Lím. = Lím. 1 e. x 1. x 0

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Lím. = Lím. 1 e. x 1. x 0"

Transcripción

1 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cuso / MTERI: MTEMTICS II El lumno consá los cuo jcicios d un d ls dos opcions ( o ) qu s l ofcn. Nunc dbá cons unos jcicios d un opción oos jcicios d l o opción. En culqui cso, l clificción s há sob lo spondido un d ls dos opcions. No s pmi l uso d clculdos gáfics. Tods ls spuss dbán s dbidmn jusificds. Clificción ol máim: punos. Timpo: Ho mdi. OPCIÓN Ejcicio. Clificción máim: punos. Dd l función si < f si ; si > s pid: ) ( puno) Dmin l vlo d p qu f s coninu n. b) ( puno) P s vlo d, sudi l divbilidd d f n. c) ( puno) Hll, si ls in, ls sínos d l gáfic f().. P qu l función s coninu n, s db cumpli: Lím f f P qu is lími d un función n un puno, dbn isi los límis lls s iguls, po lo qu l dfinición d coninuidd s pud scibi d l siguin fom: Lím f Lím f f S clcul cd émino d l iguldd po spdo coninución s igul. Lím f Lím Lím f Lím Igulndo: f f f b. P qu l función s divbl n db isi l Lím, p qu is l lími, dbán isi los lls s iguls. f f ( ) Lím Lím Lím Lím Lím ( ) Lím f f Lím * L H Lím Lím ( ) ( ) ( ) Lím * Si l indminción s plic dicmn l om d L Hopil, l cocin no solo no s simplific sino qu umn l gdo dl dnomindo, po llo s nos db ocui cmbi l indminción.

2 f Lím L función no s divbl n f f f f f Lím / Lím c. L función no in sínos vicls dbido qu l dominio d l función s odo R. sínos Hoionls. Lím f L R ± Lím f Hci l función no in síno hoionl. Lím Lím Lím Lím f Lím Hci l función in un síno hoionl n. síno Oblicu. Puso qu hci l función no in síno hoionl h qu pob si in síno oblicu. f m Lim Lím Lím Lím m n : ( ) m Lim f Lim Lim Lím Hci h un síno oblicu n. Ejcicio. Clificción máim: punos Ddo l sism ( m ) ( m m ) ( m ) S pid: ) ( punos) Discuilo sgún los vlos dl pámo m. b) ( puno) Rsolvlo p m.. El sism vin dfinido po ls mics d coficins () l mplid (*). m m m m ( m ) * m m m * g g * ; n Si l g g * n, sism compibl dmindo. S discu l ipo d solución dl sism p los vlos dl pámo m qu nuln l dminn d. m m m m m m m m 6 m ( m ) [ ( m m )] m Discusión. i. Si m. g g * n Sism compibl dmindo. ii. Si m. g < g. El ngo d l mi 6 mplid s sudi pi dl mno d odn dos disino d co. D sus dos mnos oldos,

3 uno s l dminn d l mi d coficins po no solo qud o sudi l mno fomdo po ls dos pim columns l cu column. g *. g g * Sism incompibl b. Méodo d Cm: Sism compibl dmindo. S pud solv po culqui méodo. ; ; m m ; ; Solución (,, ) Ejcicio : Clificción máim: punos. ) ( puno) Hll l puno d co n l plno 6 l c qu ps po l π puno P(,, ) s ppndicul l plno π. b) ( puno) Hll l puno común los s plnos π ; π ; π siguins: π 7 ; π ; 7 π l plno dfinido po ls cs ;. L c s, po s ppndicul l plno π, in como vco d dicción l vco noml l plno π v n,,, ps po l puno (,, ). ( ) Como qumos clcul l inscción d π, s convnin ps l c n pméics. s El puno (P), inscción n l c l plno s clcul solvindo l sism qu fomn l cución gnl dl plno ls cucions pméics d l c. El sism s sulv po susiución. s P : π 6 Susiundo ls cucions pméics d l c n l plno, s clcul l pámo qu susiuido n ls cucions d l c nos pmin clcul ls coodnds d P. 6 ; 6 6 ; p P : P(,,) b. P qu dos cs dfinn un plno, isn dos posibilidds, qu ls cs sn plls o qu sn scns. Tnindo n cun qu los vcos d dicción d no son popocionls ( u(,, ) u(,, )),

