianq@uninorte.edu.co Departamento de Ingeniería Eléctrica y Electrónica Univeridad del Norte El problema má importante de lo itema de control lineal tiene que ver con la etabilidad. Un itema de control

Más detalles

Introducción a los métodos lineales en dominio de la frecuencia

Introducción a los métodos lineales en dominio de la frecuencia Itrouió los métoos lieles e omiio e l freuei Mrio Estévez Báez Arés Mho Grí José M. Estévez Crrer 3 Mteril pulio origilmete e formto html e: lirosiertos:itrouio los_metoos_lieles_e_el_omiio_e_l_freuei.

Más detalles

CAPÍTULO CUATRO. ESTABILIDAD EN SISTEMAS DE CONTROL MUESTREADO.

CAPÍTULO CUATRO. ESTABILIDAD EN SISTEMAS DE CONTROL MUESTREADO. CAPÍTULO CUATRO. ESTABILIDAD EN SISTEMAS DE CONTROL MUESTREADO. IV.. INTRODUCCIÓN. Ls téis pr el estudio de l estilidd de sistems muestredos de otrol so lids e este pítulo. E geerl, los métodos de estudio

Más detalles

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real.

RADICALES. Entre los números reales se encuentran los radicales, que se pueden expresar como raíz de un índice n 2 de un número real. RADICALES Etre los úeros reles se euetr los rdiles, ue se uede exresr oo ríz de u ídie de u úero rel. Ríz eési de u úero rel. Si R y Ν, o, direos ue l ríz eési de es u úero rel r y lo otreos sí: r, si

Más detalles

matemáticas 4º ESO radicales

matemáticas 4º ESO radicales teátis º ESO riles. Fíjte e el prier ejeriio reliz los eás e l is for: ) ) ) ) riió Se ll riió l operió ivers l poteiió; propie fuetl e los riles Si se ultipli el íie el epoete el rio por u iso úero, el

Más detalles

WhittiLeaks Los apuntes que ellos no quieren que sepas de

WhittiLeaks Los apuntes que ellos no quieren que sepas de Métodos umérios WittiLes Los putes que ellos o quiere que seps de ITBA mo 7 WittiLes Resume Métodos umérios Pso Pr u fuió defiid e u itervlo: f (, ) ( ) el pso se defie por: ; dode es l tidd de divisioes

Más detalles

(3x, 6y) = ( 1, 5): (2, y) = (6x, 6x 6y):

(3x, 6y) = ( 1, 5): (2, y) = (6x, 6x 6y): . Reliz ls siguietes opeioes o pes uéios ) ( ) ( ) ) [ ( ) ( )] ½ ( ) 6 ( ) ) ( ) ( ) (6 ) ( ) ) (x y) (x y) ( ) ( ) Soluió. 6. ( ) ( ) ( 6 ( ) ) ( 9 7). [ ( ) ( )] ½ ( ) 6 ( ) ( ) ( ) (6 ) ( 6) ( ). (

Más detalles

Un Resumen Teórico. Matemática I

Un Resumen Teórico. Matemática I U Resume Teório De Mtemáti I WhittiLeks Los putes que ellos o quiere que seps de Oture 26 WhittiLeks Teório Notió: [, ] (, ) Df Im( f ) Y (Ad) O (Or) Es idétio Perteee /Es u elemeto de Por lo tto/por ede

Más detalles

Racionales. Representación decimal de los reales. En los racionales la parte decimal se repite, es periódica e infinita Ejemplos:

Racionales. Representación decimal de los reales. En los racionales la parte decimal se repite, es periódica e infinita Ejemplos: PUNTES DE ÁLGER Números reles. Vemos los diferetes tipos de úmeros reles. Números turles:,,,... Eteros: -, -, -, 0,... m Rioles: So rzoes etre úmeros eteros r, o m eteros 0 7 ejemplos de rioles so,,, 0.7.

