FUNCIONES DERIVABLES EN UN INTERVALO
|
|
|
- Marina Torres Alcaraz
- hace 9 años
- Vistas:
Transcripción
1 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll. S un unión qu vrii ls siuints ipótsis: Es ontinu n l intrvlo rrdo [, ] Es drivl n l intrvlo irto, Tom l mismo vlor n los trmos dl intrvlo, s dir Entons, ist un punto, tl qu s dir, on tnnt orizontl. Torm d Roll Hipótsis: s ontinu n [, ] s drivl n, Tsis:, / Dmostrión: Como s ontinu n un intrvlo rrdo [, ] lnz n dio intrvlo un vlor máimo y otro mínimo. Torm d Wirstrss Pudn drs dos sos: Si l máimo y l mínimo stán n los trmos, stos son iuls, y qu. Entons s trt d un unión onstnt y, por tnto, Si l vlor máimo o mínimo s nuntrn n un punto d, l unión lnz un máimo y un mínimo torm d Wirstrss y omo s drivl n, s umpl qu Ejmplo: L unión : [, ] R dinid por 4 vrii ls siuints ipótsis: Es ontinu n [, ] por sr polinómi Es drivl n, por s polinómi. 8; 8 Entons ist un punto n l intrvlo irto, on drivd nul n dio punto. Vmos: 4; 4 4 El punto st n l intrior dl intrvlo. Torm dl vlor mdio S un unión qu vrii ls siuints ipótsis: Es ontinu n l intrvlo rrdo [, ] Es drivl n l intrvlo irto,
2 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. Entons, ist un punto, tl qu Intrprtión ométri: Eist un punto n l urv uy tnnt s prll l urd. Dmostrión: Formmos l unión y plimos l torm d Roll y qu: Es ontinu n [, ] por srlo. Es drivl n, por srlo. Admás y s dir, Como s umpln ls ipótsis dl torm d Roll, ist un punto, tl qu, por tnto, si, Ejmplo : L unión s ontinu y drivl n todo R, podmos nontrr un punto, por jmplo, n l intrvlo, 4 uy tnnt l urv s prll l urd qu un los puntos d siss ; 4. 6; 6 ; Torm dl Vlor Mdio Hipótsis: s ontinu n [, ] s drivl n, Tsis:, /
3 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. Torm d Cuy. Si y son dos unions ontinus n [. ] y drivls n,, ist un punto n, tl qu Dmostrión: Nos yudmos d l unión uilir [ ] [ ] A st unión podmos plir l torm d Roll y qu Es ontinu n [, ] por sr dirni d unions ontinus Es drivl n, por sr drivl d unions drivls. Drivndo l unión, [ ] [ ] Y si, [ ] [ ] Simpr qu y Ejmplo : Hll l vlor d dl intrvlo, 4 dond s umpl l tsis dl torm d Cuy, sindo y Ls unions son ontinus y drivls n todo R por s unions polinómis ; ; Vlors d ls unions n los trmos dl intrvlo: luo 5; 4 4 ; ;,4 5 8 Rl d L Hôpitl. Es un onsuni dl torm d Cuy y nos prmit otnr áilmnt irtos its qu, sin st rl, rsultrín omplidísimos. Est rl di: Si, y ist ntons s umpl qu
4 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. 4 Dmostrión: Si y son ontinus n [, ] y drivls n, s umplirá : dond, Torm d Cuy Pro y luo Si ntons y qu, luo Como ist por ipótsis, istirá tmién y mos srán iuls. Qud, por tnto, qu L rl d L Hôpitl tmién pud sr plid l so d indtrminions dl tipo. Ejmplo 4: os Est s un so d indtrminión dl tipo por lo qu podmos plir l rl: os os sn L rl pud plirs un o más vs, mintrs s mntn l indtrminión.
