A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A r SOLUCION. v M. a) Circunferencia fija. Movimiento sobre la circunferencia"

Transcripción

1 Un ct B s mu n dicción ppndicul su dicción cn lcidd cnstnt. En su mimint, ct un cicunfnci fij d cnt di n l punt ibl. Supnind qu l ct l cicunfnci pmncn n un pln únic n td instnt: B Hll l lcidd clción dl mimint d sb l cicunfnci l lcidd l clción dl mimint d sb l ct B. b Dtmin cuál dbí s l mimint d l cicunfnci n l pln p qu un bsd tn qu s mu sól n dicción ticl, cn un clción unifm. SLUCIN. Cicunfnci fij imint sb l cicunfnci El punt dscib un mimint cicul sb l cicunfnci. S utiliá l ángul cm cdnd gnlid,.. Vlcidd B L lcidd d n cmpnnts pls s: P l cmpnnt ticl d s cs cs cs Nóts qu p ± π/ l slución s inlid.

2 .. clción Dd qu stá sb l ct, l cmpnnt ticl d su clción s nul tin sól cmpnnt hintl qu stá dd p: P: Rmplnd: Nóts qu s llg l mism sultd slind n cmpnnts pls: P: Rmplnd: Tnsfmnd cmpnnts - s btin l mism sultd nti. Nóts qu p ± π/ l slución s inlid. cs cs tn cs cs cs cs cs ( tn cs ó cs cs

3 . imint sb l ct dscib un mimint ctilín sb l ct. Su psición pti d l ticl p stá dd p: Su lcidd s: Su clción s: Nóts p st cs tmbién l slución s inlid p ± π/. b Cicunfnci cn mimint Sn V l lcidd clción dl cnt spctimnt. Entncs l mimint bslut d s: Dnd / / sn l lcidd clción d sb l cicunfnci clculds ntimnt. Rmplnd: D ls dts s tin: tn cs cs / / V + + cs cs V + t V cs cs tn V 0 cs V 0,

4 Rmplnd, supnind CI hmgéns, l lcidd clción d l cicunfnci sn: V tn + t cs +

5 Puntj Pblm ITE Cicunfnci fij áim Idntificción dl mimint cicul d l cdnd gnlid Dtminción psión lcidd gnlid n témins d ls dts btnción psión d l lcidd n témins d l cdnd gnlid dts btnción psión d l clción n témins d l cdnd gnlid dts Idntific qu l clción tin sól cmpnnt hintl 04 Vlcidd clción sb l ct 06 b Cicunfnci n mimint Plntmint d cucins d mimint lti 05 Idntificción d sultds ntis cm mimint lti cicunfnci btncin d cmpnnts d lcidd clción d cicunfnci TTL PUNTJE Subttl 8 50 signd

6 Un ptícul P stá bligd ms n un pln, siguind un tcti dfinid p l cución ξ ( cnstnt cm s must n l figu, d tl fm qu l cmpnnt d l lcidd n l pln s cnstnt. Cnsidnd qu l pln mntin un inclinción α cnstnt cn spct l pln hintl, qu t cn lcidd ngul Ω cnstnt n tn l j qu ps p n l pln, dtmin l psión p l lcidd bslut d P n témins d l cdnd. Rsul utilind: Cdnds cilíndics ξ ξ P b Ecucins d mimint lti Ls sultds dbn qud psds n cmpnnts dl sistm bslut. Vifiqu qu ls sultds d mbs métds sn iguls. P α Pln hintl Ω SLUCIN Cdnds Cilíndics. Sistms d fnci cdnds En l figu supi s must un ist n plnt, dnd pc l pcción dl pln inclind sb l pln hintl. Nóts qu l j ξ pmnc n l pln hintl - n td instnt. En l figu infi s must un ist n lción ltl l lg dl j. S lig cm fnci l punt fij. El sistm bslut tin cincidind cn l j d tción, - n l pln hintl. S must dmás ls cdnds cilíndics -- dl punt P. El sistm tin ds gds d libtd: El dsplmint d l ptícul l lg d l tcti n l pln. S luá mdint l cdnd. ξ θ β csθ P ξ P Pcción d L tción dl pln n tn l j, mdid cn l ángul β nt l j l pcción hintl d θ s l ángul nt l pcción hintl d. ξ Ω α Pln hintl

7 . Cdnds cilíndics D ls dts s tin: El mimint d P stá ttlmnt dfinid D l figu s tin: Cdnd : β Ω ( ( cs α + ξ ( cs α + ( cs α + ( cs α + ( cs α + 4 ( cs α + ( Cdnd : θ + β θ + β θ + Ω p ξ tnθ cs α cs α θ cs θ cs α θ cs cs α θ p cs θ cs cs α α + ( cs α θ cs α