4 ls cs dbn s scns si dfinn un plno (*), po lo no l plno s obin con los vcos d dicción d mbs cs un puno culqui d lgun d ls cs. (,, 7) 7 π : u(,, ) π u(,, ) Dsollndo l dminn po los lmno d l pim fil, opndo odnndo s obin l cución gnl d π. π ( ) ( 7) ; π El puno Q d inscción d los s plnos s obin solvindo l sism qu fomn ls cucions d los s plnos. 7 Q : Po l méodo d Cm: 7 Ejcicio : Clificción máim: punos. Ddos l plno π l c ; ; Q(,, ) 6 s pid: ) ( puno) Dmin l posición liv n l plno π l c. b) ( puno) Dmin l plno qu conng ps po P(,, ).. P sudi l posición liv d un c un plno s mpi po sudi si l vco d dicción d l c l noml dl plno son ppndiculs. vo n ( 6,, ) o (,,) 6 El vco noml dl plno ( n ), no s ppndicul l vco d dicción d l c ( v ), l c co l plno. b. El plno dmindo po un c un puno io s obin con l vco d dicción d l c, un vco fomdo po un puno culqui d l c l puno io l puno io. Q(,, ) : 6 v ( 6,, ) P(,, ) π : v ( 6,, ) ; π 6 QP,,,, ( ) Dsollndo l dminn odnndo s obin l cución gnl dl plno π 7

5 OPCIÓN Ejcicio. Clificción máim: punos. ) ( puno) Hll, si is, l puno d co d ls cs ; b) ( puno) Dmin l vlo d p qu los plnos π π π π ngn un único puno n común. c) ( puno) Hll l c pll los plnos π 6 π 6 qu ps po l puno P(,, ).. Pimo s sudi l posición liv d ls cs.,, v,,,, u,, Un fom ápid d dmin l posición liv d dos cs s dmin l ngo d l mi fomd po los vcos v, u. g g u v g u v g Ls cs s cun po no s con. No inn ningún puno común. b. P qu cuo plno ngn un único puno común, l sism fomdo po ls cuo cucions db s compibl dmindo n g * g : g * P qu l mi mplid ng ngo cuo, l dminn d l mi db s nulo * 9 6

6 c. P qu l c s pll los plnos π π 6, l vco d dicción d l c db s ppndicul los vcos nomls d mbos plnos, po lo no l vco d dicción d l c buscd ( ω ), s obin mdin l poduco vcoil d los vcos nomls. ω n n6 (,, ) ( 6,, ),, (,, ) (,, ) 6 6 L s buscd s, s obin con l vco ω (,, ) s : P(,, ) ω l puno P. s Ejcicio. Clificción máim: punos ) (' punos) Rpsn gáficmn l cino limido po l gáfic d l función f() ln l j OX n ls bsciss /,. b) (' punos) Clcul l á d dicho cino. c) (' punos) Clcul l volumn dl sólido d volución obnido l gi dicho cino lddo dl j OX.. f() Ln s un función lmnl cuo dominio s (, ), su imgn o coido s odo R, co l j OX n l puno (, ) in un síno vicl cundo hci. / son cs vicls qu con l j OX n los punos (/, ) (, ) spcivmn. b. P clcul l á h qu n n cun qu p dl cino s siudo po dbjo dl j OX p po ncim. Ln d Ln d L pimiiv d l función s obin po l méodo d ps. u Ln du d Ln d Ln d Ln d Ln C dv d v ( Ln ] ( Ln ] ( Ln) ( Ln ) ( Ln ) ( Ln ) * ( ) ( ) ( ) ( ) * Ln( ) Ln u c. El volumn d un sólido d volución gndo l hc gi n ono l j OX l gión dl plno limid po l gáfic d un gión coninu f () n /, vin ddo po: [ ] [ ] V OX π f () d π Ln d π Ln d L pimiiv d l función s obin po l méodo d ps. u Ln du Ln d Ln d Ln Ln dv d v Ln Ln d Ln V OX ** π Ln d π d ( Ln ) C Ln Ln C ( Ln Ln ] 6