5 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. 5 Ejriios rsultos.- L unión : [-, ] R dinid por tom l mismo vlor n los - trmos dl intrvlo, ; Enontrr su drivd y ompror qu no s nul nun. Contrdi sto l torm d Roll?. Soluión: ;.. Si intntmos nulr l drivd rsult: surdo! Esto no ontrdi l torm d Roll porqu l sund ipótsis no s vrii. L unión no s drivl n todos los puntos dl intrvlo. Conrtmnt, n l punto, no ist l drivd omo podmos vr lulándol trvés dl it:.- Clul pr qu l unión - 4 umpl ls ipótsis dl torm d Roll n l intrvlo [, ]. Dónd s umpl l tsis?. Soluión: Por sr un unión polinómi, s ontinu y drivl n todo R. y s umpln ls dos primrs ipótsis. Trr ipótsis: ; Cuys soluions son ; ; - : L úni soluión válid s. Dónd s umpl l tsis?: 4; 4 si.- Compru qu l unión 5 Cumpl ls ipótsis dl Torm d Roll. Avriu dónd umpl l tsis. Soluión: si < 4 En d uno d los intrvlos s un unión polinómi qu s ontinu y drivl. El únio punto dudoso s, luo mos d studir l ontinuidd y drivilidd n dio punto:
6 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. 6 Continuidd: 4 ; [ 5 ] 4 Eist it n dio punto y vl 4. Admás l vlor d l unión pr, tmién s 4, luo s ontinu. S umpl l ª ipótsis. Drivilidd: si < 4 si 4 Ls drivds ltrls son iuls, luo s drivl n y s umpl l ª ipótsis. Admás, ; Como tom l mismo vlor n los trmos dl intrvlo, s umpl l ª ipótsis. Vmos dónd s vrii l tsis: si < 4 si 4 Hindo, rsult: qu s surdo. 4, s dir, L tsis s vrii n 4.- Sindo, llr un númro, n l intrvlo, 4 d modo qu s vriiqu l torm dl vlor mdio. Soluión: Como s un unión polinómi, s ontinu y drivl n todo R, luo podmos plir l torm: 4 ; [ ]
7 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. 7 6 ± ± 84 6 ± L soluión válid s l ª si < 5.- Pru qu l unión si stis ls ipótsis dl torm dl vlor mdio n l intrvlo [, ] y lul l o los vlors vtiindos por l torm. Soluión: L unión s ontinu n l intrvlo [, ] - si < si L unión s drivl n l punto d sis, únio punto dudoso, luo s umpln ls ipótsis dl torm dl vlor mdio. Aplindo l órmul rsult: si < / ; /, si si < luo si D l primr uión s otin: / - /. Y d l sund uión: -/ - / 6.- Apli l torm d Cuy ls unions ; n l intrvlo [, 4] Soluión: Ls unions son ontinus y drivls por trtrs d unions polinómi, por tnto, ; 6 ; 6
8 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. 8 Vlors d ls unions n los trmos d los intrvlos: ; 4 4 ; Entons, s dir, L tsis s vrii n 7.- Rsulv l siuint it plindo l rl d L Hôpitl: Soluión: L L L L. L. L L L 8.- Clul los its siuints: L ; sn sn Soluión: L L. Ls indtrminions d l orm. s pudn rsolvr tmién plindo L Hôpitl sn os os sn sn.os sn sn os. 9.- Rsulv l siuint it: sn os Soluión: sn. sn os os.os sn. os sn os
9 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. 9.- Clul Soluión: Hmos A y plimos loritmos:.. L LA, s dir, L LA. Si LA ntons A, s dir A y, por tnto,.- Clul sn Soluión: os os sn sn
10 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. Ejriios propustos.- S pud plir l torm d Roll l unión [, 4]?. Rzon l ontstión. 4 n l intrvlo.- Compru si s vrii l torm d Roll pr l unión 4, n l intrvlo [, ]..- Apli l torm dl vlor mdio, si s posil, l unión n l intrvlo [-, -]. Soluión: -/ 4.- Clul y pr qu si < 4 umpl ls ipótsis dl si 4 torm dl vlor mdio n l intrvlo [, 6]. Dónd umpl l tsis? Soluión: ; 9; 9/ n si < 5.- S onsidr l unión m si. Dtrmin m y n pr qu s umpln ls ipótsis dl torm dl vlor mdio n l intrvlo [-4, ]. Hll los puntos dl intrvlo uy istni rntiz l torm. sn 6.- Clul Soluión /6 7.- Clul l siuint it plindo l rl d L Hôpitl: rt rsn Soluión: trnsormándolo n un it dl tipo y plindo ds- 8.- Clul os pués l rl d L Hôpitl Soluión: ½ 9.- Hll los siuints its: ; Soluión: - ;
11 DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá.
(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1
EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d
UNIVERSIDAD DE LA RIOJA JUNIO lim
IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios
SEMEJANZA DE TRIÁNGULOS
IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.
Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre
Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto
Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)
º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)
Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx
Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:
EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A
Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -
Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.
Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si
a b c =(b a)(c a) (c b)
E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------
IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d
DESIGUALDADES E INECUACIONES VALOR ABSOLUTO
TRILCE Cpítulo DESIGUALDADES E INECUACIONES VALOR ABSOLUTO DESIGUALDADES Torms l Dsigul Dfiniión S nomin sigul l omprión qu s stl ntr os prsions rls, mint los signos rlión >,
TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES
3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin
A puede expresarse como producto de matrices elementales
TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
SOLUCIONES DE LIMITES
SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln
ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.
Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los
INTEGRAL DEFINIDA ÁREAS Y VOLUMENES
Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid
IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A
IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts
ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.