8 Cdnd : α α. Vlcidd Epsión gnl p l lcidd n cmpnnts cilíndics: Rmplnd s tin: + + ( cs α + ( + csα + Ω + α.4 Tnsfmción cdnds bsluts cs, + cs, p: cs cs ( θ + β cs θ cs β θ β ( θ + β θ cs β + cs θ β p ξ tnθ cs α cs α cs θ cs cs α α + cs α, θ ( cs α + ( cs cs α cs β β ( cs α cs β β cs β + cs α β ( cs α β + cs β

9 Rmplnd: ( csα csβ ( csα + csβ [ ( csα csβ ( csα + csβ ] ( csα + csβ + ( csα csβ [ ( csα + csβ + ( csα csβ ] glnd témins s tin: ( csα csβ Ω( csα + csβ ( csα + csβ + Ω( csα csβ α

10 b Ecucins d imint Rlti b. Sistms d fnci cdnds S cnsid un sistm lti fij l pln, tl qu cincid cn, cincid cn ξ, s nml l pln, cm s must n l figu. b. imint dl sistm lti ξ - θ β P ξ Pcción d - R V 0 ω Ω ω 0 - b. imint lti csθ P ' ' ' ' + ξ + ξ ' ' ' ' + + ' ' Ω α Pln hintl b.4 Vlcidd bslut V + ' + ω ' ω ' ' Ω α ' 0 ' Ω csα 0 Ω csα ' + Ω csα ' + Ω α ' Rmplnd: ( Ω csα ' + ( + Ω csα ' + Ω α '

11 b.5 Tnsfmción cdnds bsluts ti d tnsfmción d cdnds: [ T ] csα cs β csα β α β cs β 0 α cs α csα β β Tnsfmnd s btin: [ ( csα csβ Ω( csα + csβ ] + [ ( csα + csβ + Ω( csα csβ ] Rsultd qu cincid cn l nti. α

12 Puntj Pblm : ITE áim PUNTJE Subttl signd Idntificción d ls ds gds d libtd dl sistm 04 scición d l GL cn dts: imint d P ttlmnt dfinid Dfinición d ls cdnds gnlids. Elución sgún ls dts Dfinición sistm d fnci incil sistm d cdnds bsluts Slución p cdnds cilíndics Dfinición sistm d cdnds cilíndics 04 Elución cdnds cilíndics sus dids n función d cdnds gnlids d ls dts Cálcul lcidd n cmpnnts cilíndics 0 Epsión d l lcidd n cmpnnts sistm bslut b Slución p pincipis d. Rlti Dfinición sistm d fnci lti 0 imint dl sistm lti 0 imint lti - Psición 0 imint lti Vlcidd 0 Cálcul lcidd bslut 04 Epsión d l lcidd n cmpnnts sistm bslutl 0 Vificción mbs sultds sn iguls 0 TTL

2 CINEMATICA DE LA PARTICULA

2 CINEMATICA DE LA PARTICULA CINEMATICA DE LA ARTICULA. GENERAL.. Sistmas d Rfncia d Cdnadas La dscipción dl mimint d una patícula ui dispn d un sistma d fncia, u s un nt físic al, spct dl cual s dfin la psición, p l tant la lcidad

Más detalles

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti

( ) ( ) ( ) ( ) BLOQUE A + = + IES Mediterráneo de Málaga Solución Junio 2012 Juan Carlos Alonso Gianonatti IES Mditáno d Málg Solución Junio Jun Clos Alonso Ginontti BLOQUE A CUESTIÓN A..- ) Discut l guint stm d cucions n unción dl pámto [ 5 puntos] ) Rsul l stm cundo s comptil [ punto] λ λ λ Solución 8 Con

Más detalles

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CASTILLA LEÓN / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO OCIÓN A Cd lumno lgiá obligtoimnt un d ls dos opcions qu s poponn. L puntución máxim s d 3 puntos p cd poblm y d puntos p cd custión. OBLEMAS. ) Si l luz sol td n pomdio 8,33 minutos n llg l Ti,,7 minutos

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

Solución de la ecuación de Schödinger para una partícula libre.

