( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)"

Transcripción

1 Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt vrtils orrspondints los límits d intgrión. En l grái, s pud obsrvr, qu l ár por dbjo dl j (ár ngtiv) s myor n vlor bsoluto qu l ár por nim dl j (ár potiv) por lo tnto d < Junio. Problm.- (Cliiión máim puntos) S ondr l unión rl d vribl rl dinid por, b) Clúls l ár d l rgión pln otd limitd por l grái d, ls rts,, y l j d bsiss. b. Tnindo n unt qu > R Ár, d, ( ), d, ( ) Sptimbr. Ejriio B. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por b > () S g l unión rl d vribl rl dinid por g(). Pr y b, lúls l ár d l rgión pln otd limitd por l grái d y l grái d g.. S pid lulr l ár dlimitd por ls unions, s pobl, sbozr ls gráis y l ár qu rprsntn, no s obligtorio, pro yud. y g() >

2 Lo primro srá lulr los límits dl ár, pr llo s rsulv l stm qu ormn ls uions d ls dos unions. > g ( ] ( ] >,, ; ; y y Si,, ; y y Si Los únios límits d intgrión válidos son ;. Tnindo n unt qu n l intrvlo d intgrión, g() > (), no s h dibujdo l rinto, bstrí on tomr un vlor ulquir dl intrvlo y omprobr qu unión s myor, por jmplo. g < d d d g d d g u 9 7 Junio. Ejriio B. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por > () Clúls l ár dl rinto plno otdo limitdo por l gri d, l j OX, ñ j OY, y l rt.. S pid lulr l ár sombrd d d Ár u Modlo. Ejriio B. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por > < b

3 b) Pr, lúls b,, pr qu l unión s ontinu n todos los puntos y lúls l ár dl rinto plno otdo limitdo por l grái d y l j OX. b. > < b Pr qu l unión s ontinu n R, db sr ontinu n y n, qu son los puntos rontr. Pr qu l unión s ontinu n Lím Lím b b b Lím Lím Lím Lím Pr qu l unión s ontinu n Lím Lím b b b Lím Lím b b b Lím Lím Sustituyndo l vlor d n l sgund iguldd s obtin b. b ; b > < Pr lulr l ár omprndid ntr l unión y l j OX s onvnint sbozr l grái d l unión, d orm qu nos prmit idntiir ms áilmnt lo limits dl rinto. L gri d l unión st ormd por trs rts, pr rprsntrl bst on lulr un pr d puntos d d intrvlo. El ár qu s pid s d, intgrl qu s rsulv plindo ls propidds d l rgl d Brrow. d d d ( ] [ ] [ ] [ ] u Sptimbr. Ejriio. (Puntuión máim puntos) S ondr l undón rl d vribl rl dinid por.

4 ) Clúls l ár dl rinto plno otdo limitdo por l grái d, l rt horizontl y, l rt vrtil.. S pid lulr l ár omprndid ntr dos unions ( ) ; y omo mustr l igur djunt. ( ) Ár d d d d d ( ) Ln( ) Ln Ln Ln u Ln Modlo. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por b ( Ln( ) ] b) Pr y b, lulr l ár dl rinto plno otdo por l grái d y l rt d uión y b. S pid lulr l ár omprndid ntr l grái d l unión y l rt d uión y S luln los puntos d ort d ls gráis d mbs unions qu dlimitrán los límits d intgrión y Igulión ( ) y ± Pr podr rsolvr l ár dlimitd por ls dos unions dbmos onor l poión rltiv d mbs unions n los intrvlos (, ) y (, ), o rstrls n ulquir ordn y tomr ls intgrls n vlor bsoluto. Ár d d d d ( ) d u Sptimbr. F.M. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por () ) Clúls l ár dl rinto plno otdo limitdo por l grái d y l rt d uión y.. Lo primro s dlimitr l rinto d intgrión, pr lo ul s muy útil dibujr ls unions. Los límits d intgrión s luln rsolvindo l stm ormdo por ls dos uions. y Igulión ; y L uión s rsulv on l método d Ruini.