7 7 π Ln Ln Ln Ln π π u ** Usndo l pdo : C Ln Lnd Ejcicio. Clificción máim punos ) ( puno) Dd l mi l mi X obn ls lcions qu dbn cumpli,,, p qu l mi X vifiqu X X. b) (, punos) D un jmplo d l mi X disin d l mi nul d l mi idnidd qu cumpl l iguldd nio. c) (, punos) Clcul l invs d l mi.. Igulndo émino émino:. :.:. :.: E E E E Sism compibl indmindo. Gdo d indminción nº incógnis nº cucions El sism s sulv usndo dos pámos. R, X b., X c. Si X s l invs d, s db cumpli: I X Igulndo: : Ejcicio. Clificción máim punos D ls mics cudds s sb qu: ) ( puno) Clcul l mi b) ( puno) Clcul ls mics. Susiundo po su vlo s pud dspj

8 ; dj ; dj dj ; b. Conocids ls mics, s pln un sism qu pmi clcul ls mics. Sumndo ls cucions s clcul l mi Rsndo ls cucions s clcul l mi.

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

( 32 x )= 53 arcsen ( 32 x ) sen x +7 cos x 1 dx. x x. e 2 x +1 dx. 5x 7 dx. x sen x dx. x 4 x x 1 dx. x 2 dx. dxx. x x x dx. 1 x.

( 32 x )= 53 arcsen ( 32 x ) sen x +7 cos x 1 dx. x x. e 2 x +1 dx. 5x 7 dx. x sen x dx. x 4 x x 1 dx. x 2 dx. dxx. x x x dx. 1 x. IES Jun Clos I Mmáics II Cimpozulos Mdid * nálisis III: Ingls Ingls inmdis o csi inmdis: b d c d d d sn d f sn cos d g g d h d i d j d k cos bd l d m n d o d p q d C d sn d cos sn d cos d dcos sn d d d

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Cuso - Sepiembe MTERI: MTEMTICS II INSTRUCCIONES GENERLES Y VLORCION El lumno conesá los cuo ejecicios

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

= 001. ( ) t. 1 adja A = A 1

= 001. ( ) t. 1 adja A = A 1 UNIVERSIDDES PÚLICS DE L COMUNIDD DE MDRID PRUE DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO MODELO Cso / MTERI MTEMTICS II El lmno contstá los cto jcicios d n d ls dos opcions ( o ) q s l ocn. Nnc

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la

Problema A.1. Obtener razonadamente, escribiendo todos los pasos del razonamiento utilizado: S, (2 puntos) y la matriz S -1, que es la José Aulio Pin Romo JULIO MII www.pin.s EXAMEN DE ELECTIVIDAD JULIO. MATEMÁTICA II OPCIÓN A Poblm A.. Obtn ondmnt scibindo todos los psos dl onminto utilido: ) El vlo dl dtminnt d l mti ( puntos) l mti

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID JUNIO 2008 UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID JUNIO El mn pnt o opcion, B. El lumno bá lgi UN Y SÓLO UN ll olv lo cuto jcicio qu cont. No pmit l uó clculo con cpci pntción gáfic. PUNTUCIÓN: L clificción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

1. LÍMITES, CONTINUIDAD, CÁLCULO DIFERENCIAL Y APLICACIONES

1. LÍMITES, CONTINUIDAD, CÁLCULO DIFERENCIAL Y APLICACIONES U LÍMITS CONTINUIDD CÁLCULO DIFRNCIL Y LICCIONS JUNIO FS GNRL OCIÓN Obén limco g pnos cos cos sn limco g lim lim sn sn cos sn cos lim lim cos sn sn sn cos lim cos cos cos sn sn Indminción Opndo l vmos

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + )

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + ) I.E.S. Mdirráno d Málg Julio Jun Crlos lonso Ginoni OPCIÓN.- S l unción ) Clculr pr qu () ng un rmo n l puno (, ). (, punos) ) Clculr los rmos d l unción () cundo. ( puno) R R Crcin ) ln ln ln ) ( ) (

Más detalles

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades:

UNIVERSIDAD DE MURCIA MATEMÁTICAS II OPCIÓN A. Se van a utilizar las siguientes propiedades: ES STER BDJOZ Emn Junio d (Gnrl) nonio Mngino orcho UNVERSDD DE MUR MTEMÁTS MTEMÁTS Timpo máimo: hor minuos nsruccions: El lumno lgirá un d ls dos opcions propuss d un d ls curo cusions d l opción lgid

Más detalles

GUÍA DE EJERCICIOS III

GUÍA DE EJERCICIOS III Fculd d Ingnií UCV Álg Linl Gomí Anlíic Ciclo Básico GUÍA DE Vifiqu n cd cso si l conjuno ddo s un spcio vcoil Si no lo s indiqu qu iom no s cumpl ) El conjuno d mics digonls d odn n con l sum d mics muliplicción

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2015 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.. Mdiáno d Málg Junio Jun Clo lono Ginoni OPCIÓN.- Conido l unción dinid n l inlo [ ]. Din l cución d l c ngn l cu qu pll l c qu p po lo puno P( Q(. ( puno..- Clcul l ingl indinid iguin d d ( puno.