Solución de la ecuación de Schödinger para una partícula libre. Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo

Más detalles

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica

1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica .. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:

Más detalles

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2

( ) Peje=1 HP, Ve=120V, f=60hz, n=1650rpm, η=65%, fp=75% Sabemos que: 2 Unividd Simón Bolív Dtmnto d Convión y Tnot d Engí Auto: Edudo Albánz. Cnt: 06-91 Pofo: J. M. All Máquin Eléctic II CT-11 Un moto d inducción monofáico d 1 HP, 10V, 60Hz, 1650m, 65% d ndiminto y 75% d

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos:

dt Igualando la fuerza de inercia en el satélite con la fuerza gravitacional, tenemos: ECUACIONES DE LA ORBITA LAS ECUACIONES DE LA ORBITA Lys d Kpl Las óbitas son planas y l satélit dscib una lips con un foco n l cnto d masa d la Tia. El adio vcto dscib áas iguals n timpos iguals. Los cuadados

Más detalles

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx

Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS

IES Mediterráneo de Málaga Solución Septiembre 2006 Juan Carlos Alonso Gianonatti PRUEBA A PROBLEMAS IES Mditáno d Málg Solución Spti 6 Jun Clos lonso Ginontti PRUEB PROBLEMS PR-- - ) Hálls l lo d p l qu l ct l plno sn pllos ) P clcúls l cución dl plno qu contin s ppndicul ) Los ctos dictos d ct plno

Más detalles

4πε. q r 2. q r C 2 2

4πε. q r 2. q r C 2 2 . ) A un distnci d. cm dl cnto d un sf conducto con cg cuyo dio s d. cm, l cmpo léctico s d 48 N/. uál s l cmpo léctico.6 cm dl cnto d l sf? ) A un distnci d. cm dl j d un cilindo conducto muy lgo con

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X "el Sabio" 4 Cantigas Armonizadas para Coro mixto "a capella" SATB

José Antonio Galindo. CANTIGAS DE SANTA MARÍA de Alfonso X el Sabio 4 Cantigas Armonizadas para Coro mixto a capella SATB é Antni Glin ANIGA DE ANA MARÍA d Aln X "l i" 4 ng Amnizd xt " cll" A ROA DA ROA ANA MARÍA, RELA DO DÍA O QUE OLA IRGEN LEIXA AN GRAN ODER Ducin md 3' +1'15 (4') +2'45", 2'40" Edición i dl Aut Mdid, 2011

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

ÁNGULOS DE EULER. Si r = (x,y,z) son las coordenadas de un punto respecto al sistema ``fijo y r = (x,y,z ) las coordenadas respecto al sistema rotado

ÁNGULOS DE EULER. Si r = (x,y,z) son las coordenadas de un punto respecto al sistema ``fijo y r = (x,y,z ) las coordenadas respecto al sistema rotado ÁNULOS DE EULE Al studia cm cambia ant una tación d ls js cdnads l tns d incia d un sólid ígid ims qu las tacins s dscibn matics tgnals. sa qu Si () sn las cdnadas d un unt sct al sistma ``ij () las cdnadas

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

EL POTENCIAL ELECTRICO

EL POTENCIAL ELECTRICO punts d físic II. Cp. 4 l potncil léctico fisicolndo@hotmil.com 118 Cpítulo 4. 4.1 INTRODUCCION. L POTNCIL LCTRICO n st cpítulo s intoduci oto tipo d cmpo llmdo potncil léctico, o simplmnt potncil. l cmpo

Más detalles

v an v bn v cn dωt P o

v an v bn v cn dωt P o 1.- Determinr l ptenci de slid del cnvertidr de l figur cund el ángul de dispr es º. Obtener el vlr eficz y l distrsión de l intensidd de líne. Dts: =, V LL =8V, =1 A Clculr l tensión de slid y el ángul

Más detalles

DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por:

DEFORMACIONES. 1. Sean x, y, z la posición inicial de una partícula cuyo movimiento está descrito en un sistema lagrangiano por: Facltad d Cincias Epimntals Univsidad d Almía DEFORMACIONES. San,, la posición inicial d na patícla co moviminto stá dscito n n sistma lagangiano po: t X ( )( t Y ( )( + ( )( + ( )( + + Z Encnt: a) l vcto

Más detalles

Guía 0: Repaso de Análisis Matemático

Guía 0: Repaso de Análisis Matemático ÍSICA II A/B Pim Sgundo Cuatimst d 009 Guía 0: Rpaso d Análisis Matmático ). Calcula n coodnadas sféicas la intgal f,, d sindo,, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo f,, ) ) g

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en

v r = ( 1,2,1 ), escribir sus componentes en otro sistema cartesiano ortogonal O con origen en ÍSICA II A/B/8.0 Sgundo Cuatimst d 06 última vsión: o C.06) Guía 0: Rpaso d Análisis Matmático. Calcula n coodnadas sféicas la intgal f, ),, ) ) f. Calcula n coodnadas cilíndicas la intgal f, ), d sindo,

