Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)"

Transcripción

1 PAEG junio 06 Opción A Mateáticas II º Bachillerato Pruebas de Acceso a Ensen anzas Universitarias Oiciales de Grado (PAEG) Mateáticas II (Universidad de Castilla-La Mancha) junio 06 Propuesta A EJERCICIO x x x ax 6, a Dada la unción a) Deterinar el valor del paráetro a punto de inlexión sea (,5 puntos), se pide: para que la pendiente de la recta tangente a la gráica de b) Para el valor del paráetro encontrado, calcular los extreos relativos e intervalos de creciiento y decreciiento de x a) Deriveos (,5 puntos) dos veces ' x x 6x a, '' x 6x 6 '' x 0 6x 6 0 6x 6 x ''' x 6, que es distinta de cero sea quien sea x Entonces, el punto de inlexión es x soluciones serán posibles puntos de inlexión orden tres es La pendiente de la recta tangente a la gráica de x en su Igualeos la segunda derivada a cero Las La derivada de x en su punto de inlexión es la derivada de la unción en x, es decir, ' 6 a 6 a a Entonces a, con lo que a 0 b) Para 0 x Estudieos el signo de la x,0 0, : 0 a es ' x x 6x Entonces ' x 0 x 6x 0 priera derivada en los intervalos Por tanto signo de ' onotonía,, y,, 0 0, es estrictaente creciente en, 0, y estrictaente decreciente en,0 En el punto x alcanza un áxio relativo, concretaente en el punto de coordenadas, En el punto x 0 EJERCICIO Calcula la integral deinida alcanza un ínio relativo, concretaente en el punto de coordenadas 0, 6 Nota: Puede ayudarte hacer el cabio de variable t 4 cos x dx (,5 puntos) 0 x y a continuación aplicar integración por partes PAEG junio 06 Propuesta A Página

2 PAEG junio 06 Opción A Mateáticas II º Bachillerato Tal y coo se sugiere, priero aplicareos el cabio de variable y luego integrareos por partes cos x dx cos x dx x t dx dt dx tdt t cos t dt t cos t dt x u t du dt t sen t sen t dt t sen t cos t C dv cos t dt v sen t Deshaciendo el cabio: cos x dx x sen x cos x C Entonces: 4 cos x dx x x x sen cos sen cos 0 sen 0 cos 0 sen cos cos 0 EJERCICIO a) Discute el siguiente sistea de ecuaciones lineales en unción del paráetro a x y z 0 4x y z x y z PAEG junio 06 Propuesta A Página (,5 puntos) b) Calcula la solución cuando el sistea sea copatible indeterinado ( punto) a) La atriz de los coeicientes y la atriz apliada son, respectivaente: El rango de A A 4 ; 0 A b 4 es al enos dos porque contiene un enor de orden dos distinto de cero: A Adeás, A 0 0 Entonces De lo anterior deducios que: Si, A 0, con lo que rango A rango A b n ( n indica el núero de incógnitas), y el sistea es copatible deterinado (solución única)

3 PAEG junio 06 Opción A Mateáticas II º Bachillerato 0 Si Ab 4, 0 cuyo rango tabién es dos pues la tercera ila es proporcional a la priera En este caso teneos por tanto que rango A rango A b n, con lo que el sistea es copatible indeterinado (ininitas soluciones), el rango de la atriz de los coeicientes es dos La atriz apliada es b) Resolvereos el sistea en los dos casos: cuando sea copatible deterinado y cuando sea copatible indeterinado Supongaos que 0 (copatible deterinado) y apliqueos la regla de Craer 4 x A y A z A Supongaos que (copatible indeterinado) En este caso el sistea es el siguiente: x y z 0 4x y z x y z 0 Podeos eliinar la últia ecuación (es proporcional a la priera), llaar z (el grado de libertad es uno) y escribir el sistea, equivalenteente, así: Volveos a aplicar la regla de Craer x y 4x y x ; y 4 Por tanto las soluciones, en el caso de que el sistea sea copatible indeterinado, las podeos escribir así: x, y, z,,,, 0,, Soluciones ininitas que oran, evidenteente, una recta en el espacio aín PAEG junio 06 Propuesta A Página