Más detalles

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS

TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS L Uiversidd er TECNOLOGÍA ELÉCTRICA. UNIDAD DIDÁCTICA 1 CONCEPTOS BÁSICOS Y PROBLEMAS RESUELTOS 1.- POTENCIA EN SISTEMAS DE CORRIENTE ALTERNA E los iruitos de orriete lter, l produto etre tesió e itesidd

Más detalles

TP: "POTENCIACIÓN" exponente. "n" veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0: a

TP: POTENCIACIÓN exponente. n veces a. Definición conveniente: Todo número real distinto de cero elevado a la cero da 1(uno) En símbolos: a 0: a TP: "POTENCIACIÓN" Defiiió Ddo u ierto úmero rel, llmremos "potei eésim de " l produto de por sí mismo u tidd de vees; siedo u úmero turl. E símolos: se expoete........ p POTENCIA ENÉSIMA de Ej:.. "" vees

Más detalles

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así

LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest

Más detalles

UNIDAD 5 Series de Fourier

UNIDAD 5 Series de Fourier Series de Fourier 5. Fucioes ortogoles, cojutos ortogoles y cojutos ortoormles Se dice que dos fucioes f ( x ) y f x so ortogoles e el itervlo < x< si cumple co: f x = Est ide se hce extesiv u cojuto de

Más detalles

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario

RADICALES. 1.2.1 Teorema fundamental de la radicación. 1.2.3 Reducción de radicales a índice común. 1.2.4 Potenciación de exponente fraccionario RDICLES. Rdiles. Trsformioes de rdiles.. Teorem fudmetl de l rdiió.. Simplifiió de rdiles.. Reduió de rdiles ídie omú.. Poteiió de epoete friorio. Operioes o rdiles.. Produto de rdiles.... Etrió de ftores

Más detalles

1.-INTEGRAL DEFINIDA.

1.-INTEGRAL DEFINIDA. INTEGRAL DEFINIDA .-INTEGRAL DEFINIDA. e y ƒ( u fució cotiu e u itervlo [, ]. Not.- Pr simplificr l demostrció se cosider positiv, ƒ( > 0, e todo puto del itervlo. e divide el itervlo [, ] e "" suitervlos

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 3º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Aroxiió de deiles Itervlos. Ríes y oteis Notió ietífi. Oerioes Rdiió. Proieddes de ls oteis de exoete riol Rdiles equivletes Silifir rdiles Extrió

Más detalles

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES

AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES AXIOMAS DE NUMEROS REALES TEORIA DE EXPONENTES ECUACIONES DE PRIMER GRADO ECUACIONES EXPONENCIALES. AXIOMA DE LOS NÚMEROS REALES El siste e los úeros reles es u ojuto o vío eoto por o os operioes iters

Más detalles

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO

1. Números reales. 2. Raíces y potencias. 3. Operaciones con radicales. Matemáticas 4º ESO Mteátis º ESO 1. Núeros reles Clsifiió de los úeros reles Frió geertriz de u úero deil Reresetió de úeros rioles e l ret rel Aroxiioes Itervlos. Ríes y oteis Proieddes de ls oteis de exoete riol Rdiles

Más detalles

SISTEMAS DE ECUACIONES LINEALES. MATRICES Y DETERMINANTES.

SISTEMAS DE ECUACIONES LINEALES. MATRICES Y DETERMINANTES. Sistems e euioes lieles Mtries y etermites SISTEMS DE ECUCIONES LINELES MTRICES Y DETERMINNTES - Itrouió los sistems lieles -Euió liel -Sistems e euioes lieles -Sistems equivletes -Métoo e Guss pr l resoluió

Más detalles

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n

TEMA 8: SUCESIONES DE NÚMEROS. PROGRESIONES. a 1, a 2, a 3,, a n TEMA 8: UCEIONE DE NÚMERO. PROGREIONE.- UCEIONE DE NÚMERO RACIONALE: U sucesió es u cojuto ordedo de úmeros reles:,,,, - Los úmeros turles se llm ídices. El subídice idic el lugr que el térmio ocup e l

Más detalles

SISTEMA DE ECUACIONES LINEALES

SISTEMA DE ECUACIONES LINEALES SISTEM DE ECUCIONES LINELES Defiició: Llmremos sistem de m ecucioes co icógits, u cojuto de ecucioes de l form: m.... m..... m m (S) Los elemetos so los coeficietes del sistem. ij Los elemetos i so ls