5 Tnindo n unt l poión rltiv d ls gráis qu dlimitn l rinto y los puntos d orts ntr mbs, l ár s [ ] [ ] d d Ár d d u Junio. F.M. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por ) Clúls l ár dl rinto plno otdo limitdo por ls rt vrtils,, l grái d y l rt d uión y. unqu no s obligtorio rprsntr ls unions qu dlimitn l ár pdid, qu s romndbl sbozr l ár. El r pdid st dlimitd por l unión, su síntot obliu y ls rt vrtils y, qu son dmás los límits intgrión. El ár qu s pid lulr s l rprsntd n l grái djunt. d d d ( ] u Ln Ln Ln Ln Junio. F.M. Ejriio B. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por > b ) Pr, b /, lúls l ár dl rinto plno otdo limitdo por l grái d, l j OX y l rt vrtil.. El ár qu s pid onst d dos prts dirnids. L ª n l intrvlo [-, ] bjo l urv. L ª n l intrvlo (, ] bjo l urv. ( ] Ln d d

6 Ln Ln Ln u Ln 7 Junio. F.G. Ejriio B. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por > < b ) Pr, b, lúls l ár d l rgión pln otd limitd por l grái d y l j OX.. > <. unqu no s obligtorio, s romndbl hr l grái d l unión pr dlimitr ms áilmnt l ár qu pidn. El ár onst d dos rgions dirnts, l primr dlimitd por l () ntr y, y l sgund dlimitd por l unión () ntr y. d d u Modlo. Ejriio. (Puntuión máim puntos) S ondr l urv d uión rtn y b) Clúls l ár dl rinto plno otdo limitdo por ls gráis d l urv propust, l rt tngnt dih urv n l punto P(, ) y l j OX. b. Pr lulr l ár, ntmos lulr l uión d l rt tngnt l unión n l punto P. Euión d l rt tngnt n l punto P(, ) n orm punto-pndint. y y y Pr hr l álulo dl ár romindo qu sboéis ls gráis d ls unions pr podr dlimitr l ár. El ár pdid onst d dos rgions, l ª omprndid ntr l unión () y l j OX n l intrvlo [ ],, l ª omprndid n l unión () y su tngnt n P (y ) n l intrvlo [ ],.

7 d ( ) d ( ) ( ) 7 Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por b ;, b, R u b) Pr, b,, dtrmínns los puntos d ort d l grái d on los js oordndos. ) Pr, b,, lúls l ár dl rinto plno otdo limitdo por l grái d y l j OX. b. Pr, b, En st prtdo s onvnint sbozr l grái d l unión, qu por sr polinómi solo rquir los puntos d ort on los js, los límits n l ininito y los trmos rltivos los tin. - Puntos d ort - OX (y ). (, ) (, ) - OY ( ). y (,) Not Tnindo n unt qu l unión solo ort un vz l j OY, uno d los puntos d ort on l j OX s l (, ), l punto d ort on OY tmbién srá (, ), pudiéndonos horrr l lulo.. Pr, b, En st prtdo s onvnint sbozr l grái d l unión, qu por sr polinómi, solo ntmos los puntos d ort on los js, los límits n l ininito y los trmos rltivos los hubir. - Puntos d ort (, ) y (, ) - Límits Lím ( ) Lím ( ) - Máimos y mínimos. () ; () ; () () ( ) En (, ) ist un máimo < ( ) ( ) ( ) 7 En, ist un mínimo ( ) ( ) > 7 Con lo dtos obtnidos sbozmos l grái d l unión, l ár pdid (zon olord) s ngtiv, por lo tnto l intgrl s h n vlor bsoluto. 7

8 ( ) d u Sptimbr 9. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por 9 < > ) Clúls l ár dl rinto plno otdo limitdo por l grái d y l j OX. y. Ár. Limits d intgrión OX y y y y ( ) d ( 9) d ( ) d ( ) 9 ( ) ( ) u Junio 9. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por ( ) ( ) ) Clúls l ár dl rinto plno otdo limitdo por l grái d y l j OX.. Pr rlizr st prtdo s onvnint sbozr l grái d l unión, d l ul y s onon sus trmos rltivos. Los orts on los js oinidn on sus trmos, s un unión pr y los limits n ± son. El ár pdid s l olord n l grái, y vin dd por ( ) d ( ) d ( ) d