Más detalles

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0

Números complejos ACTIVIDADES. a) a = = 3 b = 0 b) a = 0 4a 2b = 2 b = 1. a) y = 0 b) x = 0 c) x 0, y 0 Númers cmplejs ACTIVIDADES a) a = + = b = 0 b) a = 0 a b = b = a) y = 0 b) x = 0 c) x 0, y 0 a) Opuest: + i Cnjugad: + i e) Opuest: i Cnjugad: i b) Opuest: + i Cnjugad: + i f) Opuest: 7 Cnjugad: 7 c) Opuest:

Más detalles

PROBLEMAS RESUELTOS DE TRABAJO Y ENERGÍA

PROBLEMAS RESUELTOS DE TRABAJO Y ENERGÍA POLEMS ESUELOS E JO Y ENEGÍ Equip dct: ti J. Gc Mi Hádz Puc lfs l lmt POLEM U l d ms qu s mu 4 m/s pt iztlmt u lqu d md st u pfudidd d 5 cm. uál s l fuz mdi qu s lizd s l l p dtl?. F N d m S F l fuz mdi

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles

SEPTIEMBRE 2001 INSTRUCCIONES:

SEPTIEMBRE 2001 INSTRUCCIONES: SEPTIEMBRE INSTRUCCIONES El mn psnt os opcions B; l lumno bá lgi un lls contst zonmnt los cuto jcicios qu const ich opción n h. min. OPCIÓN Ejcicio. Clificción máim puntos. Dtmin l cución ctsin l lug gomético

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

Programa de la Asignatura

Programa de la Asignatura Prgraa de la Asignatura Lección.- La Física. Magnitudes y su edida Lección.- Cineática del Punt. Lección 3.- Dináica de la Partícula. Lección 4.- Dináica de ls Sisteas de Partículas: Sólid Rígid. Lección

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

CAMPO MAGNÉTICO. r r r

CAMPO MAGNÉTICO. r r r CAMPO MAGNÉTICO Camp magnétic Se dice que existe un camp magnétic en un punt, si una caga de pueba que se muee cn una elcidad p ese punt es desiada p la acción de una fueza que se denmina magnética. La

Más detalles

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA

GuíaDidáctica: Geometría AnalíticaPlana UTPL. La Universidad Católica de Loja MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA MODALIDAD ABIERTA Y A DISTANCIA P P 1 0 A P 1 P (x (x 2 ) (0) (1) (x 1 )

Más detalles

7 Integral triple de Riemann

7 Integral triple de Riemann Miguel eyes, pto. de Mtemátic Aplicd, FI-UPM 1 7 Integrl triple de iemnn 7.1 efinición Llmremos rectángulo cerrdo de 3 (prlelepípedo) l producto de tres intervlos cerrdos y cotdos de, es decir = [, b]

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

E. 9. INTERVALOS DE VARIACIÓN EN LOS CUADRANTES l ll lll lv

E. 9. INTERVALOS DE VARIACIÓN EN LOS CUADRANTES l ll lll lv OLEGIO OLOMO RITÁNIO DEPRTMENTO DE MTEMÁTIS GUÍ DE TRIGONOMETRÍ PROFESOR: JESÚS VRGS ZPT 1 Para cada ángul en psición estándar, medid en grads, nmbre su cuadrante y su ángul de referencia 6 1 5 D E 5 F

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

INTERVALOS ENTORNOS FUNCIONES

INTERVALOS ENTORNOS FUNCIONES FUNCIONES TRIGONOMÉTRICAS D acurdo a la dfinición d razons trigonométricas, los valors d sn α, cos α, tg α, sc α, cosc αy cotg α dpndn dl valor α, sindo α s una variabl ral n l sistma circular o radial.

Más detalles

90.7 porcentuales a la registrada en y Vivienda Actualmente, 92.5% de los hombres de la entidad son alfabetas, dato que e ri

90.7 porcentuales a la registrada en y Vivienda Actualmente, 92.5% de los hombres de la entidad son alfabetas, dato que e ri Alfbism *5 E l, l 90.7% (902 mil 491 P d l bli d 15 y ms s d dd lfb, ss) d l bli d 15 y ms y s d dd d l idd s lfb; if sui 2.7 us 87.4 90.5 90.7 uls l gisd. P, ls is d lfbs dl is, m l, s ligm ifis ls sdis

Más detalles

ELECTROMAGNETISMO PRÁCTICO Nº 2 ELECTROSTÁTICA II ELECTROSTÁTICA EN PRESENCIA DE MEDIOS MATERIALES CONDICIONES DE BORDE

ELECTROMAGNETISMO PRÁCTICO Nº 2 ELECTROSTÁTICA II ELECTROSTÁTICA EN PRESENCIA DE MEDIOS MATERIALES CONDICIONES DE BORDE Instituto d Físic Fcultd d Ingnií lctomgntismo 4 CTROMAGNTISMO RÁCTICO Nº CTROSTÁTICA II CTROSTÁTICA N RSNCIA D MDIOS MATRIAS CONDICIONS D BORD olm Nº Dos lcs lns infinits lls y conductos qu stán sds un