4 PAEG junio 06 Opción A Mateáticas II º Bachillerato EJERCICIO 4 Sea r,0, la recta deterinada por el punto a) Calcula el punto de r b) Calcula el punto siétrico de Q a) Lo hareos de dos oras distintas: Priera ora P Q ás cercano al punto y el vector v,,0 0,0, respecto a r ( puntos) (,5 puntos) x Las ecuaciones paraétricas de la recta r son: r y Entonces, un punto cualquiera de r es de la ora z M,, El punto M r ás cercano debe cuplir que QM v lo que 0 Por tanto, el punto de r Segunda ora Vaos a calcular el plano perpendicular a la recta r, es decir,, 0,, 0 ás cercano a, con Q 0, 0, es M,, que pasa por el punto Q 0,0, Podeos toar el vector director de la recta r, v,,0, coo vector perpendicular del plano, con lo que la ecuación del plano será de la ora x y D 0 Coo Q, entonces 00 D 0 D 0, con lo que la ecuación del plano es x y 0 PAEG junio 06 Propuesta A Página 4

5 PAEG junio 06 Opción A Mateáticas II º Bachillerato La recta r y el plano se han de cortar en un punto M Vaos a hallarlo Cualquier punto de r es de la ora,, y el que buscaos está en el plano, por lo que 0 0 De aquí obteneos que M,, Q 0,0, b) El punto siétrico de respecto de r edio al punto M,, (ver igura anterior) Por tanto QM a, b, QR, es decir,,, 0 abc,, c Así, el punto siétrico de Q R a, b, c, que lo vaos a llaar, tiene claraente coo punto, de donde, igualando coordenadas, teneos que respecto a r R,, es PAEG junio 06 Propuesta A Página 5

MATEMÁTICAS II 2010 OPCIÓN A. para x a.

MATEMÁTICAS II 2010 OPCIÓN A. para x a. MTEMÁTICS II OPCIÓN Ejercicio : Sea una unción deinida coo a b ( ) para a. a a) Calcula a b para que la gráica de pase por el punto (, ) tenga una asíntota oblicua con pendiente -. b) Para el caso a =,

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral)

Materia: MATEMÁTICAS II PROPUESTA A. 3 2x + 1 dx (1,25 puntos por integral) Pruebas de Acceso a nseñanas Universitarias Oficiales de Grado. Bachillerato L. O.. Materia: MATMÁTICA II Instrucciones: l aluno deberá contestar a una de las dos opciones propuestas A o B. Los ejercicios

Más detalles

Tema 4 resolución de sistemas mediante Determinantes

Tema 4 resolución de sistemas mediante Determinantes Tea 4 resolución de sisteas ediante Deterinantes. Estudio del carácter de un sistea Teorea de Rouché Estudia la copatibilidad de los siguientes sisteas resuélvelos si tienen solución: 5 5 4 a b c t t a

Más detalles

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES.

1.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. º Bachillerato Mateáticas I Tea 6: Geoetría analítica.- SISTEMA DE REFERENCIA EN EL PLANO. COORDENADAS DE PUNTOS Y VECTORES. Un Sistea de referencia en el plano está forado por: Un punto O llaado Origen

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eáenes de Mateáticas de Selectividad ndalucía resueltos http://qui-i.co/ Eaen de Selectividad Mateáticas JUNIO 8 - ndalucía OPCIÓN.- [,5 puntos] Halla los coeficientes a, b y c sabiendo que la función

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos I.E.S. ASTELAR BADAJOZ A. enguiano PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - 8 (RESUELTOS por Antonio enguiano) ATEÁTIAS II Tiepo áio: horas inutos Se valorará la corrección la claridad en

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) IES CSTELR BDJOZ RUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO 4 (RESUELTOS por ntonio Menguiano) MTEMÁTICS II Tiepo áio: horas inutos Conteste de anera clara raonada una de las dos opciones propuestas

Más detalles

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x

1) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: 1 f(x)= 1-e x CURSO 22-23. Septiebre de 23. ) Estudia las discontinuidades y halla las ecuaciones de las asíntotas de la función: f() -e 2) Utilizando la definición, calcula las derivadas laterales de la función f()

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos .E.S. CSTELR DJOZ. Menguiano PRUE DE CCESO (LOGSE) UNVERSDD DE LERES SEPTEMRE - (RESUELTOS por ntonio Menguiano) MTEMÁTCS Tiepo áio: horas inutos Contesta de anera clara raonada una de las dos opciones