9 u Modlo 9. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por () b ;, b R. ) Pr, b, lúls l ár dl rinto plno otdo limitdo por l grái d y l j OX. b. (). Puntos d ort on los js (, ) OX(y ) ( ) (, ) (, ) OY( ) y (, ).. Conoidos los puntos d ort d l unión on los js oordndos, y tnindo n unt qu s un unión polinómi d grdo trs, on oiint potivo n, s sboz l grái d l unión. El ár pdid srá l sum dl ár omprndid ntr l unión y l j OX n l intrvlo [, ], más l ár n vlor bsoluto (por str por dbjo dl j OX l intgrl srá ngtiv) omprndid ntr l unión y l j OX n l intrvlo [, ]. ( ) d ( ) d Ár ( ) ( ) ( ) u Junio. Ejriio. (Puntuión máim puntos) Clúls l ár d l rgión pln otd limitd por ls gráis d ls unions rls d vribl rl ; g S pid lulr l ár limitd por dos unions, pr llo solo s nt onor los límits d intgrión, qu srán los puntos d ort ntr ls dos unions. No s nsrio dibujr l rgión, pro mpr yud rsolvr orrtmnt l ár, y qu prmit vr l poión rltiv d ls unions y rstr dudmnt. En so d no rprsntrl y no onor l poión rltiv, bstrá hr l rst d ls unions n vlor bsoluto. Límits d intgrión; 9

10 y y ( ( ) d ( ) d Ár ( ) ( ) 7 9 u Modlo. Ejriio B. (Puntuión máim puntos) Dd l unión rl d vribl rl dinid por () 9, s pid dtrminr () Los puntos n los qu l grái d ort los js d oordnds. (b) Los intrvlos d riminto y driminto d. () El ár dl rinto plno otdo limitdo por l grái d l unión y l j OX.. Corts on OX (y ) y () 9 (, ) ( 9) ( ) ± ( ) 9 ± 9 (, ) Corts on OY ( ). Si uno d los puntos d ort d l unión on l j OX s l (, ), y tnindo n unt qu l j OY solo lo pud ortr un vz, l punto d ort on OY srá (, ). b. L monotoní d l unión s soi l gno d l primr drivd on l guint ritrio En los intrvlos n los qu () s myor qu ro, l unión srá rint. En los intrvlos n los qu () s mnor qu ro, l unión srá drint. El gno d l drivd s studi por intrvlos prtir d ls rís d l mism. 9 9 ( ) ( ) L unión s rint (, ) (, ) L unión s drint (, ). D l inormión obtnid n los prtdos y b, y lulndo los límits n l ininito s pud sbozr l grái d l unión. Lím 9 Lím 9

11 Ár d 9 9 Sptimbr 7. Ejriio B. (Puntuión máim puntos) L grái d l unión () b stis ls guints propidds Ps por l punto (, ). Tin un máimo lol n l punto (, ). S pid b. Hllr l ár d l rgión otd dl plno limitd por l grái d l unión g(), l j OX y l rt. b. En st prtdo s onvnint sbozr l grái d l unión, qu por sr polinómi solo rquir los puntos d ort on los js, los límits n l ininito y los trmos rltivos los tin. - Puntos d ort OX (y ). 7 u ± (, ) (, ) (, ) Lím - Límits Lím ( ) - Máimos y mínimos. () ; () ; () En (, ) ist un mínimo () > En, ist un máimo < Esbozd l grái d l unión y l rt,l ár pdid s l olord n l igur. d u Junio 7. Ejriio B. (Puntuión máim puntos) Rprsntr gráimnt l rgión otd limitd por ls gráis d ls unions, g ( ), h ( ) y obtnr su ár.

