ELECTROMAGNETISMO PRÁCTICO Nº 2 ELECTROSTÁTICA II ELECTROSTÁTICA EN PRESENCIA DE MEDIOS MATERIALES CONDICIONES DE BORDE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ELECTROMAGNETISMO PRÁCTICO Nº 2 ELECTROSTÁTICA II ELECTROSTÁTICA EN PRESENCIA DE MEDIOS MATERIALES CONDICIONES DE BORDE"

Transcripción

1 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 CTROMAGNTISMO RÁCTICO Nº CTROSTÁTICA II CTROSTÁTICA N RSNCIA D MDIOS MATRIAS CONDICIONS D BORD olm Nº Dos lcs lns infinits lls y conductos qu stán sds un distnci d son mntnids un difnci d otncil V. S intoduc un tc lc no conducto d sso dscil con un dnsidd suficil d cg n un lno llo ls ots dos. lc no conducto s uic un distnci d l lc d myo otncil y d l ot d fom qu: d. ) Hll l cmo léctico n l scio nt ls lcs n función d l osición. ) Suonindo qu ls lcs tinn un quño sso hll ls dnsidds d cg n ls suficis intns d ls lcs conductos. c) Si ho l tc lc qu s intoduc fus conducto con dnsidd d cg totl qué cmi scto l cso ntio Hll ls dnsidds d cg n ms cs d dich lc. olm Nº Hll solvindo l cución d lc Φ l otncil lctostático n l xtio d un sf conducto d dio R con cg totl (n l vcío). olm Nº Un sf d dio R y qu tin un cg li q unifommnt distiuid n todo l volumn s ncunt sumgid n un diléctico d mitividd k. ) Hll los vctos D y n l diléctico. ) Hll ls dnsidds d cg d olizción y l cg totl so l sf. Hll l límit d l mism cundo R tind co. c) Com los sultdos ntios con los qu s tndín n l vcío. lctostátic II. d 8

2 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 olm Nº 4 ) Clcul l ccidd d un sistm fomdo o dos suficis sféics conductos concéntics d dios R y R. ) Hll l ccidd o unidd d longitud d los siguints sistms: i) Cl coxil: Dos suficis cilíndics conductos concéntics d dios R y R. ii) Cls llos: Dos cilindos conductos llos d dios R y R cuyos js stán sdos un distnci d gnd scto R y R. Sugnci: Consid si s ud suon qu l cmo gndo o uno d los cilindos no lt l distiución d cg dl oto. Not: Rcud qu l cálculo d ccidds n un sistm fomdo o dos conductos mos dn tn cgs nts iguls y ousts. olm Nº 5 l sistm d l figu stá fomdo o dos cilindos conductos C y C coxils d longitud y dios A y B sctivmnt. nt los dos cilindos s coloc un diléctico d mitividd qu ocu un volumn limitdo o los dios R y R qu fomn nt si un ángulo ϕ. l sto dl scio nt los cilindos s vcío. Clcul l ccidd dl sistm dscindo los fctos d od. olm Nº 6 n l figu s must l scción tnsvsl d dos lcs lns conductos infinits qu fomn un ángulo α. (sus ods stán sdos o un distnci infinitsiml d mn qu s ud suon qu no s tocn). Un d lls s ncunt conctd ti Φ y l ot un otncil fijo V. Suong qu l cmo léctico no tin comonnt dil. ) Hll l fom funcionl dl cmo nt ls lcs usndo l xsión difncil d l ly d Guss y l iotcionlidd dl mismo. ) Hll l otncil lctostático imonindo condicions d od. c) n st olm o qué l solución dtmind ti d l sugnci s coct d) Hll ls dnsidds suficils d cg so ls lcs. olm Nº 7 Clcul l ccidd d un condnsdo cónico. S suondá qu l cmo léctico nt ls lcs s sgún ê y qu ls unts d los conos stán sds un distnci infinitsiml. lctostátic II. d 8

3 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 olm Nº 8 Consid un vill cilíndic d scción A lo lgo dl j z qu s xtind dsd z hst z y qu tin un olizción sgún su j ( z ) k con y constnts. ) ué unidds tinn y ) Hll ls dnsidds d cg d olizción ρ y. c) Dmust xlícitmnt qu l cg ligd totl s nul. d) (ocionl) Hll l otncil lctostático ljdo d l vill ( >> ) consvndo hst l témino diol inclusiv. Dduci l cmo léctico n st oximción. olm Nº 9 Consid un cuo d ldo cntdo n l oign d coodnds con olizción B sindo B un constnt. ) ué unidds tin B ) Hll ls dnsidds d cg d olizción ρ y. c) Dmust xlícitmnt qu l cg ligd totl s nul. d) (ocionl) S ud hll l otncil lctostático n untos ljnos mdint un dsollo multiol consvndo sólo hst l odn diol (inclusiv) olm Nº Un cl coxil d scción cicul tin un diléctico comusto. l conducto intno tin un dio xtio ; ést stá oddo o un cuit d diléctico d constnt diléctic K y dio xtio. A continución hy ot cuit d diléctico d constnt diléctic K y dio xtno c. ) Hll l ccidd o unidd d longitud. ) Si l conducto xtno s mntin un otncil V y l intno V V clcul ls olizcions n cd uno d los mdios dilécti. c) Hll tods ls dnsidds d cg (ligd y li) n cd sufici. olm Nº Dos conos idénti oustos o l vétic y d j común s ncuntn otncils Φ y Φ V como s must n l figu. lnndo l mitd dl scio nt llos hy un mtil diléctico d milidd. ) Hll los cmos D y n l gión nt los conos. ) Hll tods ls dnsidds d cg. S suondá qu los cmos stán diigidos sgún ê como s indic n l figu. lctostátic II. d 8