L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg
( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)
Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt
Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I
Soluios los jriios prolms ustios Ui oliomios rios lgris Mtmátis plis ls Ciis Soils I EJECICIOS SUMA ESTA Y MULTILICACIÓN DE OLINOMIOS Dos los poliomios Dtrmi si stá ruios si so ompltos ii su gro Clul trmi
IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II
IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un
Números Racionales 1. INTRODUCCIÓN
Númros Rionls Título: Númros Rionls Trgt: PROFESORES DE MATEMÁTICAS Asigntur: Mtmátis Autor: Emilin Oliván Clz Lini n Mtmátis Prosor Mtmátis n Euión Sunri 1 INTRODUCCIÓN En l ominio intgri (DI) los númros
DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE
DEPRTMENTO DE MTEMÁTIS lumno/ 4º ESO Nº TRIGONOMETRI 1º PRTE 84 Introuión Un rinto poligonl simpr lo pomos iviir n triángulos. omo por jmplo Lo pomos iviir n triángulos D E F G H I J K L M N Ñ O P Q R
Matemáticas II Bloque VI Carlos Tiznado Torres
Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr
INTEGRAL INDEFINIDA. Derivación. Integración
Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES
Integrales impropias.
IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls
Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1
dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l
Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias
Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d
CÁLCULO INTEGRAL: 1. La integral indefinida: 1.1. Concepto 1.2. Propiedades de la integral indefinida. 2. Integrales inmediatas
CÁLCULO INTEGRAL:. L intgrl indfinid:.. Conpto.. Propidds d l intgrl indfinid. Intgrls inmdits. Métodos lmntls d intgrión:.. Intgrión por dsomposiión.. Intgrión por sustituión o mio d vril.. Intgrión por
( ) ( ) ( x ) ( ) ( ) ( ) v( x) u( x) ( ) EJERCICIOS RESUELTOS. 1. Calcula F a) ( x) en los siguientes casos: f ( t) = e. = x
Alro Enro Cond Mi Gonzálz Jrrro L ingrl y ss pliccions Clcl F ) d) n los sigins csos: F cos d RESUELTOS ) ( + ) d ) ( + ) F cos F d c) F( ) + d f) F d + F d g) v( ) F d h) F + f ( ) d i) F( ) ( ) cos d
MÉTODO INDUCTIVO. Capítulo TRILCE
pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.
1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.
º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno
3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2
MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl
IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:
IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y
OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
c a, b tal que f(c) = 0
IES Mediterráneo Málg Junio Jun Crlos lonso Ginontti Propuest.- ) Enuni el teorem olno ( puntos) ) Se pue plir diho teorem l funión f en lgún interlo? ( punto) ) Demuestr que l funión f() nterior g se
IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A
IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní
TEOREMAS DEL VALOR MEDIO., entonces existe algún punto c (a, b) tal que f ( c)
TEOREMAS DEL VALOR MEDIO Torma d Roll Si f () s continua n [a, b] y drivabl n (a, b), y si f (, ntoncs ist algún punto c (a, b) tal qu Intrprtación gométrica: ist un punto al mnos d s intrvalo, n l qu
OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)
IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo
1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).
ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul
7 L ímites de funciones. Continuidad
7 L ímits d funcions. Continuidad Página 05 f () = + Pinsa y ncuntra límits a) + ; + ; + + ; ; ; ; 9 0; 0; 0 ) 0; 0; 0 f ) + ; + ; 0 g) + ; + h) ; f () = a) 0 0, Página 0 a) a) f () = ; f () = ; f () =
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):
Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
TEMA 5. Límites y continuidad de funciones Problemas Resueltos
Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como
x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto
ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo
2.3.2 VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA EL VÉRTICE.
.3. VÉRTICE, MÁXIMOS Y MÍNIMOS DE UNA FUNCIÓN CUADRÁTICA..3.. EL VÉRTICE. El vértie es un punto que form prte de l prábol, el ul tiene omo ordend el vlor mínimo o máimo de l funión. En ese punto se puede
Logaritmos y exponenciales:
Logrimos ponncils: L rsolución d cucions ponncils s s n l siguin propidd d ls poncis : Dos poncis con un mism s posiiv disin d l unidd son iguls, si sólo si son iguls sus ponns. Es dcir, p. j. Si = noncs
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions
INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.
INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.
El área del rectángulo será A = p q, donde p 0,2 es variable y q depende de p. ( ) ( ) ( )
Cálculo difrncial. Matmáticas II Curso 03/4 Opción A Ejrcicio. Sa la parábola (Puntuación máima: puntos) y 4 4 y un punto ( p, q ) sobr lla con 0 p. Formamos un rctángulo d lados parallos a los js con
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...
TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: [email protected] http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto
Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =
TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y
INTEGRALES LECCIÓN 13
INTEGRALES LECCIÓN 13 Índie: Cálulo de áres. Ejemplos. Prolems. 1.- Cálulo de áres Si y son dos uniones ontinus en el intervlo [,] tles que, entones el áre de l reión del plno limitd por sus ráis y ls
Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1
Ruión stos quivlnts Mrio Min. [email protected] Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi
TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.
TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.