Más detalles

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2

Campos Vectoriales. = 2(x2 + y 2 ) = 1. θ = arc cos 2 Unidd Integrl de Líne. Integrl de funciones vectoriles Cmpos Vectoriles Denición. Un cmpo vectoril en el plno R es un función F : R R que sign cd vector x D R un único vector F (x) R con F (x) = P (x)i

Más detalles

Cálculo con vectores

Cálculo con vectores Unidd didáctic 1 Cálculo con vectoes 1.- Mgnitudes escles vectoiles. Son mgnitudes escles quells, como l ms, l tempetu, l enegí, etc., cuo vlo qued fijdo po un númeo (con su unidd coespondiente). Gáficmente

Más detalles

( ) ( ) ( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 2 LONGITUD DE ARCO RPTA.: D RPTA.: C

( ) ( ) ( ) RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN RESOLUCIÓN SEMANA 2 LONGITUD DE ARCO RPTA.: D RPTA.: C EMN ONGITU E O 3. i: l + l 6. Hlle el áe del sect cicul EOF.. lcule l lngitud de un c en un sect cicul cuy ángul centl mide º y su di mide 00 cm. ) m ) m ) m ) ) ) 3 E ) 0 m E) 0 m º i: º d ; 00 cm m 0

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

PLANOS. Ecuación vectorial de un plano. Expresando los vectores en forma cartesiana:

PLANOS. Ecuación vectorial de un plano. Expresando los vectores en forma cartesiana: PLNOS L eión el Pln Se efine n ln m el lg geméti e ls nts el esi et e siión ee eesse m minión linel el et e siión e n nt el ln s etes linelmente ineenientes lels l ln tnt l mínim eteminión linel e n ln

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO Docnt: Ángl Aita Jiménz SEGUNDO TALLER DE REPASO EJERCICIOS DE LEY DE GAUSS 1. Una sfa aislant d adio R tin una dnsidad d caga unifom ρ y una caga positiva total Q. Calcula l campo léctico n las gions.

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN DE RADIACIÓN Y PROPAGACIÓN (3 de febrero de 2003)

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN DE RADIACIÓN Y PROPAGACIÓN (3 de febrero de 2003) DPARTAMNTO D SÑALS, SISTMAS Y RADIOCOMUNICACIONS XAMN D RADIACIÓN Y PROPAACIÓN (3 de febrer de 003) PART I: VRSIÓN A PRUNTAS D TST: Cada pregunta slamente psee una slución, que se valrará cn 1 punt si

Más detalles

Curvas en el plano y en el espacio

Curvas en el plano y en el espacio Cpítulo 1 Curvs en el plno y en el espcio 1.1. Curvs prmetrizds Definición 1.1.1 (Curv prmetrizd). Un curv prmetrizd diferencible α : I R n, es un plicción de clse C, donde I R es un intervlo bierto, que

Más detalles

Aceleración n de la gravedad Péndulo simple

Aceleración n de la gravedad Péndulo simple Aceleración n de la gravedad Péndulo simple Experiencia de Laboratorio, Física F experimental I, 2007 A. Biera, G. Huck y P. Palermo Tandil - Octubre de 2007 1 Aceleración n de la gravedad - Péndulo simple

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

HIDROLOGÍA A SUPERFICIAL Y SUBTERRÁNEA

HIDROLOGÍA A SUPERFICIAL Y SUBTERRÁNEA HIDROLOGÍ SUPERFICIL Y SUBTERRÁNE Índice 1.- Intducción 2.- Hidlgí supeficil 3.- Fundments hidlgí subteáne 4.- Fluj en l zn n stud 5.- Hidáulic cptcines 6.- Tnspte sluts y cl 7.- Peímets ptección 8.- Plnificción

Más detalles

Integrales impropias.

Integrales impropias. IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls

Más detalles

Población femenina e hijos nacidos vivos Prorredio

Población femenina e hijos nacidos vivos Prorredio Pblación fmnina hijs nacids vivs Pm~di d hijs nacids vivs d las mujs 1 d 15 a 49 añs, sgún stad cnyugal, 1990 y 2000 Viudas Casadas Spaadas Unión lib Divciadas 2.82 2.92 3.44. Al cnsida la situación d

Más detalles

CIRCULAR 12/14 SECRETARIA DE SALTO ACTUALIZADO al 6 de febrero de 2014

CIRCULAR 12/14 SECRETARIA DE SALTO ACTUALIZADO al 6 de febrero de 2014 FDCN CUST GNTN GSTG 2287 - Tel. 4772-0428 Fax. 4775-4423 -L fea@fibertel.com.ar 1426 UNS S CCUL 12/14 SCT D SLT CTULZD al 6 de febrero de 2014 PLN HÍPC 2014 1-6 C.. de uenos ires, 6 de febrero de 2014.-

Más detalles

Suponiendo que al infinito se llega con velocidad nula (teórico), en el infinito la energía mecánica del objeto será nula. e = M R.