4 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 olm Nº xmn fo 7- Consid un mtil no conducto olizdo con fom d sf huc d dio intno y dio xtno qu os un olizción o (fid un sistm d coodnds sféics con oign n l cnto d l sf). s un constnt ositiv. l huco y l xtio s ncuntn vcíos. ) Clcul ls dnsidds d cg d olizción n l o mtil. ) Clcul l cmo léctico y l vcto dslzminto léctico n todos los untos dl scio. o c) Discut si s osil gn l mismo cmo léctico n l gión sustituyndo l mtil olizdo o un ccito sféico vcío fomdo o dos lcs conductos dlgds concéntics d dios y. d) Hll l otncil léctico n todos los untos dl scio suonindo qu l otncil s nul n l infinito). olm Nº Consid un ms untul m qu os un cg léctic. ms oscil (n l vcío) lddo dl unto O un ltu H so l nivl dl iso sujt d un hilo sin ms d lgo. So l iso s hll un lno conducto infinito conctdo otncil co. (Not: Suong qu l moviminto d l cg s suficintmnt lnto d modo qu ud consids válid l condición lctostátic). H O (m ) g ) Hll l otncil lctostático instntáno n l Conducto otncil co scio lddo d l cg. (Consid qu l influnci dl hilo y dl soot qu lo sostin son dscils los fctos d clcul l otncil lctostático). ) Hll l fcunci d oscilción dl éndulo n l oximción d quñs oscilcions ( ). (Sugnci: Utilic l d y d Nwton) lctostátic II. 4 d 8

5 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 olm Nº 4 Un lno s l scio n dos mdios dilécti smi-infinitos isótoos homogénos y linls con mitividds y. n l mdio s coloc un distnci d un cg untul. o qu l otncil lctostático n los mdios y s ud scii como: A B C φ φ 4 π ( z d) x y 4 π ( z d) x y 4 π ( z d) x y dond A B y C son constnts qu s dn dtmin y z stá ointd dsd l mdio l con z n l intfs. olm Nº 5- xmn fo 5 - n tono un sf conducto dscgd d dio colocd n un gión dl scio dond (n usnci d l sf) xist un cmo léctico constnt ointdo n l dicción. Sugnci: tng n cunt l solución gnl d l cución d lc n coodnds sféics n olms con simtí d volución. ) Clcul l cmo léctico n todo l scio ti dl otncil. n ticul vlu l cmo léctico n: i) l sufici d l sf. ii) l lno π / >. ) Hll l otncil léctico φ ( ) D o V z Consid ho un condnsdo qu tin un lc cicul ln ndicul l j z d diámto D y un sgund lc cuy sufici s ll l ntio no s o un slint n fom d hmisfio d dio cntd n l oign d coodnds (v figu). l condnsdo stá cgdo l otncil V y l sción nt ls lcs s l. c) Hll l dnsidd d cg n todos los untos d l lc con l slint hmisféic suonindo qu D l >> y dscindo fctos d od. lctostátic II. 5 d 8

6 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 Rsultdos ) Tomndo Ox noml ls lcs ointdo dsd l lc d myo otncil V l d mno otncil V: V î x V d d ) ) V V î x d d d c) Si y R son ls dnsidds d cg n ls cs izquid y dch d l lc V d sctivmnt V R d ) ϕ ( ) 4π q q K q ) ) D 4π 4π K 4π K q q q ) ρ lim R K 4π R K R K RR 4) ) C 4π R R C π ) i) R n R C π ii) n d RR 5) C π ( ) ϕ n( B / A) 6) ) n coodnds cilíndics: Cê V ϕ c) α ) ( ) V α V α 7) ccidd o unidd d longitud s: π / β. C π tn( / ) log tn( / ) con π / α β y lctostátic II. 6 d 8

7 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 4 ( z ) 8) ) [ ] C / m [ ] C / m ) ρ z ( z ) A( / ) A( / ) sin d) ϕ( ) ( ) 4π 4π 9) ) [ B ] C / m ) ρ B B / n ls sis cs dl cuo d) No; tnto l témino monool como l témino diol son co. S dín consid los téminos d ódns suios. C πkk ) ) K n( ) K n( c ) ) ( K ) K V ê Kn( / ) Kn( c / ) ( K ) K V ê Kn( / ) Kn( c / ) c) ( K ) K V ρ ρ K n( / ) K n( c / ) ( K K ) V ( K ) K V K n( / ) K n( c / ) K n( / ) K n( c / ) c c ) ) K V V D D K n(tn( /)) sn K n(tn( /)) sn K V V K n(tn( /)) sn K n(tn( /)) sn K V K n(tn( /)) sn ) K V K V ρ ( ) ( π / ) K ln(tn( / )) sn K ln(tn( / )) V K V ( π ) ( π ) K ln(tn( / )) sn K ln(tn( / )) sn lctostátic II. 7 d 8