Más detalles

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales:

{ } ( ) ( ) ( ) ( ) ( ) ( ) Opción A. = ± m. min. Ejercicio A.1- Se considera el sistema de ecuaciones lineales: IES Mediterráneo de Málaga Solución Junio Juan Carlos lonso Gianonatti Opción Ejercicio.- Se considera el sistea de ecuaciones lineales: a) Discutir su copatibilidad en función del paráetro b) Resolver

Más detalles

solución para los valores del parámetro que anulan el determinante de la matriz de coeficientes.

solución para los valores del parámetro que anulan el determinante de la matriz de coeficientes. UNIVERSIDDES PÚBLICS DE L COUNIDD DE DRID PRUEBDE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Curso - (JUNIO) TERI: TEÁTICS PLICDS LS CIENCIS SOCILES II INSTRUCCIONES Y CRITERIOS GENERLES DE CLIFICCIÓN

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE:

IES Fernando de Herrera Curso 2016 / 17 Segundo trimestre Observación evaluable escrita nº 1 2º Bach CT NOMBRE: IES Fernando de Herrera Curso 6 / Segundo triestre Observación evaluable escrita nº º Bach CT NOMBRE: Instrucciones: ) Todos los folios deben tener el nobre estar nuerados en la parte superior. ) Todas

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: A Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ÁLGEBRA) Apellidos: Nobre: Curso: º Grupo: A Día: CURSO Opción A. Considera la atriz a a B a a que depende de un paráetro. a) [, puntos] Para qué valores de a tiene B

Más detalles

EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA. 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F ( 3, 0 ). Grafique la ecuación.

EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA. 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F ( 3, 0 ). Grafique la ecuación. EJERCICIOS DE GEOMETRÍA ANALÍTICA Y PARÁBOLA 1.- Encuentre la ecuación de la parábola con vértice V ( 0, 0 ) y F (, 0 ). Grafique la ecuación. La distancia del vértice al foco es a =, entonces la ecuación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE

Ejemplos resueltos: CIRCUNFERENCIA Y ELIPSE Ejeplo : Deterina la ecuación de la circunferencia con centro en (,) y que pasa por el punto (,5) Respuesta: ( x + ) + ( y ) 0 Ejeplo : Deterina centro, radio y grafica de x 6x + y + y (x- )² + (y + /)²

Más detalles

1. Introducción: aproximación de un vector

1. Introducción: aproximación de un vector .6 Ajuste lineal por ínios cuadrados (6_AL_T_v9;005.w0.4; C & / C) 0. Notación (, ) producto interno de vectores A atriz de diseño (rectangular; n); contiene por colunas los vectores de las funciones del

Más detalles

Problema PTC Datos: R= 100Ω, L= 10mH, C=100nF. Solución PTC

Problema PTC Datos: R= 100Ω, L= 10mH, C=100nF. Solución PTC Problea PTC0004-4 Se dispone de un circuito RLC coo el de la igura. Calcular: a El espectro de aplitud del sistea (en escalas lineal y logarítica. b El espectro de ase del sistea (en escalas lineal y logarítica.

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG UCLM Septiembre 0 Propuesta B Matemáticas II º Bachillerato Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PROPUESTA B EJERCICIO Dada la función Matemáticas II Septiembre

Más detalles

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales:

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales: IES Padre Poveda (Guadi Mateáticas II Departaento de Mateáticas Bloque II: Álgebra Lineal Profesor: Raón Lorente Navarro Unidad 7: Sisteas de Ecuaciones Lineales EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES

Más detalles

Segunda parte: Modos de vibración

Segunda parte: Modos de vibración Segunda parte: odos de vibración Objetivo: Estudiar el oviiento general de un sistea oscilatorio de varios grados de libertad étodo: Deterinar los odos de vibración del sistea. El oviiento general será

Más detalles

IES Fernando de Herrera Curso 2016 / 17 Primer trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: C =

IES Fernando de Herrera Curso 2016 / 17 Primer trimestre Observación evaluable escrita nº 1 2º Bach CCSS NOMBRE: C = IES Fernando de Herrera Curso 6 / 7 Prier triestre Observación evaluable escrita nº º Bach CCSS NOMBRE: Instrucciones: ) Todos los folios deben tener el nobre y estar nuerados en la parte superior. ) Todas

Más detalles

IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mediterráneo de Málaga Solución Junio Juan Carlo lono Gianonatti g con OX uncione la de corte de Punto g OPCIÓN E.- Calcular el área de la región inita itada por la gráica de la unción () el eje de

Más detalles

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA

UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA UNI DAD 3 ESPACIO BIDIMENSIONAL: LA RECTA Objetivos Geoetría analítica Introducción U 3.1. Definición de recta 91 Dos puntos sólo pueden ser unidos por una sola recta la relación ateática que satisface

Más detalles

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNO DE LOS DOS BLOQUES Y DESARROLLAR LAS PREGUNTAS DEL MISMO.

OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNO DE LOS DOS BLOQUES Y DESARROLLAR LAS PREGUNTAS DEL MISMO. CASTILLA Y LEÓN / JUNIO. LOGSE / MATEMÁTICAS APLICADAS A LAS CRITERIOS GENERALES DE EVALUACIÓN Cada pregunta de la a se puntuará sobre un áio de puntos. La pregunta 4 se puntuará sobre un áio de punto.

Más detalles

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales: α α.

EJERCICIOS UNIDAD 7: SISTEMAS DE ECUACIONES LINEALES. 1. Clasifique y resuelva los siguientes sistemas de ecuaciones lineales: α α. IES Padre Poveda (Guadi Mateáticas II Departaento de Mateáticas Bloque II: Álgebra Lineal Profesor: Raón Lorente Navarro Unidad : Sisteas de Ecuaciones Lineales EJERCICIOS UNIDAD : SISTEMAS DE ECUACIONES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

[ ] [ ] [ ] [ ] [ ] [ ] M

[ ] [ ] [ ] [ ] [ ] [ ] M GUÍA I: MAEIALES Y CICUIOS MAGNÉICOS. Un reactor tiene los siguientes datos 8 [], 5 [z], pérdidas de oucalt 6 [W], pérdidas por histéresis 9 [W]. a) Deterine las pérdidas en el ierro si la recuencia de

Más detalles

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras,

17 Efectúa las siguientes transformaciones e indica qué rapidez, de las tres primeras, Pág. 7 Efectúa las siguientes transforaciones e indica qué rapidez, de las tres prieras, es ayor: a) 2 /s a k/h b) 54 k/h a /s c) 30 da/in a /s d) 28 r.p.. a rad/s a) 2 2 k 3 600 s 2 3 600 k 43,2 s s 0

Más detalles

6º Economía Matemática III Escrito 1) 2) 3) 6º Economía Escrito Matemática III

6º Economía Matemática III Escrito 1) 2) 3) 6º Economía Escrito Matemática III 6º Econoía Mateática III 1. Halla la ecuación de la circunferencia de centro ( 3, ) C tangente a la recta de ecuación 3 x + y = 7.. Halla la ecuación de la recta tangente a la circunferencia de ecuación

Más detalles

UNIVERSIDAD DE CHILE ESCUELA DE INGENIERIA Y CIENCIAS DEPARTAMENTO DE FISICA FI 21A - 6 MECANICA. Prof. Patricia Sotomayor C.

UNIVERSIDAD DE CHILE ESCUELA DE INGENIERIA Y CIENCIAS DEPARTAMENTO DE FISICA FI 21A - 6 MECANICA. Prof. Patricia Sotomayor C. UNIVESIDAD DE CHILE ESCUELA DE INGENIEIA Y CIENCIAS DEPATAMENTO DE FISICA CONTOL Nº 3 FI A - 6 MECANICA Prof. Patricia Sotoayor C. 9 de Junio de 4 Tiepo: :3 horas Problea Una partícula de asa se ueve en

Más detalles

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema:

Este problema es una clásico de aplicación de la Segunda Ley de Newton y la forma de operar para obtener el resultado pedido. Veamos su esquema: ísica Dos planos inclinados con dos cuerpos, unidos a través de una cuerda que pasa por una polea despreciable. Supongaos que ha rozaiento en los dos planos inclinados. Supongaos que el sistea se ueva

Más detalles

MATEMÁTICAS II. F 3 = F 3 (m 1)F 1. ( m 1 F 2 = F 2 F 1 F 3 = F 3 2F 1 F 4 = F 4 + 2F 1. = x = y = z = λ λ IR