Más detalles

Cuaderno de Matemáticas para el Verano

Cuaderno de Matemáticas para el Verano Colegio Alás Msplos ºESO Cuero e Mteátis pr el Vero ºESO Deprteto e Mteátis 0-0 Colegio Alás Msplos ºESO.- Oper los siguietes riles, reoro que uo hy sus o rests etro e u ríz hy que sr ftor oú tes e poer

Más detalles

Cuaderno de Matemáticas para el Verano

Cuaderno de Matemáticas para el Verano Cuero e Mteátis pr el Vero ºESO Deprteto e Mteátis 0-0 .- Oper los siguietes riles, reoro que uo hy sus o rests etro e u ríz hy que sr ftor oú tes e poer etrer. ) ) ) 0 9 0 9 : h) i) j) k) l) ) : ) o)

Más detalles

Métodos Numéricos 06/09/2017

Métodos Numéricos 06/09/2017 Métodos Numérios 6/9/7 SOLUCION DE ECUACIONES NO LINEALES Clsiiió de Métodos METODO DE BISECCION Por ejemlo: = 6 + 5 = 5 6 + = se - e = - / = l 6 - k = Métodos Numérios 7 De itervlo Aiertos Gráio Biseió

Más detalles

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2

los coeficientes 10 y 30 tienen los factores comunes 2, 5 y 10, se saca el mayor factor común: 10, de las letras el factor 2 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis se escrie

Más detalles

ALGEBRA LINEAL. MATRICES Y DETERMINANTES.

ALGEBRA LINEAL. MATRICES Y DETERMINANTES. LGEBR LINEL. MTRICES Y DETERMINNTES. putes de. Cñó Mtemátis II. Vetores e R.. Operioes o vetores (sum de vetores y produto por u eslr) y sus propieddes.. Depedei e idepedei liel de vetores. L se ói.. Defiiió

Más detalles

APLICACIONES DE LA DIFERENCIAL

APLICACIONES DE LA DIFERENCIAL DEINICIÓN DE UNCIÓN DIERENCIABLE Se die que u uió es diereible e u puto si su iremeto puede esribirse de l orm g η es tl que g o depede de los iremetos η udo. Ejemplo: Determir si l uió es diereible. Clulemos

Más detalles

TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I)

TEMA 10 OPERACIONES DE AMORTIZACION O PRESTAMO (I) Fcultd de.ee. Dpto. de Ecoomí Ficier I Dipoitiv Mtemátic Ficier TEM OPERIONES DE MORTIZION O PRESTMO (I). Pltemieto geerl 2. Método prticulre de mortizció - Prétmo merico - Prétmo frcé - Prétmo co cuot

Más detalles

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN

TERCER PERÍODO 2015 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN TERCER PERÍODO 01 CASO I: CUANDO TODOS LOS TÉRMINOS DE UN POLINOMIO TIENEN UN FACTOR COMÚN ) Fctor comú moomio. Ejemplos: descompoer e fctores ) fctor comú como coeficiete de u prétesis; detro de los prétesis

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES . Sistems de ecucioes lieles SISTEAS DE ECUACIONES Se deomi ecució liel quell que tiee l form de u poliomio de primer grdo, es decir, ls icógits o está elevds potecis, i multiplicds etre sí, i e el deomidor.

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / / / / / / C. +B B.

Más detalles

El dual tiene tantas restricciones como variables tiene el primal.

El dual tiene tantas restricciones como variables tiene el primal. .. EL MODELO DUAL A todo progr liel, lldo prole pril, le correspode otro que se deoi prole dul. Ls relcioes eistetes etre os proles so ls siguietes: El dul tiee tts vriles coo restriccioes eiste e el pril.