8 Instituto d Físic Fcultd d Ingnií lctomgntismo 4 lctostátic II. 8 d 8 ) ) ) ( ρ ) : : y D D c) un ccito sféico con cg n l lc 4 π. st cmo s oocionl ntoncs st sistm no ud gn l cmo constnt hlldo n l t ntio n l scio d mtil olizdo. Not: l solución comlt s ncunt n l scción cils y xámns d l ágin dl cuso. ) ) y stá mdid dsd O n l dicción y sntido d g z dsd O ndicul y ntnt l diujo: ) 4 ( - sn ) ( - ) z ( - sn ) ( - 4 ) x y x y z ϕ π ) ( ) ( ) 4 ( ) U mg π c) ω 6π g m 4) A B C. 5) ) ) ( ϕ ) sin ) (.i) ) (.ii) π ) / ( > c) ± > / / / l V l V π π π

p m son términos semejantes

p m son términos semejantes Páin dl Colio d Mtmátics d l ENP-UNAM Ocions con monomios olinomios Auto: D. José Mnul Bc Esinos OPERACIONES CON MONOMIOS Y POLINOMIOS UNIDAD IV IV. OPERACIONES CON MONOMIOS Un vil s un lmnto d un ómul,

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

la integral de línea de B alrededor de un trayecto cerrado

la integral de línea de B alrededor de un trayecto cerrado LEY DE AMPERE L ley de Guss de los cmpos elécticos implic el flujo de E tvés de un supeficie ced; estlece que este flujo es igul l cociente de l cg totl enced dento de l supeficie ente l constnte ε. En

Más detalles

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler.

5. Convergencia de integrales impropias. Las funciones Γ y Β de Euler. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lcción. Intgals y aplicacions. 5. Convgncia d intgals impopias. Las funcions Γ y Β d Eul. La foma haitual d calcula una intgal impopia, po jmplo dl intgando, aplica

Más detalles

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección?

3. Explica en qué consisten la miopía y la hipermetropía. Qué lentes se usan para su corrección? CANARIAS / JUNIO 0. LOGS / ÍSICA / XAMN COMPLTO D las dos opcions popustas, sólo hay qu dsaolla una opción complta. Cada poblma cocto val po ts puntos. Cada custión cocta val po un punto. OPCIÓN A Poblmas.

Más detalles

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1

22.6 Las 3 esferas pequeñas que se muestran en la figura tienen cargas q 1 .6 Ls 3 esfes peueñs ue se muestn en l figu tienen cgs 4 n, -7.8 n y 3.4 n. Hlle el flujo eléctico neto tvés de cd un de ls supeficies ceds S, S, S3, S4 y S5. S S S3 S5 3 S4 4 m S 9 3 Φ.45 m 8.85 9 7.8

Más detalles

TRANSMISIÓN DE CALOR POR CONDUCCIÓN

TRANSMISIÓN DE CALOR POR CONDUCCIÓN ERMODINAMICA ÉCNICA Y RANSMISIÓN DE CAOR RANSMISIÓN DE CAOR POR RANSMISIÓN DE CAOR POR EN ESACIONARIO. Intoducción.. Balanc d ngía n una supfici plana. 3. Balanc d ngía n supficis cilíndicas y sféicas.

Más detalles

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras)

Siempre verifica que a 2 = b 2 + c 2 (Th. Pitágoras) Págin 1 FIGURAS EN EL PLANO POLÍGONOS FIGURAS EN EL PLANO Y EN EL ESPACIO 1.- Polígono de 3 ldos: Tiángulo. B Los ángulos inteioes de culquie tiángulo sumn siempe 180º. El áe de culquie tiángulo se puede

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO

TEMAS 6 Y 7 GEOMETRÍA EN EL ESPACIO Tems Geometí en el espcio Mtemátics II º Bchilleto TEMAS Y GEOMETRÍA EN EL ESACIO ECUACIONES DE RECTAS Y LANOS EJERCICIO es plelo plno que contiene l ect Escibe l ecución del. s hll l ecución de un plno,

Más detalles

Solución Tarea de Aproximaciones y errores de redondeo

Solución Tarea de Aproximaciones y errores de redondeo Métodos numéicos y álgb linl CB0085 Apoximcions y os d dondo T d Apoximcions y os d dondo. Clcul l o bsoluto y l o ltivo si p y p 2.78 dond p s l vlo clculdo. : vlo l vlo clculdo 2.78 o bsoluto : vlo clculdo

Más detalles

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO

SELECCIÓN ADVERSA Y RACIONAMIENTO DE CREDITO SCCIÓN ADVRSA Y RACIONAMINTO D CRDITO Biliofí Básic: Wlsh (003 º d.) Monety Theoy nd Policy. MIT ess. Citulo 7. SCCIÓN ADVRSA Cundo hy ieso de insolvenci l fijción del tio de inteés dee conteml tl osiilidd