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A I.E.S. CSTELR DJOZ PRUE DE CCESO (LOGSE) UNIVERSIDD DE LERES JUNIO (RESUELTOS po nonio Mnguiano) MTEMÁTICS II Timpo máimo: hoas minuos Consa mana claa aonaa una las os opcions popusas. Caa cusión s punúa

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

Hacia la universidad Geometría

Hacia la universidad Geometría Hc l unvesdd Geomeí OPCIÓN A Solucono ) Clcul es vecoes que sen pependcules u ) peo que no sen plelos ene sí. b) Clcul un veco que se pependcul l ve u l pmeo que hs ddo como eemplo del pdo neo. ) Los vecoes

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A

I.E.S. Mediterráneo de Málaga Junio 2010 Juan Carlos Alonso Gianonatti OPCIÓN A I.E.S. diáno álg Junio Jun Clo lono Ginoni OPCIÓN.- ) Pon un jplo i iéi on oo i niiéi on. ) S un i iéi on on () -. Clul onndo l pu l inn indo l i pu. ) Clul un i iéi ngo qu iiqu ) Un i iéi qull n qu l

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0

Vectores. Bases. Solución: a) Los vectores son linealmente independientes pues: λ(1, 2) + µ( 3, 1) = (0, 0) λ 3µ = 0; 2λ + µ = 0 λ = 0 y µ = 0 Geomeí CTSL Vecoes. Bses. Ddos los vecoes u (, ) v (, ): ) Compueb que u v fomn un bse del espcio vecoil de los vecoes del plno. b) Encuen ls componenes del veco w (, 5) en l bse {u, v }. ) Los vecoes

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4

[ ] ( ) ( ) [ ] [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2. Opción A 4 A. u 4 IES Mditáno d Málg Solución Sptim 7 Jun Clo lono Ginontti Opción..- S qu l gáic d l unción () c l qu pc n l diujo - - - - - - - - ) Dtmin l unción [ punto] ) Clcul l á d l unción omd [ punto] [ ] [ ] [

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS

TEMA II: POSICIONES RELATIVAS ENTRE ELEMENTOS TEA II: POSICIONES RELATIVAS ENTRE ELEENTOS..D Ente dos ects Dos ects en el espcio pueden se: ) plels (sus poecciones homónims son plels) b) secntes (tienen un único punto en común) c) o cuse Ejemplo 4

Más detalles

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1 Unidd Nº Sisems de ecuciones. Méodo de Guss Memáics plicds ls Ciencis Sociles II. ANAYA JRCICIOS PROPUSTOS (págin Sin resolverlos, son equivlenes esos sisems? b, d c ---oooo--- Se r de prir de uno de los

Más detalles

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A

Junio 2010 (Prueba General) JUNIO 2010 OPCIÓN A Junio 00 (Prueb Generl) JUNIO 00 OPCIÓN A.- ) Dds ls funciones f () = ln () y g() =, hllr el áre del recinto plno limitdo por ls rects =, = y ls gráfics de f () y g (). b) Dr un ejemplo de función continu

Más detalles

Curso MATERIA: MATEMÁTICAS II (Fase general)

Curso MATERIA: MATEMÁTICAS II (Fase general) Cuso 9- MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El lumno contest los cuto ejecicios de un de l dos opciones ( o B) que se le oecen. Nunc deeá contest unos ejecicios de un opción

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

Curso Septiembre MATERIA: MATEMÁTICAS II (Fase general)

Curso Septiembre MATERIA: MATEMÁTICAS II (Fase general) Cuso - Sepiebe MTERI MTEMÁTICS II (Fse genel) INSTRUCCIONES GENERLES Y VLORCIÓN El luno cones los cuo ejecicios e un e l os opciones ( o B) que se le ofecen. Nunc ebeá cones unos ejecicios e un opción

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

MATEMÁTICAS II 2011 OPCIÓN A

MATEMÁTICAS II 2011 OPCIÓN A MTEMÁTICS II OPCIÓN Ejrcicio : Una vnana normanda consis n un rcángulo coronado con un smicírculo. D nr odas las vnanas normandas d prímro m, halla las dimnsions dl marco d la d ára máima. Solución: El

Más detalles

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia

A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia Un ct B s mu n dicción ppndicul su dicción cn lcidd cnstnt. En su mimint, ct un cicunfnci fij d cnt di n l punt ibl. Supnind qu l ct l cicunfnci pmncn n un pln únic n td instnt: B Hll l lcidd clción dl

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente.