Más detalles

TABLAS DE CONTINGENCIA. IGNACIO MÉNDEZ GÓMEZ-HUMARÁN

TABLAS DE CONTINGENCIA. IGNACIO MÉNDEZ GÓMEZ-HUMARÁN TABLAS DE CONTINGENCIA IGNACIO MÉNDEZ GÓMEZ-HUMARÁN imgh000@yahoo.om El uso de Tablas de Cotigeia permite estudiar la relaió etre dos variables ategórias o riterios de lasifiaió. E ua Tabla, los regloes

Más detalles

Instituto Politécnico Superior General San Martín A U S. Análisis Matemático I. Límite y Continuidad de Funciones. Mgter. Viviana Paula D Agostini

Instituto Politécnico Superior General San Martín A U S. Análisis Matemático I. Límite y Continuidad de Funciones. Mgter. Viviana Paula D Agostini Istituto Politéio Superior Geerl S Mrtí A U S Aálisis Mtemátio I Límite y Cotiuidd de Fuioes Mgter. Vivi Pul D Agostii TEMARIO Límite de u uió. Propieddes. Cálulo de límites medite propieddes. Límites

Más detalles

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014)

RAÍCES Y SUS PROPIEDADES Guía para el aprendizaje (Presentar el día martes 29 de abril 2014) NOMBRE DEL ESTUDIANTE:: RAÍCES Y SUS PROPIEDADES Guí pr el predizje (Presetr el dí mrtes 9 de ril 0) CURSO: RADICALES Se llm ríz -ésim de u úmero, se escrie, u úmero que elevdo de. 9, porque 9 7, porque.0,

Más detalles

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización:

2 ( ) 2. ( 2x) 2 GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. EXPRESIONES ALGEBRÁICAS. 1.- Técnicas de factorización: GYMNÁZIUM UDĚJOVICKÁ. MTEMÁTICS. EXPRESIONES LGERÁICS..- Técics de fctorizció: No h u orde clro, slvo u primer pso: scr fctor comú después vri técics que depederá de cuál se l epresió que tegmos. Scr fctor

Más detalles

CONTROL II. Tema: CRITERIOSDE ESTABILIDAD ALGEBRAICOS: HURWITS Y ROUTH-HURWITZ. Prof. Ing. Carlos F. Martín

CONTROL II. Tema: CRITERIOSDE ESTABILIDAD ALGEBRAICOS: HURWITS Y ROUTH-HURWITZ. Prof. Ing. Carlos F. Martín CONTROL II Tem: CRITERIOSDE ESTABILIDAD ALGEBRAICOS: URWITS Y ROUT-URWITZ Prof Ig Crlo F Mrtí CONTROL II (Elo y Bio) Profeor Ig Crlo Frcico Mrtí Itroducció De lo etudio de l ecucioe diferecile liele co

Más detalles

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES.

TEMA 3: RESOLUCIÓN DE SISTEMAS DE ECUACIONES MEDIANTE DETERMINANTES. TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES. º BCH(CN) TEM : RESOLUCIÓN DE SISTEMS DE ECUCIONES MEDINTE DETERMINNTES..-INTRODUCCIÓN. L resoluió de sistems de euioes está ligd l estudio

Más detalles

Sucesiones de números reales

Sucesiones de números reales Apédice A Sucesioes de úmeros reles Ejercicios resueltos. Está l sucesió de térmio geerl U cot iferior es pues 5 cotd? 5 5 4 4 lo cul se cumple culquier que se el úmero turl. U cot superior es pues 5 5

Más detalles

Control Eléctrico y Accionamientos Teoría de Circuitos I Unidad 5: Redes múltiples en régimen permanente

Control Eléctrico y Accionamientos Teoría de Circuitos I Unidad 5: Redes múltiples en régimen permanente otrol létrio iomietos Teorí e iruitos i : Rees múltiples e régime permete -..- oeptos geerles er e iruitos rees elétris -..- Métoos e soluió e rees -...- Métoo e superposiió -...- Métoo e ls itesies e

Más detalles

Compensación: diseño de Gc. Ejemplo 1: Sea una planta Gs () =

Compensación: diseño de Gc. Ejemplo 1: Sea una planta Gs () = Compenión: ieño e G Ejemplo : Se un plnt G () =, e neeit relimentr l ( + )( + )( + ) plnt. El enor utilio tenú vee l li (G LCBF =) y lo requerimiento el item relimento on lo iguiente: ) Anho e bn, BW=r/eg

Más detalles

El dual tiene tantas variables como restricciones existen en el primal. El dual tiene tantas restricciones como variables tiene el primal.