MATEMÁTICAS II. F 3 = F 3 (m 1)F 1. ( m 1 F 2 = F 2 F 1 F 3 = F 3 2F 1 F 4 = F 4 + 2F 1. = x = y = z = λ λ IR el acceso a la Universidad (EBAU Curso 7-8 MATEMÁTICAS II Se presentan los ejercicios con un procediiento para resolverlos. Naturalente, los procediientos propuestos no son los únicos posibles. OPCIÓN

Más detalles

SISTEMAS Y MATRICES LECCIÓN 4

SISTEMAS Y MATRICES LECCIÓN 4 SISTEMAS Y MATRICES LECCIÓN 4 Índice: Sisteas con paráetro. Probleas..- Sisteas con paráetro Son sisteas en los que algunos coeficientes y térinos independientes dependen de un paráetro. Se trata, pues,

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II EXTREMADURA CONVOCATORIA JUNIO 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A a) La matriz A tiene tres filas de las que para calcular el determinante

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por

Más detalles

MATEMÁTICAS 2º BACH CIENCIAS ÁLGEBRA: Ejercicios de Exámenes

MATEMÁTICAS 2º BACH CIENCIAS ÁLGEBRA: Ejercicios de Exámenes MATEMÁTICAS º BACH CIENCIAS CURSO 5-6 +.-Dada la atri A = ( 3 + ). Se pide: a) (3p) Estudiar el rango de A en función del paráetro. b) (3p) Calcular para que A tenga inversa. c) (4p) Para = calcular A

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla de contenido Página Aplicaciones de las ecuaciones diferenciales 3 Problea de enfriaiento 3 Caída de cuerpos 6 Mezclas o diluciones 0 Trayectorias ortogonales 3 Resuen 6 Bibliografía recoendada 6

Más detalles

S E) 10 S B) S D) S C) o D) o 1 B) , x 2x 1. , D) x, 1, 5 MATEMÁTICAS VI (AREAS 3 Y 4) VERSIÓN 31

S E) 10 S B) S D) S C) o D) o 1 B) , x 2x 1. , D) x, 1, 5 MATEMÁTICAS VI (AREAS 3 Y 4) VERSIÓN 31 MATEMÁTICAS VI (AREAS Y ). Una suma de $ se deposita en una casa de bolsa con una tasa de interés compuesto anual de % En cuánto se convertirá esta suma al inal del quinto año?.. Encuentra la suma de la

Más detalles

SOLUCIONES NOVIEMBRE 2016

SOLUCIONES NOVIEMBRE 2016 Página 1 de 16 SOLUCIONES NOVIEMBRE 016 Autor: Rafael Martínez Calafat (profesor jubilado de Mateáticas) Noviebre 1: Cuáles son las posibles longitudes del tercer lado del triángulo de lados 016 c y 017

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA C O L L E G I S N N T O N I O D E P D U F R N C I S C N S C R C I X E N T GEOMETRÍ NLÍTIC PLN / Ecuaciones de la recta Un punto y un vector Dos puntos Un punto y la pendiente P x, p P(x, y ) P(p, p ) v

Más detalles

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2 EJERCICIOS,.Calcular las ecuaciones de la tangente y de la normal a la parábola y en el punto en que la abscisa es Punto de tangencia,, ' Tangente... y y y y y Normal... y y y 8.- Calcular la ecuación

Más detalles

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6.

Regresar Wikispaces. 01. El extremo de un segmento es A(6. 4) y su punto medio M(-2, 9), hallar su otro extremo B(x, y). B(x. y) M(-2, 9) A(6. Regresar Wikispaces 01. El extreo de un segento es A(6. 4 y su punto edio M(-2, 9, hallar su otro extreo B(x, y. B(x. y M(-2, 9 A(6. 4 AB 2 x 6 01. = = 2 x 6 = 4 + 2x x = 10 BM 1 2 x y 4 = 2 y 4 = 18 +

Más detalles

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( ) Modelo. Problema B.- Caliicación máima: puntos) La igura representa la gráica de una unción : [ 6; 5] R. Contéstese razonadamente a las preguntas planteadas.? a) Para qué valores de es > b) En qué puntos

Más detalles

Problemas Resueltos. Con estas dos ecuaciones, se deduce que

Problemas Resueltos. Con estas dos ecuaciones, se deduce que Probleas Resueltos 6.1 Deterinar la posición de equilibrio y la frecuencia angular del sistea de resorte, asa y polea ostrados. El resorte tiene una constante, y la polea puede considerarse coo desprovista