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

2πR π =

2πR π = PÁGIN 11 Pág. 1 oodends geogáfi cs 19 os ciuddes tienen l mism longitud, 15 E, y sus ltitudes son 7 5' N y 5' S. uál es l distnci ente ells? R b 7 5' b 5' Tenemos que ll l longitud del co coespondiente

Más detalles

Capítulo 8. Estructura electrónica de moléculas diatómicas

Capítulo 8. Estructura electrónica de moléculas diatómicas Cpítulo 8. Estuctu lctónic d moléculs ditómics Apoximción d Bon-Oppnhim Suponindo qu los núclos y lctons posn mss puntuls y dspcindo ls intccs spin-óit y ots considcs ltivists, l hmiltonino d un sistm

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin

CAMPO MAGNÉTICO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRIENTE y. sin CAMPO MAGNÉTCO DE UN CONDUCTOR RECTO QUE TRANSPORTA CORRENTE dl - P X d φ φ sin sin φ φ 3/ sin d d φ Cundo l longitud del conducto es mu gnde en compción con, l ecución se conviete en: >> 8. Un lmbe ecto

Más detalles

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1.

TRANSFORMACIONES GEOMÉTRICAS Proyectividad y homografía Homología y afinidad Inversión TEMA4. Objetivos y orientaciones metodológicas. 1. TRNSRMINES GEMÉTRIS Poyctivi y homogfí Homologí y fini Invsión TEM4 IUJ GEMÉTRI bjtivos y ointcions mtoológics Est Tm tin como objtivos intouci l lumno n los conocimintos poyctivi, homogfí, homologí, fini

Más detalles

Facultad de Ingeniería Física 1 Curso 5

Facultad de Ingeniería Física 1 Curso 5 Facultad d Ingniía Física Cuso 5 Índic Funt n moviminto con spcto al ai 3 Rsumn5 Ejcicio 5 Ejcicio 28 El obsvado stá n moviminto spcto a la unt n poso8 Rsumn Funt y obsvado n moviminto Ejcicio 3 Númo d

Más detalles

Tema 4: Potencial eléctrico

Tema 4: Potencial eléctrico 1/38 Tem 4: Potencil Eléctico Fátim Msot Conde Ing. Industil 2007/08 Tem 4: Potencil Eléctico 2/38 Índice: 1. Intoducción 2. Enegí potencil eléctic 1. de dos cgs puntules 2. de un sistem de cgs 3. Intepetción

Más detalles

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas

ASIGNATURA: INGENIERIA DE PROCESOS III (ITCL 234) PROFESOR: Elton F. Morales Blancas UNIVESIDD USTL DE CILE INSTITUTO DE CIENCI Y TECNOLOGI DE LOS LIMENTOS (ICYTL) / SIGNTU: INGENIEI DE POCESOS III (ITCL 34) POESO: Elton. Moals Blancas UNIDD : TNSEENCI DE CLO PO CONDUCCION (ESTDO ESTCIONIO)

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Deptmento de Físic, UTFSM Físic Genel II / of: A. Bunel. FIS10: FÍSICA GENERAL II GUÍA #3: otencil Eléctico. Objetivos de pendizje Est guí es un hemient que usted debe us p log los siguientes objetivos:

Más detalles

Practico 7 Fuerza y Leyes de Newton

Practico 7 Fuerza y Leyes de Newton 008 Pctico 7 uez y Leyes de Newton ) Un bloque de 5.5 Kg. está inicilmente en eposo sobe un supeficie hoizontl sin ficción. Es empujdo con un fuez hoizontl constnte de 3.8 N. ) Cuál es su celeción? b)

Más detalles

Logaritmos y exponenciales:

Logaritmos y exponenciales: Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs

Más detalles

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical.

Por dos puntos pasan infinitas circunferencias secantes formando un haz. La recta que une los dos puntos es su eje radical. TNNI. onceptos, popieddes y noms. Po un punto psn infinits cicunfeencis tngentes. L ect tngente ells po dicho punto es su eje dicl. Po dos puntos psn infinits cicunfeencis secntes fomndo un hz. L ect que

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Mgnitudes vectoiles 1 de 8 MAGNITUDES VECTORIALES: Índice 1 Mgnitudes escles vectoiles Sum de vectoes lies Poducto de un escl po un vecto 3 Sistem de coodends vectoiles. Vectoes unitios 3 Módulo de un

Más detalles

1.1 Carga eléctrica 1.2 Fuerzas electrostáticas. Ley de Coulomb Principio de superposición en sistemas lineales 1.3 Campo eléctrico Objetivos:

1.1 Carga eléctrica 1.2 Fuerzas electrostáticas. Ley de Coulomb Principio de superposición en sistemas lineales 1.3 Campo eléctrico Objetivos: Tem. lectostátic Tem. lectostátic. Cg eléctic. Fuezs electostátics. Ley de Coulomb incipio de supeposición en sistems lineles.3 Cmpo eléctico Objetivos: Cmpo eléctico cedo po cgs puntules be clcul el cmpo