12 Tnindo n unt qu l ár s métri Ár Prábol on vérti n (, ) OX( y ) (, ) g ( ) Rt. Corts on los js OY( ) (,) OX( y ) (, ) h ( ) Rt. Corts on los js OY, Ár ( ) d ( ) d ( ) d d Sptimbr. Ejriio B. (Puntuión máim puntos) Rprsntr gráimnt l rgión otd limitd por ls gráis d ls unions 9, g y obtnr su ár. 7 u () por s un unión polinómi d sgundo grdo n término n y oiint ngtivo n orrspond un prábol d j vrtil ntrd n l j OY y birt hi mnos ininito. Su vérti stá n (, 9) y ort l j OX n los puntos (, ) y (, ). g () s un unión polinómi d primr grdo y orrspond un rt qu ort los js oordndos n los puntos (, ) y (, ). El ár pdid s l qu s rprsnt n l guint igur. Los límits d intgrión s obtinn mdint un stm ormdo por ls dos uions. y 9 y S rsulv por igulión obtnindo un uión d sgundo grdo. ( g ) d

13 [( 9 ) ( ) ] d d ( ) ( ) Junio. Ejriio. (Puntuión máim puntos) S ondr l unión rl d vribl rl dinid por () 9 S pid ( ) u b. Clulr l ár dl rinto plno otdo limitdo por l grái d l unión y l j OX. Pr hr st prtdo s onvnint sbozr l grái d l unión. Funión impr () (). Simétri rspto (, ). Ár Punto d ort on los js OX y 9 ( 9) ± (, ), (, ), (, ) ( 9) Lím ( 9) Lím SIMETRI ( ) ( ) ( ) 9 9 d 9 d 9 d ( ) 9( ) 9 Junio. Ejriio B. (Puntuión máim puntos) S ondr l urv dé uión rtn y S pid ) Clulr l ár dl rinto plno otdo limitdo por ls gráis d l urv dd y d l rt d uión rtn. y Pr lulr l ár limitd por un prábol (y ) y un rt (y ), s onvnint sbozr ls gris d l unions. Limits d intgrión u

14 y y 7 ( ( ) d ( 7 ) d Ár 7 ( ) 7( ) 7 u ( ) Modlo.. (Puntuión máim puntos) Clulr l ár dl rinto otdo limitdo por l grái d l unión y l j OX Pr podr lulr l ár ntr l unión y l j OX s onvnint hr un studio prvio d l unión. Por sr un unión polinómi, s ontinu n todo R. Los puntos d ort on l j OX s obtin lulndo los ros d l unión Mdint l método d Ruini s obtinn ls soluions y s toriz l unión. El studio dl gno d l unión s ( ) ( ) ( ) Not Bst sustituir un vlor d d intrvlo n l unión torizd pr sbr l gno d l mism. Por último s onvnint lulr los límits d l unión n l ininito. lim ; lim Con los dtos obtnidos s pud sbozr l grái d l unión.

15 El ár pdid s l zon ryd, qu s db dividir n dos árs por sr un potiv y otr ngtiv. d d d d Modlo.. (Puntuión máim puntos) Clulr l vlor d > pr qu l ár d l rgión pln otd limitd por ls gráis d ls urvs y, y, s igul. El ár omprndid ntr ls dos unions tin dos rgions métris iguls, lo ul nos prmit mpliir l álulo dl ár. o d d d Oprndo o d ; o s pud prsr n unión d y qu omprnd l punto d ort ntr ls dos unions. y y ± Tomndo l vlor potivo pr. ; Junio. B. (puntuión máim puntos). b. Clulr l ár dl rinto limitdo por l grái d l unión (), l j OX y ls rts,. L orm más snill d rsolvr l problm s dibujr l ár. () s un prábol birt hi rrib qu ort los js n (, ) y (, ).