Más detalles

Movimiento Armónico Forzado

Movimiento Armónico Forzado Moviiento Arónico Forzado Estudieos ahora el oviiento de una asa soetida a una fuerza elástica, en presencia de fuerzas de arrastre y de una fuerza externa que actúa sobre la isa. Asuireos que la fora

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II 2 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Bloque. Álgera lineal Prolema.. 2 2 a) A() 4 2 8 44 2 8 6 2 648 2 2 0 ) El determinante de la matriz inversa

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Cálculo de derivadas. Aplicaciones. 1ºBHCS

Cálculo de derivadas. Aplicaciones. 1ºBHCS Pág. de 5 Cálculo de derivadas. Aplicaciones. ºBHCS Ejercicio nº.- Consideramos la unción: Halla la tasa de variación media en el intervalo [0, ] e indica si () crece o decrece en ese intervalo. TVM Ejercicio

Más detalles

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2015 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 05 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A m + 0 0 Dada la matriz A = ( 3 m + ), se pide: 0 m a) Hallar los valores de m para que la matriz A 0 tenga inversa. ( 5 puntos) La condición

Más detalles

PRÁCTICA DE LA SEMANA 2

PRÁCTICA DE LA SEMANA 2 UNIVERSIDAD SIMÓN BOLÍVAR Trimestre: Ene-Mar DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS MATEMÁTICA I (MA-) Fecha de publicación: 3// Contenido para el parcial: I PRÁCTICA DE LA SEMANA Contenidos Sistemas

Más detalles

UNIVERSIDAD DE LA RIOJA PRUEBA DE ACCESO (LOGSE) MATEMÁTICAS II JUNIO 2011 (GENERAL) Solución

UNIVERSIDAD DE LA RIOJA PRUEBA DE ACCESO (LOGSE) MATEMÁTICAS II JUNIO 2011 (GENERAL) Solución IES CASTELAR BADAJOZ Junio de (General) Soluciones Antonio Mengiano Corbacho UNIVERSIDAD DE LA RIOJA PRUEBA DE ACCESO (LOGSE) MATEMÁTICAS II JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas minutos El

Más detalles

OPCIÓN A. El sistema homogéneo tiene infinitas soluciones cuando la matriz de los coeficientes tenga rango 3 y para ello: x y

OPCIÓN A. El sistema homogéneo tiene infinitas soluciones cuando la matriz de los coeficientes tenga rango 3 y para ello: x y OPCIÓN A 1. Hallar los valores del parámetro a para que el sistema de ecuaciones soluciones [1,5 puntos]. Resolverlo en cada uno de esos casos [1 punto]. z 0 a y z 0 (a 1)y az 0 admita infinitas El sistema

Más detalles

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Eamen de Matemáticas II (Modelo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Dadas las matrices 2 4 2 2 0 A = 1 m m ; B = 0 X = y O = 0 1 2 1 1 z 0 (1 punto). Estudiar el rango

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Introducción a la derivación

Introducción a la derivación Introducción a la derivación Concepto de derivada En mucas situaciones interesa conocer cómo es la evolución de los valores de una unción; si crece o decrece, y si lo ace rápida o lentamente. También es

Más detalles

[Ln(1+x) - senx]/[x.senx], siendo Ln(1+x) el logaritmo neperiano de. Solución

[Ln(1+x) - senx]/[x.senx], siendo Ln(1+x) el logaritmo neperiano de. Solución Ejercicio n º 1 de la opción A de septiembre de 2003 [2'5 puntos] Calcula 1+x [Ln(1+x) - senx]/[x.senx], siendo Ln(1+x) el logaritmo neperiano de [Ln(1+x) - senx]/[x.senx] = [Ln(1+0) - sen0]/[0.sen0] =

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

ÁLGEBRA: Ejercicios de Exámenes

ÁLGEBRA: Ejercicios de Exámenes MATEMÁTICAS º BACH CC. Y TECNOL. ÁLGEBRA: Ejercicios de Eáenes CURSO 3-4.-Dadas las atrices, donde B t es la atri traspuesta de B e I la atri unidad de orden 3. a) (6p.)Estudiar según el paráetro el rango