Por tanto,p(r) es la probabilidad de encontrar al electrón en esta envolvente. LAS FUNCIONES DE ONDA PARA EL HIDROGENO qq Ddo qu : U k dpnd solnt d l distnci dil nt l núclo y l lctón, lgunos d los stdos pitidos p st átoo pudn s psntdos dint funcions d ond qu solo dpndn d L s sipl

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a

EL ESPACIO AFÍN. Respecto del sistema de referencia, las coordenadas del punto A= a, a, a Geometí Anlític: El Espcio Afín Pofeso:Mí José Sánchez Queedo. EL ESPACIO AFÍN SISTEMA DE REFERENCIA EN EL ESPACIO AFÍN Un sistem de efeenci del espcio fín está compuesto po un punto fijo O del espcio

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades.

Lección 2. Integrales y aplicaciones. 4. Integrales impropias: definición y propiedades. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Integles y licciones. 4. Integles imois: definición y oieddes. Hst este momento hemos clculdo integles definids de funciones con ngo finito en intevlos

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo

b) (1 punto) * = * Al intercambiar la posición de dos líneas (filas o columnas), el determinante cambia de signo Modelo. Ejecicio. lificció máim puos Siedo que el vlo del deemie es igul clcul el vlo de los deemies: ) ( puo) ) ( puo). dos co comú e colum duo co comú e colum * * l iecmi l posició de dos líes (fils

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias

Ayu. Ignacio Trujillo Silva (alias nao) Integrales Impropias Mamáicas II Ingrals Impropias Mamáicas II IMPORTANTE: Es ipo d ingrals s llaman ipo P (EN ESTE CASO TIPO ALFA) Mamáicas II Mamáicas II Ejmplo 7.5. (Problma 5.f) Dcida si la siguin ingral convrg d ln( )

Más detalles

MECANICA CELESTE PASO A PASO

MECANICA CELESTE PASO A PASO MCANICA CLST PASO A PASO (Un nfoqu Pdgógico po Iván Mcín F v3.0 G M m m M Mcánic Nwonin 684 Iván Mcín Mcánic Cls pso Pso Copyig 005-007 CURRICULUM ( v Cuiculum Dlldo IVAN CARLOS MACHIN MORRA Licncido n

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MADRID JUNIO Tiempo máximo: 1 hora y 30 minutos OPCIÓN A IES STELR BDJOZ PRUEB DE ESO (LOGSE) UNIVERSIDD DE MDRID JUNIO MTEMÁTIS II Tiempo máimo: hor minutos El lumno contestrá los cutro ejercicios de un de ls dos opciones ( o B) que se le ofrecen Nunc deberá

Más detalles

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A

IES Mediterráneo de Málaga Solución Julio 2014 Juan Carlos Alonso Gianonatti. Opción A IE Mediteáneo de Málg olución Julio Jun Clos lonso Ginontti Opción Poblem.. Obtene ondmente escibiendo todos los psos del onmiento utilido que: El lo del deteminnte de l mti ( puntos l mti - que es l mti

Más detalles

( ) ( ) Calculando por separado cada termino de la igualdad e igualando, se calcula el valor del parámetro A.