Más detalles

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado

SEGURIDAD INFORMÁTICA. Ma. Katherine Cancelado SEGURIDAD INFORMÁTICA M. Kthrin Cncldo Agnd: Introducción l curso Prsntcions Informción dl curso Rgls dl jugo Mnos l obr! ---> Introducción l sguridd informátic INTRODUCCIÓN AL CURSO Acrc d ustds... Acrc

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

RODAMIENTOS DE RODILLOS CÓNICOS

RODAMIENTOS DE RODILLOS CÓNICOS B 106 RODAMIENTOS DE RODILLOS CÓNICOS RODAMIENTOS DE RODILLOS CÓNICOS DE DISEÑO MÉTRICO Diámeto Inteio 15~100mm...................... Págins B116~B123 Diámeto Inteio 105~240mm.................... Págins

Más detalles

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006

UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. JUNIO 2006 I.E.S. Al-Ándalus. Aahal. Svilla. Dpto. Física y Química. Slctividad Andalucía. Física. unio 6 - UNIVERSIDADES DE ANDALUCÍA: PRUEBA DE SELECTIVIDAD. FÍSICA. UNIO 6 OPCIÓN A. San dos conductos ctilínos

Más detalles

PROBLEMAS RESUELTOS DE TRABAJO Y ENERGÍA

PROBLEMAS RESUELTOS DE TRABAJO Y ENERGÍA POLEMS ESUELOS E JO Y ENEGÍ Equip dct: ti J. Gc Mi Hádz Puc lfs l lmt POLEM U l d ms qu s mu 4 m/s pt iztlmt u lqu d md st u pfudidd d 5 cm. uál s l fuz mdi qu s lizd s l l p dtl?. F N d m S F l fuz mdi

Más detalles

Tema II Potencial eléctrico - Capacidad

Tema II Potencial eléctrico - Capacidad UNN Fcultd de Ingenieí Tem II Potencil eléctico - Cpcidd Integl cuvilíne del cmpo eléctico. Ciculción. Difeenci de potencil, potencil y función potencil. Supeficies y Línes euipotenciles. Uniddes. Gdiente

Más detalles

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL

EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado.

En la figura se muestra el esquema del circuito eléctrico correspondiente a los datos proporcionados en el enunciado. EJECCO DE OTENCA EN TEMA TFÁCO. EJECCO 1.- n sistma tifásico tifila d 40 V y scuncia T, alimnta una caga tifásica quilibada conctada n tiángulo, fomado po impdancias d valo 0 80º Ω. Halla la lctua d dos

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo Cuso 5/6 Métoo e ls Imágenes. Es un métoo potente ue pemite esolve lgunos polems complicos. Consiste en moific el polem, mplino el ecinto, e fom ue:» Resulte más sencillo.» Se sign cumplieno

Más detalles

Ejercicio 1. x a. Ejercicio 2.

Ejercicio 1. x a. Ejercicio 2. Sptim 5 - Opción A (Molo 6) Ejcicio. D un función f: R R s s qu f() y qu f (. () [ punto] Dtmin f. () [ 5 puntos] Clcul l á l ión limit po l áfic f, po l j sciss y po ls cts cucions - y. () Aplicno l Tom

Más detalles

TEMA 7. Antenas Lineales. Miguel Ángel Solano Vérez

TEMA 7. Antenas Lineales. Miguel Ángel Solano Vérez TMA 7 Antns Linls Migul Ángl Solno Véz lctodinámic Clásic 4º Cuso Físic TMA 7: ANTNAS LNALS 7. ntoducción n st tm s v liz un intoducción l compotminto lctomgnético d ls ntns linls, s dci, qulls qu stán

Más detalles

Receta de curry verde (thai green curry)

Receta de curry verde (thai green curry) Rt d uy vd (thi gn uy) El uy vd uno d lo uy má fgnt d unto udn n. Po tmbién uno d lo má nillo. E uno d lo lto má onoido y onoido d l oin tilnd. El do vno é t d mi vion n Tilndi. Ni qué di tin qu omí uy

Más detalles

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que

Tema 8: Integral de Riemann Monotoníadelaintegral Si f y g son funciones integrables en [a, b] tales que Tem 8: Integl de iemnn Monotonídelintegl Si f y g son funciones integbles en [, b] tles que f(x) g(x) x [, b] entonces b b f Como cso pticul p g =se obtiene que si f es un función integble en [, b] tl

Más detalles

FORMACIÓN PROFESIONAL

FORMACIÓN PROFESIONAL FOMCIÓN POFIONL DIÑO CUICUL N UNIDD TÉCNIC CUDO 1228 D GOTO D 1985 INTUCCIÓN 0329 D 1986 DOGÓ L INTUCCIÓN 217 D 1972 Oscar Gaboa Carrillo FOMCION POFIONL: POCO MDINT L CUL L PON: DQUI Y DOLL CONOCIMINTO,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v

Análisis Vectorial. Escalares y campos escalares. Algebra vectorial. Vectores y campos vectoriales. v v v v. A v Escles cmpos escles nálisis Vectoil Teoí Electomgnétic 1 Dipl.-Ing. noldo Rojs oto Escl: ntidd cuo lo puede se epesentdo po un simple númeo el positio o negtio mpos escles: Función mtemátic del ecto que

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l

Más detalles

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años).