Más detalles

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si

a.- (0; 0), 3xy = 0 3 (0) (0) = 0, 0 = 0, Sí b.- (2; -4), x 2 + y = 0 (2) 2 + (-4) 2 = 0, 20 = 0, No c.- (9; 3), x - y 2 = (3) 2 = 0, 0 = 0, Si Tabién se dice que dos núeros x = x 0 e y = y 0, satisfacen a una ecuación de la fora f (x; y), si al sustituir estos núeros en la ecuación, en lugar de las variables x e y, el prier iebro se convierte

Más detalles

a) Determine los números críticos y posibles puntos de inflexión de f. : 1, 0, 1. :,.

a) Determine los números críticos y posibles puntos de inflexión de f. : 1, 0, 1. :,. 1. Dada la unción 4 2 ( x) 2x 4x a) Determine los números críticos y posibles puntos de inlexión de. 3 2 '( x) 8x 8x 8 x ( x 1) 8 x ( x 1) ( x 1) 0 x 1 x 0 x 1. 2 2 1 3 3 3. 3 9 3 3 ''( x) 24x 8 0 x x

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 10 Año 009 10.1. Modelo 009 - Opción A Problema 10.1.1 (3 puntos) Dados el plano π

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

2 x. x y &

2 x. x y & Sea y(x) = 3 sen(x) con x(t) = t - 3 a) d y d t no se puede calcular pues depende de la variable x y no de la variable t b) 3 cos (t -3) c) 3 cos (t -3) 4 t 4.- Cuál es la verdadera? e % x a) d x no existe

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo 1 del 1999. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 1998999. Opción A Ejercicio 1, Opción A, Modelo 1 de 1999. x si x

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

La Restricción Presupuestaria

La Restricción Presupuestaria MICROECONOMÍA I LM5 Universidad de Granada En la clase anterior... La Restricción Presupuestaria 3. Conjunto y Recta Presupuestaria 3. Variaciones de la recta presupuestaria A. Variación de la renta B.

Más detalles

Ejercicio 1 de la Opción A del modelo 3 de Solución

Ejercicio 1 de la Opción A del modelo 3 de Solución Ejercicio 1 de la Opción A del modelo 3 de 2004 [2 5 puntos] Calcula Para calcular determinamos primero las raíces del denominador, para descomponerlo en producto de factores y aplicarle la técnica de

Más detalles

Examen de Matemáticas II (Modelo 2018) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas II (Modelo 2018) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas II (Modelo 208) Selectividad-Opción A Tiempo: 90 minutos 0 Problema (2,5 puntos) Dadas las matrices A = 0 0, y I = 0 0 0 0 0 se pide: 0 0 a) (,5 puntos) Obtener los valores de m para

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 4 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Material de uso exclusivamente didáctico 1

Material de uso exclusivamente didáctico 1 TEMA 1 Ejercicio 1 ( puntos) Sea f(x) = 10 + 4. Hallar a R tal que f(a) = 9. Para el valor encontrado, hallar la ecuación de la recta tangente x 4 al gráfico de f en (a; f(a)) f(a) = 9 10 a 4 + 4 = 9 10

Más detalles

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y

X X Y 2X Adj Y Y 1 0. : Y Y Adj Y Y Pruebas de Aptitud para el Acceso a la Universidad. JUNIO 99. Matemáticas II. OPCIÓN A X Y 5. Las matrices X e Y son las soluciones del sistema de ecuaciones matriciales. Se pide hallar X Y 0 X e Y [ punto]

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que

Más detalles

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x

Más detalles

Los koalindres colgantes

Los koalindres colgantes CASO 1:_DOS MASAS (UNA POLEA) Antes de estudiar el caso de infinitos koalindres colgando de infinitas poleas, planteaos el caso de dos koalindres colgando de una sola polea Dado que no hay rozaiento, la

Más detalles

TEMA 10.- FUNCIONES ELEMENTALES

TEMA 10.- FUNCIONES ELEMENTALES º Bachillerato Matemáticas I Dpto de Matemáticas- I.E.S. Montes Orientales (Iznalloz)-Curso 20/202 TEMA 0.- FUNCIONES ELEMENTALES.- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS (Pág. 28) Deinición de unción. Decimos

Más detalles

= + g(x, y) = x + y 2x 4y + 5. a. Identifique g(x,y) y sus trazas con los planos z = 1 y y = 0. (2 puntos) lím

= + g(x, y) = x + y 2x 4y + 5. a. Identifique g(x,y) y sus trazas con los planos z = 1 y y = 0. (2 puntos) lím CÁLCULO III (05) SEGUNDO PARCIAL (%) 08/05/0 1 Sean las superficies f(, ) g(, ) 5 a Identifique g(,) sus trazas con los planos z 1 0 ( puntos) b Discuta la eistencia de lí (,) (1,) f(, ) ( puntos) g(,)

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos

Más detalles

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido.

< ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias en el fluido. EY DE STOES Una esfera de radio r y densidad ρ parte del reposo en el seno de un fluido de densidad ρ f < ρ y cuyo coeficiente de viscosidad es η. Se supone que la velocidad de la esferano origina turbulencias

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011

Matemáticas I. 1 o de Bachillerato - Suficiencia. 13 de junio de 2011 Matemáticas I. o de Bachillerato - Suficiencia. de junio de 20. Juan y Ana ven desde las puertas de sus casas una torre de televisión situada entre ellas bajo ángulos de 5 y 60 grados. La distancia entre

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD CONCEPTOS BÁSICOS ÍMITES Y CONTINUIDAD a deinición de ite para unciones de varias variables es siilar a aquélla para unciones de una variable, pero con la salvedad de que los entornos toados alrededor

Más detalles

Ejercicio 1 de la Opción A del modelo 4 de Solución

Ejercicio 1 de la Opción A del modelo 4 de Solución Ejercicio 1 de la Opción A del modelo 4 de 2005 Sea f : R R la función definida por f (x) = (5x + 8) / (x 2 + x + 1). (a) [0 5 puntos] Calcula los puntos de corte de la gráfica de f con los ejes coordenados.

Más detalles

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos

Solución. 1/[(1 -x)(1+x)] = A/(1- x) + B/(1+x) = [A(1 +x) + B(1-x)] /[(1-x)(1+x)], de donde igualando los numeradores tenemos Ejercicio n º 1 de la opción A de junio de 2003 Sea Ln(1 -x 2 ) el logaritmo neperiano de 1 - x 2 y sea f : (-1,1) R la función definida por f(x) = Ln(1 -x 2 ). Calcula la primitiva de f cuya gráfica pasa

Más detalles

Átomo de hidrógeno. z = r cos θ B = A = r sen θ x = A cos φ = r sen θ cos φ y = A sen φ = r sen θ sen φ

Átomo de hidrógeno. z = r cos θ B = A = r sen θ x = A cos φ = r sen θ cos φ y = A sen φ = r sen θ sen φ Coordenadas esféricas polares La ecuación de Schroedinger para el átoo de hidrógeno debe resolverse en coordenadas esféricas polares (r θφ) que guardan la siguiente relación con las coordenadas cartesianas

Más detalles

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían

Problema 1 F 1 , F 2. = G M 2 m D 2. = G M 1 m D 1. = ( D y) 2 + x 2. Las fuerzas que se ejercen sobre la estrella de masa m serían Problea 1 Las fuerzas que se ejercen sobre la estrella de asa serían 1, F D Podeos establecer las coordenadas de las estrellas en un plano cartesiano para siplificar el problea. La distancia de la estrella

Más detalles

Evaluació n para Accesó a la Universidad

Evaluació n para Accesó a la Universidad EVAU junio 07 Propuesta B lasmatemáticaseu Pedro Castro Ortega Matemáticas II º Bachillerato Evaluació n para Accesó a la Universidad Matemáticas II (Universidad de Castilla-La Mancha) junio 07 Propuesta

Más detalles

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim

Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_ tan(x) - sen(x) [2 5 puntos] Calcula lim IES Fco Ayala de Granada Septiembre de 014 Reserva 1 (Modelo 5) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 5 Septiembre Reserva_1 014 tan(x) - sen(x) [ 5 puntos] Calcula lim

Más detalles

Capítulo 3. POTABILIZACIÓN DE AGUAS

Capítulo 3. POTABILIZACIÓN DE AGUAS EJERCICIO 5.1 En una ETAP diensionada para una población futura de 75.000 habitantes y una dotación de 50 lts/hab día y que se diseña para un factor de puntas de, se pretende diseñar el pretrataiento (rejas

Más detalles