( ) ( ) Calculando por separado cada termino de la igualdad e igualando, se calcula el valor del parámetro A. UNIVERSIDDES ÚBLICS DE L COMUNIDD DE MDRID RUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Cuo - Setiebe MTERI: MTEMTICS II INSTRUCCIONES GENERLES Y VLORCION El luno contet lo cuto ejecicio de

Más detalles

MATEMÁTICAS (II) JUNIO 2002

MATEMÁTICAS (II) JUNIO 2002 MTEMÁTICS (II) JUNIO El emen present dos opciones, B. El lumno deberá elegir UN Y SÓLO UN de ells resolver los cutro ejercicios de que const. No se permite el usó de clculdors con cpcidd de representción

Más detalles

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas:

Clasificación y resolución de sistemas por métodos elementales. 1. Resuelve utilizando el método de de reducción de Gauss Jordan, los sistemas: Álgebr: Sisems José Mrí Mríne Medino MATEMÁTICAS II TEMA Sisems de ecuciones lineles: Problems propuesos Clsificción resolución de sisems por méodos elemenles Resuelve uilindo el méodo de de reducción

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils

Más detalles

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2)

EJERCICIOS DE REPASO TODA LA MATERIA (Ficha 2) IES ÁFRIC º BCHILLERTO CCNN EJERCICIOS DE REPSO TOD L MTERI (Fich ) Ejecicio nº.- Un estdo comp biles de petóleo tes suministdoes dieentes que lo venden 7,8 y dóles el bil, espectivmente. L ctu totl sciende

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Medieáneo de Málg Soluión Junio Jun Clos lonso Ginoni OPCIÓN..- Clul l se l lu del iángulo isóseles de peímeo áe máim h Máimo. d d u u h u Si d d.h h IES Medieáneo de Málg Soluión Junio Jun Clos lonso

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León IES diáo d álg Jio J Clo loo Gioi P d cco l Uividd d Cill Ló TEÁTICS II To p lo lmo Nº pági INDICCIONES:.- OPTTIVIDD: El lmo dá cog d l do opcio pdido doll lo co jcicio l od q d..- CLCULDOR.- S pmiiá l

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE LA RIOJA JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CASTEAR BADAJOZ PRUEBA DE ACCESO (OGSE) UNIVERSIDAD DE A RIOJA JUNIO (GENERA) (RESUETOS po Antonio Mnguiano) MATEMÁTICAS II Timpo máimo: hoas y minutos El alumno contstaá a los jcicios d una d las

Más detalles

PROPUESTA A., se pide: 2x a) Calcula las asíntotas verticales y oblícuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: 2x a) Calcula las asíntotas verticales y oblícuas de f(x). (1,25 puntos) Prubs d ccso Ensñns Unirsiris Oicils d Grdo chillro L O E Mri: MTEMÁTICS II Insruccions: El lumno dbrá consr un d ls dos opcions propuss o Los jrcicios dbn rdcrs con clridd, dlldmn ronndo ls rspuss Puds

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

Tema 8. Funciones vectoriales de variable real.

Tema 8. Funciones vectoriales de variable real. Tem 8. Funciones vecoiles de vile el. 8.1 Cuvs ecuciones pméics. Cálculo en pméics. 8. Funciones vecoiles: límie, coninuidd, deivción e inegción. 8.3 Cuvs en coodends poles. Aneo: cónics. E. U. Poliécnic

Más detalles

BALANCES MICROSCOPICOS o DIFERENCIALES. se transforma. Las expresiones matemáticas obtenidas se denominan ECUACIONES DE CAMBIO

BALANCES MICROSCOPICOS o DIFERENCIALES. se transforma. Las expresiones matemáticas obtenidas se denominan ECUACIONES DE CAMBIO BALANCES MICROSCOICOS o IFERENCIALES Esudian n dall lo qu ocu n l inio dl Volumn d Conol s ansfoma Elmno ifncial d Volumn S suln aplicando las condicions límis o d conono paa sol las inals Las psions mamáicas

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1

I.E.S. Mediterráneo de Málaga Modelo6_09_Soluciones Juan Carlos Alonso Gianonatti. Opción A. Ejercicio 1 I.E.S. Mditáno d Málaga Modlo6_9_Solucions Juan Calos Alonso Gianonatti - Sa f:r R la función dfinida po f ( ) =+. Opción A Ejcicio 1 [ 7 puntos] Dtmina los intvalos d cciminto y dcciminto d f, así como

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1

α el sistema es compatible indeterminado y la solución es α el sistema es incompatible; Si 1 α y 1 ÁLGEBRA Preguns de Selecividd de l Comunidd Vlencin Resuelos en vídeo hp://www.prendermemics.org/bmeccnnlgebr_pu.hml Pág.. (PAU junio A Clculr los vlores que sisfcen ls siguienes ecuciones: C AY AX B AX

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES ÚBLIS DE L OMUNIDD DE MDRID RUEB DE ESO ESTUDIOS UNIVERSITRIOS (LOGSE) JUNIO INSTRUIONES GENERLES Y VLORIÓN El lumo coeá lo cuo ejecicio e u e l o opcioe ( o B) que e le oece. Nuc ebeá coe

Más detalles

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE.