IES Mediterráneo de Málaga 2009 Juan Carlos Alonso Gianonatti. DISTRITO UNIVERSITARIO DE Madrid MATEMÁTICAS (Mayores de 25 años). IES Mditáo d Málg Ju los loso Giotti DISTRITO UNIVERSITRIO DE Mdid MTEMÁTIS (Mos d ños. OPIÓN Ejcicio.- (. tos. S id l cució ticil do ls tics:. tos. Idic ls dios qu d t l ti.. tos. lcul l is -. c. tos.

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN

PRUEBA DE ACCESO A LA UNIVERSIDAD ENUNCIADO Y RESOLUCIÓN PRUEBA DE ACCESO A LA UNIVERSIDAD.6 ENUNCIADO Y RESOLUCIÓN Instucciones: )Dución: 1 ho y minutos. b) Tienes que elegi ente eliz únicmente los cuto ejecicios de l Opción A o eliz únicmente los cuto ejecicios

Más detalles

TEMA 5: CÁLCULO VECTORIAL

TEMA 5: CÁLCULO VECTORIAL IES Al-Ándlus. Dpto. Físic Químic. F.Q. 1º Bchilleto. Tem 5: Cálculo vectoil - 1-5.1 VECTORES TEMA 5: CÁLCULO VECTORIAL 5.1 Vectoes 5. Sistems de efeenci. Coodends. Componentes de un vecto. 5.3 Opeciones

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN APLICACIONES DE LA TRIGONOMETRÍA, LEY DE SENOS Y COSENOS Aplicciones de Trigonometrí de Triángulos Rectángulos Un triángulo tiene seis

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

Tema 7. Campo magnético en la materia.

Tema 7. Campo magnético en la materia. º E.U..T..Z. Cuso 006-007. Electicidd y Electoetí. Poles Te 7 /6 Te 7. Cpo gnético en l tei. - Cálculo de flujos de tvés de supeficies iets y ceds..- El cuo de ist L =,5 c de l figu se encuent situdo en

Más detalles

TEMA 9. El análisis de la rentabilidad

TEMA 9. El análisis de la rentabilidad Nº Fch Db Hb Nº Fch Db Hb TEMA 9. El nálisis d l nbilidd Nº Fch SUMARIO Db Hb Nº Fch SUMARIO Db Hb 1. Intoducción 2. Rodnción funcionl 3. Rnbilidd conómic y finnci 4. Dscomposición d l nbilidd 4.1. Dscomposición

Más detalles

Método de las Imágenes.

Método de las Imágenes. Electici Mgnetismo 9/ Electostátic efinición Los conuctoes en electostátic. Cmpo e un cg puntul. plicciones e l Le e Guss Integles e supeposición. Potencil electostático efinición e Intepetción. Integles

Más detalles

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm

Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la

Más detalles

Resolución de triángulos

Resolución de triángulos 8 Resolución de triángulos rectángulos. Circunferenci goniométric P I E N S A Y C A L C U L A Escribe l fórmul de l longitud de un rco de circunferenci de rdio m, y clcul, en función de π, l longitud del

Más detalles

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

Modelo 2014. Problema 1B.- (Calificación máxima: 2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a: odelo. Proble B.- (Clificción ái puntos) Se consider el siste linel de ecuciones dependiente del práetro rel ) Discútse en función de los vlores del práetro R. b) Resuélvse pr.. l siste se clsific en función

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS

EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS EJERCICIOS DE PUNTOS, RECTAS Y PLANOS PUNTOS Ejecicio nº.- Repeent lo punto iguiente: A(, 5, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto iguiente: A(,, ), B(,, ) C(,, ) Ejecicio nº.- Repeent lo punto

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de

1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo

Más detalles

7. CONDICIÓN DE COPLANARIDAD

7. CONDICIÓN DE COPLANARIDAD UNIVEIDAD DE ALAMANCA MATE DE GEOTECNOLOGÍA CATOGÁFICA EN INGENIEÍA AQUITECTUA 7. CONDICIÓN DE COPLANAIDAD Jvi Góm Lho Dtmnto d Ingnií Ctogái dl Tno Esul Politéni uio d Ávil 7.Condiión d olnidd. INDICE.

Más detalles

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C

El Dipolo Plegado. Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C El Dipolo Plegdo Lbortorio de Electrónic de Comunicciones Dpto. de Señles y Comunicciones, U.L.P.G.C 1 Introducción Un nten muy utilizd en l práctic como receptor es el dipolo plegdo. Este tipo de dipolo

Más detalles

CONSIDERACIONES SOBRE LAS COMPUERTAS

CONSIDERACIONES SOBRE LAS COMPUERTAS Abril de 006 CONSDERACONES SOBRE LAS COMPUERTAS Cátedr de Mecánic de los Fluidos Escuel de ngenierí Mecánic Autores: ngeniero Edgr Blbstro ngeniero Gstón Bourges e-mil: gbourges@fcei.unr.edu.r 1 Abril

Más detalles

Ejemplos resueltos de FMC.