Suponiendo que al infinito se llega con velocidad nula (teórico), en el infinito la energía mecánica del objeto será nula. e = M R. UNIVSIDADS PÚLICAS D LA COUNIDAD D ADID PUA D ACCSO A SUDIOS UNIVSIAIOS (LOGS) FÍSICA Cus 0-04 INSUCCIONS Y CIIOS GNALS D CALIFICACIÓN Dspués d l atntant tdas las pguntas, l alun dbá scg una d las ds pcins

Más detalles

A a. actiludis.com. focaclipart.net23.net focaclipart.wordpress.com

A a. actiludis.com. focaclipart.net23.net focaclipart.wordpress.com ctlds.cm fcclprt.nt23.nt fcclprt.wrdprss.cm MÉTODO D LCTO SCRTR CTLDS st métd s trí d Jsé Mgl d l Rs Sánchz y stá j lcnc Crtv Cmmns BY-NC-S 3.0. D st métd s pdn hcr tnts cps mprss cm s ds smpr q s dstrcón

Más detalles

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 17/18 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 7/8 Lcción 6 Funcions Dtrmina los intrvalos d gno constant d la función f() + 6 + Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( ) 9 9+

Más detalles

CIRCUNFERENCIA. x 2 + y 2 + mx + p = 0 Circunferencia centrada en el eje OY. C(0,b)

CIRCUNFERENCIA. x 2 + y 2 + mx + p = 0 Circunferencia centrada en el eje OY. C(0,b) CIRCUNFERENCIA Definición. Lugar gemétric de ls punts del plan que equidistan de un punt fij denminad centr. Circunferencia de centr el punt (a, b) y de radi R. (x a)² + (y b)² =R² Desarrlland y rdenand

Más detalles

TEMA 1. NÚMEROS (REPASO)

TEMA 1. NÚMEROS (REPASO) TEMA. NÚMEROS (REPASO).. FACTORIZACIÓN MÚLTIPLOS: Sn múltipls de un númer tds quells que se btienen l multiplicrl pr cer pr culquier númer nturl. DIVISORES: Se dice que un númer b es divisr de tr númer,

Más detalles

TEMA 5. MOVIMIENTO ONDULATORIO.

TEMA 5. MOVIMIENTO ONDULATORIO. Física º Bachillerat TEMA 5. MOVIMIENTO ONDULATORIO. I. INTRODUCCIÓN. Un mvimient ndulatri es la prpagación de una perturbación de alguna magnitud física. Es un fenómen en el que n se transprta materia

Más detalles

geometria proyectiva primer cuatrimestre 2003 Práctica 5

geometria proyectiva primer cuatrimestre 2003 Práctica 5 geometri proyectiv primer cutrimestre 2003 Práctic 5 1. Encontrr un curv prmetrizd α cuy trz se el círculo x 2 + y 2 = 1, que lo recorr en el sentido de ls gujs del reloj y tl que α(0) = (0, 1). 2. Se

Más detalles

Hattar el centno del arco. Trazar las rectas tangente y normal a la circunferencia en el punto T de ella.

Hattar el centno del arco. Trazar las rectas tangente y normal a la circunferencia en el punto T de ella. n rct y un circunfrnci, ds circunfrncis, sn tngnts ntr sí, si tinn un únic punt cmún, lmd punt d tngnci. n rct y un circunfrnci, ds circunfrncis, sn xtrirsi n tinn ningún punt cmún, y scntsi tinn ds punts

Más detalles

E S T A D O A C T U A L PROPUESTA PLAZA FACULTAD DE ARQUITECTURA A VESTÍBULO F A

E S T A D O A C T U A L PROPUESTA PLAZA FACULTAD DE ARQUITECTURA A VESTÍBULO F A D C L LZ FCLD D QIC VÍBL F D C L FCLD D FILFI Y L INVNCIN N M N CN DICCIDD FCLD D FILFI Y L D INVNCIN N M N CN DICCIDD D C L FCLD D FILFI Y L NCI D ÑLMIN D CC NL FCLD D FILFI Y L D ÑLMIN D CC NL D C L

Más detalles

a) (1 punto) Hallar la ecuación de la recta tangente a la gráfica de f en x = 0.