TEMA 3: CÁLCULO INTEGRAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingniría Indusrial (GITI/GITI+ADE) Ingniría d Tlcomunicación (GITT/GITT+ADE) CÁLCULO Curso -6 TEMA : CÁLCULO INTEGRAL

Más detalles

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1,

IES Mediterráneo de Málaga Solución Junio 2013 Juan Carlos Alonso Gianonatti. x - z = 1, y - z = 1, ES Medieáneo de Málg Solción Jnio Jn Clos lonso Ginoni OPCÓN Ejecicio - -. Cliicción máim: pnos. Ddos el pno P(- ls ecs: s se pide: ( pno Deemin l posiion eli de s. b ( pno Deemin l ección de l ec qe ps

Más detalles

operacional de Laplace (F5.3)

operacional de Laplace (F5.3) 9.4.8 Már d Enyo n Vulo MÁSTER DE ENSAYOS EN VUELO Y CERTIFICACIÓN N DE AERONAVES Curo 8/9 El méodo m oprcionl d Lplc F5. Már d Enyo n Vulo L rnormd d Lplc 9.4.8 Y L y y d { } Már d Enyo n Vulo L rnormd

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE EXTREMADURA JUNIO 2009. (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 hora y 30 minutos I.E.S. CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE EXTREMDUR JUNIO 9 (RESUELTOS po ntonio Menguino) MTEMÁTICS II Tiempo máimo: ho minutos El lumno elegiá un de ls dos opciones popuests. Cd un de

Más detalles

GEOMETRÍA 1º BACHILLERATO

GEOMETRÍA 1º BACHILLERATO GEOMETRÍA º AHILLERATO ) Dmin c co l coo pi ) A() A =() hll () - = = - = = ) () A =(--) hll A A() - =- = - =- = ( ) A( ) c) (-) A =() hll A A() - = = + = =- ) S lo co li ( ) ( ) w ( ) hz l pción gáfic

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

T3. Elementos finitos en elasticidad 2D (I)

T3. Elementos finitos en elasticidad 2D (I) . Elmno no n lcdd D.. oí d lcdd dmnonl.. Fomlcón dl lmno ngl d ndo.. Dczcón dl cmo d domcon.. Eccon d lo d l dczcón.5. Fomlcón dl lmno cngl d co ndo.. Condcon cc d l olcón ond con l MEF.. Condcon l convgnc

Más detalles

OPCIÓN A. c) (1 punto)

OPCIÓN A. c) (1 punto) UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OICILES DE GRDO Curso / MTERI MTEMTICS II. se de Modlidd OPCIÓN Ejercicio. Clificció ái putos. Sbiedo que, utilizdo ls

Más detalles

EXAMEN RESUELTO Septiembre de 2002

EXAMEN RESUELTO Septiembre de 2002 EXMEN RESUELTO Sepieme de V L{ 45} ë ë Sen los suespcios de R : V ë ë V Hll: Ls dimensiones uns ses de los es suespcios. L dimensión del suespcio VV c Uns ecuciones implícis del suespcio V V. d Compo si

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVRSIDDS PÚLIS D L OUNIDD D DRID PRU D SO LS NSÑNZS UNIVRSITRIS OFIILS D GRDO us / JUNIO TRI TTIS II Dsués d l ttt tds ls guts, l lu dbá scg u d ls ds cis usts sd dt ls custis d l ció lgid. P l lició

Más detalles

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO OCIÓN A Cd lumno lgiá obligtoimnt un d ls dos opcions qu s poponn. L puntución máxim s d 3 puntos p cd poblm y d puntos p cd custión. OBLEMAS. ) Si l luz sol td n pomdio 8,33 minutos n llg l Ti,,7 minutos

Más detalles

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )

Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre ) Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo.

2. Calcula las coordenadas de D para que el cuadrilátero de vértices: A(-1, -2), B(4, -1), C(5, 2) y D; sea un paralelogramo. REPSO DE GEOMETRÍ MÉTRIC PLN. Hll el siético del punto (, - ) especto de M(-, ).. Clcul ls coodends de D p que el cudiláteo de vétices: (-, -), B(, -), C(, ) D; se un plelogo.. Ddos los vectoes (, k) (,

Más detalles