Ejemplos resueltos de FMC. Ejemplos esueltos de FMC. 18 de septiembe de 28 Licenci All tet is vilble unde the tems of the GNU Fee Documenttion License Copyight c 28 Snt, FeR, Onizuk (QueGnde.og) Pemission is gnted to copy, distibute

Más detalles

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 -

INFORME DE LA PRÁCTICA nº 2: LA RUEDA DE MAXWELL. Fernando Hueso González. Carlos Huertas Barra. (1º Fís.), L1, 21-XI-07 - 0 - INFORME DE LA PRÁCTICA nº : LA RUEDA DE MAXWELL Fernndo Hueso González. Crlos Huerts Brr. (1º Fís.), L1, 1-XI-7 - - RESUMEN L práctic de l rued de Mxwell consiste en medir el tiempo que trd en descender

Más detalles

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL

GRAVITACIÓN I: LEY DE LA GRAVITACIÓN UNIVERSAL 8 0 GRVICIÓ I: LEY DE L GRVICIÓ UIVERSL j Sigue pcticndo Indic sobe l tyectoi de un plnet con óbit elíptic lededo del Sol, que ocup uno de los focos, los puntos de áxi y íni elocidd Rzon l espuest b t

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

Solución de los Problemas del Capítulo 3

Solución de los Problemas del Capítulo 3 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007

NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 NOTAS TEÓRICAS II COTAS y EXTREMOS. AXIOMA del EXTREMO SUPERIOR Curso 2007 1 1. Intervlos Ddos dos números reles y,

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

Inform d Gass Efcto Invrnadro Página 1 d 9 1. INDICE 1. INDICE. 3 3. CUANTIFICACIÓN DE EMISIONES DE GEIS 3 4. LÍMITES OPERATIVOS Y EXCLUSIONES 5 5. AÑO BASE 6 6. METODOLOGÍA DE CUANTIFICACIÓN 6 7. INCERTIDUMBRE

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 06 EJERCICIOS Tipos de poliedros 1 Di, justificdmente, qué tipo de poliedro es cd uno de los siguientes: A B C D E Hy entre ellos lgún poliedro regulr? A Prism pentgonl recto. Su bse es un

Más detalles

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL

PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL PRÁCTICA 8 ESTUDIO DE ENGRANAJES 3º INGENIERÍA INDUSTRIAL 1.- INTRODUCCIÓN. La prsnt práctica tin por objto introduir al alumno n l cálculo d trns d ngranajs, tanto simpls d js parallos, compustos y trns

Más detalles

Laboratorio N 7, Asíntotas de funciones.

Laboratorio N 7, Asíntotas de funciones. Universidd Diego Portles Fcultd de Ingenierí. Instituto de Ciencis Básics Asigntur: Cálculo I Lortorio N 7, Asíntots de funciones. Introducción. Ls síntots de un función son rects que seprn ls regiones

Más detalles

7. Integrales Impropias

7. Integrales Impropias Ingenierí Mtemátic FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Dierencil e Integrl 08-2 Bsdo en el punte del curso Cálculo (2d semestre), de Roerto Cominetti, Mrtín Mtml y Jorge

Más detalles

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA.

( ) ( ) ( ) RESOLUCIÓN Dato: NºDiag.= 4(Nº s internos) RESOLUCIÓN RESOLUCIÓN SEMANA 4 POLÍGONOS Y CUADRILÁTEROS 11( 11 1) RPTA.: E RPTA. SEMN 4 OLÍGONOS Y URILÁTEROS 1. lcul l úmro d digols mdis d u polígoo, dod l úmro d digols s l cuádrupl dl úmro d águlos itros. ) 0 ) 7 ) ) 44 E) to: Nºig.= 4(Nº s itros) id: Nºig.Mdis= ( 1 ) =? Rmplzdo

Más detalles

CAPACITANCIA Y DIELÉCTRICOS

CAPACITANCIA Y DIELÉCTRICOS Capitulo v CAPACITANCIA Y DIELÉCTRICOS 196 5.1. Intoducción Cuando ncsitamos lcticidad, s ncsaio psiona un intupto y obtnla dl suministo. Po oto lado si tnmos accso a un gnado, podmos asguanos qu obtnmos

Más detalles

1 Tema 7: Antenas lineales Electrodinámica TEMA 7. Antenas lineales. Miguel Ángel Solano Vérez

1 Tema 7: Antenas lineales Electrodinámica TEMA 7. Antenas lineales. Miguel Ángel Solano Vérez Tm 7: Antns linls lctodinámic TMA 7 Antns linls Migul Ángl Solno Vé lctodinámic Tm 7: Antns linls Índic:. ntoducción. l dipolo d t on ln on póxim 3. l dipolo no infinitsiml Dlimitción d l on ln 4. Dipolo

Más detalles

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos:

Facultad de Informática Universidad Complutense de Madrid PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5. Problemas básicos: Fcultd de Informátic Universidd Complutense de Mdrid Prolems ásicos: PROBLEMAS DE FUNDAMENTOS DE COMPUTADORES TEMA 5 1. Especifique como máquin de Moore un sistem secuencil cuy slid z se comport, en función

Más detalles

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones

Vectores. Bases. Producto escalar, vectorial y mixto; y aplicaciones Mtemátics II Geometí del espcio Vectoes. Bses. Podcto escl vectoil mixto; plicciones Obsevción: L moí de los poblems eseltos continción se hn popesto en los exámenes de Selectividd.. Ddos los vectoes (