a) (1 punto) Hallar la ecuación de la recta tangente a la gráfica de f en x = 0. Septiere. Ejercici B. Cliicción ái punts. Dd l unción, se pide ) ( punt) Hllr l ecución de l rect tngente l gráic de en. ) ( punt) Clculr d Slución. L ecución de l rect tngente un unción en en r punt pendiente

Más detalles

CIRCULAR 03 /17 SECRETARIA DE SALTO VERSIÓN FINAL

CIRCULAR 03 /17 SECRETARIA DE SALTO VERSIÓN FINAL FDCN CUST GNTN GSTG 2287 - Tel. 4772-0428 Fax. 4775-4423 -L fea@fibertel.com.ar 1426 UNS S CCUL 03 /17 SCT D SLT C.. de uenos ires, 02 de nero de 2017.- PLN HÍPC 2017. VSÓN FNL Confeccionado teniendo en

Más detalles

FIJACIONES NORMALIZADAS

FIJACIONES NORMALIZADAS FIJCIONS NORMLIZDS para cilindros tipo PS / PLS / PC conforme ISO 15552-FNOR-DIN (PS-PLS) ISO 21287 (PC) FIJCIONS NORMLIZDS ISO 21287 - ISO 15552 - FNOR NF ISO 15552 - DIN ISO 15552 B C Serie 434 plicaciones

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

FIJACIONES NORMALIZADAS

FIJACIONES NORMALIZADAS FIJCIONS NORMLIZDS para cilindros tipos PS / PC conforme ISO 15552-FNOR-DIN (PS) ISO 21287 (PC) FIJCIONS NORMLIZDS ISO 21287 - ISO 15552 - FNOR NF ISO 15552 - DIN ISO 15552 B C Serie 434 plicaciones servicio

Más detalles

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar

Más detalles

Institución Educativa Internacional Análisis Dimensional Problemas Propuestos Profesor: Carlos Eduardo Aguilar Apaza

Institución Educativa Internacional Análisis Dimensional Problemas Propuestos Profesor: Carlos Eduardo Aguilar Apaza Institución Educativa Internacinal Análisis Dimensinal Prblemas Prpuests Prfesr: Carls Eduard Aguilar Apaa. En la frmula física indicar las unidades de Y en el sistema internacinal. Y Aw cs( wt) A; velcidad,

Más detalles

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1

CALCULO INTEGRAL. Ejercicios. 1 a Parte: Diferenciales. Rumbo al examen de recuperación. Faus2016. x 1 En los problmas complt la tabla siguint para cada función. d d DIVISION DE INGENIERIA ELECTRONICA.. Rumbo al amn d rcupración a Part: CALCULO INTEGRAL Ejrcicios Difrncials Dfinición. Faus6 Supóngas qu

Más detalles

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x REGREION LINEAL IMPLE FORMULARIO Mdl d Rgrsó Ll mpl Jrg Glt Rsc + β + ε qu β s fjs, ε s u vrl ltr c sprz E(ε) 0 vrz V(ε) σ fj. Ls prámtrs dl mdl s, β σ. rprst l vrl dpdt, qu tm vlrs fjs dtrmds pr l prmtdr.

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

PÉNDULO FÍSICO AMORTIGUADO. Estudio del movimiento ondulatorio libre y amortiguado.

PÉNDULO FÍSICO AMORTIGUADO. Estudio del movimiento ondulatorio libre y amortiguado. Labratri de Física PÉNDULO FÍSICO AMORTIGUADO 1. OBJETIVO Estudi del mvimient ndulatri libre y amrtiguad.. FUNDAMENTO TEÓRICO Se denmina péndul físic a cualquier sólid rígid capaz de scilar alrededr de

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

1. Método del Lugar de las Raíces

1. Método del Lugar de las Raíces . Método del Lugar de las Raíces. MÉTODO DEL LUGAR DE LAS RAÍCES..... IDEA BÁSICA... 3.. LUGAR DE LAS RAÍCES DE SISTEMAS SIMPLES... 0.3. LUGAR DE GANANCIA CONSTANTE....4. REGLAS PARA LA CONSTRUCCIÓN DEL

Más detalles

F1 Mecánica del Vuelo

F1 Mecánica del Vuelo F1.4 Rlacions básicas b n Actuacions 29.4.8 Migul Ángl Gómz G ino DVA/ESIA Madid, 13 octub 28 ESIA-UPM ÍNDICE Hipótsis fundamntal Rlacions dinámicas d fuzas y lación másica Rlacions cinmáticas linals Casos

Más detalles

FÍSICA I CAPÍTULO 6: CINEMÁTICA III

FÍSICA I CAPÍTULO 6: CINEMÁTICA III FÍSICA I CAPÍTULO 6: CINEMÁTICA III ROTACIÓN DE CUERPOS RÍGIDOS Retomndo el moimiento cicul de un punto: L Figu epeent l dieccione de lo ectoe elocidd y celeción en io punto p un ptícul que e muee en un