El dual tiene tantas variables como restricciones existen en el primal. El dual tiene tantas restricciones como variables tiene el primal. Progrió Liel pr l Igeierí Téi.. EL MODELO DUAL A todo progr liel, lldo prole pril, le orrespode otro que se deoi prole dul. Ls relioes eistetes etre os proles so ls siguietes: El dul tiee tts vriles oo

Más detalles

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo.

Ejemplo: 5. Cambio de base: Ejemplo: No existe el logaritmo de un número con base negativa. No existe el logaritmo de un número negativo. III. LOGARITMACION A) Defiició d e l og ri to : Se deoi logrito de u úero l expoete l que h que elevr u úero, lldo se, pr oteer u úero ddo. Siólicete: log x x 0 De l defiició de logrito podeos deducir:

Más detalles

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras:

DETERMINANTES. A toda matriz cuadrada se le puede hacer corresponder un número (determinante) cuyo cálculo se puede hacer de las siguientes maneras: Deterites DETERMINNTES. DEFINICIÓN. tod tri udrd se le uede her orresoder u úero (deterite uo álulo se uede her de ls siguietes ers:.. DETERMINNTE DE SEGUNDO ORDEN. det Es deir, es el roduto de los eleetos

Más detalles

. De manera sucesiva, si x se multiplica por si misma n veces, se

. De manera sucesiva, si x se multiplica por si misma n veces, se Fcultd de Cotdurí Adiistrció UNAM Lees de eoetes ritos Autor: Dr José Muel Becerr Esios MATEMÁTICAS BÁSICAS LEYES DE EXPONENTES Y LOGARITMOS LEYES DE EXPONENTES Se u úero rel Si se ultilic or sí iso se

Más detalles

Ministerio del Poder Popular para la Educación Unidad Educativa Nacional Domitila Flores Curso: 4to Año Área de Formación: Matemática

Ministerio del Poder Popular para la Educación Unidad Educativa Nacional Domitila Flores Curso: 4to Año Área de Formación: Matemática Miisterio del Poder Populr pr l Eduió Uidd Edutiv Niol Domitil Flores Curso: 4to Año Áre de Formió: Mtemáti UNIDAD DE NIVELACIÓN INTRODUCCIÓN AL ÁLGEBRA Elordo por: Prof. Roy Altuve Rg Lguills, oture 2017

Más detalles

PROBLEMA RESUELTO DE ESTABILIDAD

PROBLEMA RESUELTO DE ESTABILIDAD Univeridd Ncionl de Rorio Fcultd de Cienci Exct Ingenierí y Agrimenur Ecuel de Ingenierí Electrónic Deprtmento de Electrónic ELECTRÓNICA III PROBLEMA RESUELTO DE ESTABILIDAD AUTOR: Federico Miyr REVISIÓN:

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Sitem de Ecucioe Liele http://pi-tgor.ep.t SISTEMS DE ECUCIONES LINELES Etudir u Sitem de Ecucioe Liele S.E.L. e repoder l pregut: tiee olució?. i e í,, cuát tiee cuále o?. l vit de et pregut de l mim

Más detalles

3.- Solución de sistemas de ecuaciones lineales

3.- Solución de sistemas de ecuaciones lineales .- Solució de sistes de ecucioes lieles U siste de ecucioes lieles e icógits tiee l for geerl: + + + +... + +... + +... + (.) L solució de estos sistes de ecucioes lieles ls podeos ctlogr segú l tl. Siste

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el log de mte de id. Mtemátics plicds ls ciecis sociles I: NÚMEROS REALES pág. INTERVALOS Y SEMIRRECTAS. L ordeció de úmeros permite defiir lguos cojutos de úmeros que tiee u represetció geométric e l

Más detalles