Más detalles

CAMPO MAGNÉTICO FCA 08 ANDALUCÍA

CAMPO MAGNÉTICO FCA 08 ANDALUCÍA 1. a) Exliqu las xrincias d Örstd y cont cóo las cargas n oviinto originan caos agnéticos. b) En qué casos un cao agnético no jrc ninguna furza sobr una artícula cargada? Razon la rsusta.. Dos conductors

Más detalles

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 08

UNIVERSIDADES DE ANDALUCÍA SELECTIVIDAD. FÍSICA. JUNIO 08 IS Al-Ándalus. Dto d Física Quíica. Cuso 7/8-1 - OPCIÓN A UNIVRSIDADS D ANDALUCÍA SLCIVIDAD. FÍSICA. JUNIO 8 1. Cont azonadant la vacidad o falsdad d las siguints afiacions: a) La fuza agnética nt dos

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistems de ecuciones lineles º) L sum de ls tres cifrs de un número es 8, siendo l cifr de ls decens igul l medi de ls otrs dos. Si se cmbi l cifr de ls uniddes por l de ls centens, el número ument en

Más detalles

c) La energía total (suma de energía cinética y energía potencial elástica) está dada por

c) La energía total (suma de energía cinética y energía potencial elástica) está dada por ROBLM Septiembe 0 n el lbotoio de ísic tenemos un cito de ms m = 00 gmos unido un muelle hoizontl según se muest en l igu. Un estudinte desplz el cito hci l deech de modo ue el muelle se k m esti 0 cm,

Más detalles

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto.

Para que exista límite de una f(x) en un punto han de coincidir los límites laterales en dicho punto. REPASO LÍMITES º BACH. RECORDAR: Para qu ista límit d una f() n un punto han d coincidir los límits latrals n dicho punto. A fctos dl f() no tnmos n cunta lo qu ocurr actamnt n a, sino n las a proimidads.

Más detalles

Matemática financiera. Material recopilado por el Prof. Enrique Mateus Nieves Doctorando en Educación Matemática.

Matemática financiera. Material recopilado por el Prof. Enrique Mateus Nieves Doctorando en Educación Matemática. Mtátc fnnc. Mtl copldo po l Pof. Enqu Mtus Nvs Doctondo n Educcón Mtátc. 4. TASAS DE INTERES Y EQUIVALENCIA ENTRE TASAS OBJETIVOS. Dstngu y xplc ls dfncs nt ntés pódco, nonl y fctvo. 2. Copnd y xplc los

Más detalles

2. MÉTODO DE COEFICIENTES INDETERMINADOS.

2. MÉTODO DE COEFICIENTES INDETERMINADOS. . MÉTODO DE COEFICIENTES INDETERMINADOS. E un étodo r hllr un olución rticulr d l cución linl colt [], u conit fundntlnt n intuir l for d un olución rticulr. No udn dr rgl n l co d cucion linl con coficint

Más detalles

PROBLEMAS DE FÍSICA 2 2º cuatrimestre 1 er curso del Grado en Estudios de ARQUITECTURA

PROBLEMAS DE FÍSICA 2 2º cuatrimestre 1 er curso del Grado en Estudios de ARQUITECTURA PROBLEMAS DE FÍSICA º cutimeste 1 e cuso del Gdo en Estudios de ARQUITECTURA Cuso 013-014 Deptmento de Físic de l Mtei Condensd CALOR Y TEMPERATURA 1) Un vill de ceo mide 3 cm de diámeto 5ºC. Un nillo

Más detalles

CURSO DE MATEMÁTICA 1. Facultad de Ciencias

CURSO DE MATEMÁTICA 1. Facultad de Ciencias CURSO DE MATEMÁTICA 1. Fcultd de Ciencis Reprtido Teórico 1 Mrzo de 2008 1. Conceptos Básicos de Funciones Definiciones 1. Si A y B son conjuntos no vcíos, un función de A en B es un correspondenci tl

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA P hll l ecución de un ect en el espcio necesito: Dos puntos Un punto su vecto diecto Not: Nosotos utiliemos siempe un punto A(,, ) un vecto v (,b,c).

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS

CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS CAPÍTULO 14: LAS EXPECTATIVAS: LOS INSTRUMENTOS BÁSICOS 14-1 Los tipos d intrés nominals y rals Slid 14.2 Los tipos d intrés xprsados n unidads d la monda nacional s dnominan tipos d intrés nominals. Los

Más detalles

Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009

Fundamentos Físicos de la Ingeniería Segundo Parcial / 2 abril 2009 undamntos sicos d a Ingnira Sgundo Parcia / abri 9. Una aria rctina y uniform, d masa m y ongitud ca ibrmnt n posición horizonta. En instant n qu su ocidad s, a aria gopa ásticamnt bord d una cuchia rgida

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES Matmáticas º Bachillrato. Prosora: María José Sánchz Quvdo REPRESENTACIÓN DE FUNCIONES Para l studio y rprsntación d una unción s sigun los siguints pasos:. Dominio d dinición y d continuidad.. Corts con

Más detalles