Más detalles

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2)

Ejercicios 16/17 Lección 6. Funciones Calcula el dominio de definición y el recorrido de las funciones siguientes a) p(x) = x(x + 1)(x + 2) Ejrcicios 6/7 Lcción 6. Funcions.. Dtrmina los intrvalos d gno constant d la función f() + 6 +. Calcula l dominio d dfinición y l rcorrido d las funcions guints p() ( + )( + ) 7 f ( ) 0 + 0 7 d) ) h( )

Más detalles

Masa y composición isotópica de los elementos

Masa y composición isotópica de los elementos Masa y composición isotópica de los elementos www.vaxasoftware.com Z Sím A isótopo Abndancia natral Vida Prodcto 1 H 1 1,00782503207(10) 99,9885(70) 1,00794(7) estable D 2 2,0141017780(4) 0,0115(70) estable

Más detalles

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( )

SEPTIEMBRE Tiempo: 90 minutos OPCIÓN A ( ) ( ) SEPTIEMRE 5 INSTRUCCIONES El mn psn os opcions ; l lumno bá lgi un sólo un lls solv los cuo jcicios qu cons. No s pmi l uso clculos con cpci psnción gáfic. PUNTUCIÓN L clificción máim c jcicio s inic n

Más detalles

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas

Universidad Simón Bolívar Conversión de Energía Eléctrica - Prof. José Manuel Aller. 7.1 Conceptos generales sobre transformación de coordenadas Unisidad Simón Bolía Consión d Engía Eléctica - Pof José Manul All Tansfomación d Coodnadas 71 Concptos gnals sob tansfomación d coodnadas El sistma d cuacions difncials 61, qu modla l compotaminto d la

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular.

4 M. a) La(s) ecuación(es) diferencial(es) del movimiento del sistema a partir de las ecuaciones de movimiento lineal y angular. Un si-disco unifor d radio asa, ruda sin dslizar sor una suprfici orizontal. Una partícula d asa s ncuntra conctada al disco n su iso plano, por dos varillas rígidas, d asa dprcial, coo s ustra n la figura.

Más detalles

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10

2 Representar el plano que definen las rectas r y s que se cortan en A. 4 Hallar el punto A del plano de cota 16 y alejamiento 10 1 Repesent el plno que definen l ect R y el punto. 2 Repesent el plno que definen ls ects y s que se cotn en A 3 Hll ls tzs del plno que definen ls ects y s 4 Hll el punto A del plno de cot 16 y lejmiento

Más detalles

ENCUESTA DEL PROFESORADO: SATISFACCIÓN Y PERCEPCIÓN

ENCUESTA DEL PROFESORADO: SATISFACCIÓN Y PERCEPCIÓN 5 ENCUESTA DEL ROFESORADO: SATISFACCIÓN Y ERCECIÓN AGENCIA ANDALUZA DE EVALUACIÓN EDUCATIVA us vzms Agi Adluz d Evluió Eduiv CONSEJERÍA DE EDUCACIÓN, CULTURA Y DEORTE 63 1. Iduió L Agi Adluz d Evluió

Más detalles

1 a Feria de Navidad francesa Dossier del Expositor

1 a Feria de Navidad francesa Dossier del Expositor Fi d Nvidd fncs ssi dl Expsit Fi d Nvidd fncs ssi dl Expsit Ls xpsits sán spds n l ntd pincipl dsd ls 9 d l mñn, lug n l qu cibián un infm cn ls úlms instuccins y l ubicción d su stnd. ptu l públic: :

Más detalles

NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD

NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD NOASDTODODESFLO DSQUECACIÓNDFFPARECERAD ASELDPODERDDEFLA NEDUCACIÓNDFFINANCIERAD ASELDPODERDDEFLA NEDUCACIÓNDFFINANCIERAD É U Q DE A S O M A V Y O H R A L HAB N

Más detalles

Análisis Geostadístico. de datos funcionales

Análisis Geostadístico. de datos funcionales á í á - á é í : í é : á ó í ( ). é í á ó,,,., í é.,, é ó., í á. í., ó, ó. é ó., á, ó.., ó - ()., é á í. é á., á. ó, ó á. é ó é. í á ó. : ; ; ó ; ; ; ó. ó í............................... á..............................................................

Más detalles

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo IV. IV.2 Generación de trayectorias. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capitulo IV IV. Gnración d trayctorias Capítulo IV Síntsis dimnsional d mcanismos IV. Síntsis dimnsional d mcanismos. Gnración n d funcions. IV. Gnración n d trayctorias.. Introducción n a la síntsis d

Más detalles