16 d d Ár u 7 Modlo.. (Puntuión máim puntos) S l unión () b) Clulr l ár dl rinto plno otdo limitdo por l grái d (), l j OX y ls rts vrtils,. El ár pdid s db lulr omo sum d dos árs, dbido qu prt d ll stá por nim dl j OX y prt por dbjo, stá últim s lul n vlor bsoluto. d d r u Sptimbr. Ejriio B. (Puntuión máim puntos) Sn ls unions ; g b) Clulr l ár dl rinto otdo limitdo por ls urvs y g. S rprsntn gráimnt ls prábols 9, V 9, V g

17 7 u d d d () g() Sptimbr. Ejriio. (Puntuión máim puntos) S ondr l unión (). b. Clulr l ár dl rinto plno otdo limitdo por l grái d () pr, l j OX y l rt. b. S pid hllr por álulo intgrl l ár otd ntr l unión y l j OX n l intrvlo [, ] () () u '() d d d Junio.. (Puntuión máim puntos). Sn ls unions () 9, g () Clulr. El ár dl rinto limitdo por l gri d l unión (), l j OX y ls rts.,. El ár pdid stá omprndid ntr l unión () 9, l j OX y ls rts y. s lul mdint l intgrl dinid u d 9 Junio.. b. Clulr l ár dl triángulo limitdo por l j OX y ls tngnts l urv dd n los puntos d intrsión d dih urv on l j OX

18 b. S pid lulr l ár mrill rprsntd n l igur, qu stá dlimitd por ls rts tngnts l prábol n sus puntos d ort on OX y l propio j OX. y, Corts on OX y (,) Rt tngnt un unión n un punto o y ( o ) ( o ) ( o ) (,) y '( ) ( ) '( ) plindo los puntos d ort ndo, (,) y '() ( ) ' () sutituyndo n l rsptivs uions, s obtinn ls rts tngnts y ( ) y ( ) y ( ) El punto d ort d mbs por igulión y ( ) d ( ) d ( ) d Junio. B. (puntuión máim puntos). S ondr l urv d uión y. Clulr l ár dl rinto plno otdo limitdo por l urv y l j OX. S pid lulr l ár d l rgión sombrd Ár por mtrí s pudn mpliir los álulos ( ) d ( ) d d ( ) u

19 Sptimbr. Ejriio. (Puntuión máim puntos) Sn ls unions () b, g(). Clúls l ár d l rgión limitd por ls gráis d () y g().. S pid lulr l ár nrrd ntr dos unions onoidos los puntos d ort ntr lls, plindo l álulo intgrl ( g() ()) d ( ( ) d ( ) d ( ) ( ) ( ) u 9

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto.

DERIVABILIDAD.. Intuitivamente: cuando no presenta saltos en ese punto. Toda función derivable en un punto, es continua en ese punto. ERIVABILIA.... inir unción continu n un punto. inir unción drivbl n un punto. s posibl ponr un jmplo d un unción qu n s: ) Continu y drivbl. b) rivbl y no continu. c) Continu y no drivbl. y s continu n

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

Matemáticas II Junio 2004

Matemáticas II Junio 2004 Mtmátics II Junio EJERIIO PROBLEM.. En un plno, l trdo d un crrtr discurr sgún l cución y, sindo un río l j OX. En l trrno ntr l río y l crrtr hy un pinr. Si prsmos ls distncis n kilómtros, cuánto vl l

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES

CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Colgio Mtr Slvtoris CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES Ejrcicio nº.- Estudi l continuidd y l drivilidd d l guint unción: ) < < Continuidd: - Si y ) s continu, pus stá ormd por uncions continus. -

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b =

Se llama tasa de variación media (T.V.M.) de una función y = f(x) en un intervalo a. T.V.M. a,b = TEMA 7: DERIVADAS 7. Concpto d drivd. Función drivd. 7. Rgls d drivción. 7. CONCEPTO DE DERIVADA. FUNCIÓN DERIVADA. Est concpto mtmático no sólo nos prstrá un yud primordil n l rprsntción d funcions y

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

SOLUCIONES DE LIMITES

SOLUCIONES DE LIMITES SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas.

# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas. intgrls dfinids 7 rsulv sts intgrls dfinids. ) + ( ) d b) d + ) + + ( ) d b) d + ln ln + ln + + 8 clcul ls intgrls dfinids. π ) ( sn ) d b) d ) ( sn ) d cos ( ) ( ) b) d ln + ln + ln 9 clcul, utilizndo

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions

Más detalles

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A

IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní

Más detalles

INTEGRALES DEFINIDAS. APLICACIONES

INTEGRALES DEFINIDAS. APLICACIONES INTEGRLES DEINIDS. PLICCIONES. Ingrl dfinid. Propidds. unción ingrl. Torm fundmnl dl cálculo ingrl. Rgl d Brrow 5. Torm dl vlor mdio. Ár ncrrd jo un curv y l j. Ár ncrrd por dos curvs. INTEGRLES DEINIDS.

Más detalles

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.

ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11. L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg

Más detalles

4 3x 2x 3 6x x x x dt d x x dy p dx y

4 3x 2x 3 6x x x x dt d x x dy p dx y EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO LS ENSEÑNZS UNIVERSITRIS OFICILES DE GRDO Curso -6 MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN Dspués d lr tntmnt tods ls prgunts, l

Más detalles

Tarea 11. Integral Impropia

Tarea 11. Integral Impropia Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los

Más detalles

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel

FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES. Preguntas de dominios y curvas de nivel FUNCIONES DE DOS VARIABLES DOMINIOS, DERIVADAS PARCIALES Y DIRECCIONALES Prguntas d dominios curvas d nivl Dtrmina l dominio d las uncions: a) (, ) b) (, sin + + En cada caso indica dos puntos qu no san

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1

Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1 dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:

Más detalles

REPRESENTACION GRAFICA.

REPRESENTACION GRAFICA. REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:

Más detalles

+ ( + ) ( ) + ( + ) ( ) ( )

+ ( + ) ( ) + ( + ) ( ) ( ) latrals n. iguals. f. La función CONTINUIDAD f () Es continua n l punto?. Calcular los límits ³ ² 5 Para qu la función sa continua n s db cumplir: f f Calculamos por sparado cada mimbro d la igualdad f

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

a b c =(b a)(c a) (c b)

a b c =(b a)(c a) (c b) E N U N C I D O S ÁLGEBR + y + z P.- Ddo el sistem de euiones se pide: y + z ) Enontrr pr qué vlores de el sistem tiene soluión úni ) Resuelve el sistem pr P.- Despej l mtriz X en l siguiente euión y hll

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

CÁLCULO INTEGRAL: 1. La integral indefinida: 1.1. Concepto 1.2. Propiedades de la integral indefinida. 2. Integrales inmediatas

CÁLCULO INTEGRAL: 1. La integral indefinida: 1.1. Concepto 1.2. Propiedades de la integral indefinida. 2. Integrales inmediatas CÁLCULO INTEGRAL:. L intgrl indfinid:.. Conpto.. Propidds d l intgrl indfinid. Intgrls inmdits. Métodos lmntls d intgrión:.. Intgrión por dsomposiión.. Intgrión por sustituión o mio d vril.. Intgrión por

Más detalles

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función

ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA. 1. a) Halla los valores de los coeficientes b, c y d para que la gráfica de la función ESTUDIO DE UNA FUNCIÓN CON AYUDA DE LA DERIVADA CMS05. a) Halla los valors d los coficints b, c y d para qu la gráfica d la función y b c d cort al j OY n l punto (0, ), pas por l punto (, ) y, n s punto,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES ASTELAR BADAJOZ A enguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 7 (RESUELTOS por Antonio enguino) ATEÁTIAS II Tiempo máimo: hors minutos ontest de mner lr rond un de ls dos opiones propuests

Más detalles

lm í d x = lm í ln x + x 1 H = lm í x + e x 2

lm í d x = lm í ln x + x 1 H = lm í x + e x 2 Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I.

( ) ( ) DEPARTAMENTO DE ECONOMÍA Examen Final (sólo 2ª parte) de Análisis Matemático 21-Mayo-2015 GRADOS ECO y ENI NOMBRE: D.N.I. DEPARTAMENTO DE ECONOMÍA Emen Finl (sólo ª prte) de Análisis Mtemático -Mo-05 GRADOS ECO ENI NOMBRE: DNI TURNO: TEST 45 PUNTOS (Cd pregunt contestd correctmente sum 05 puntos, contestd errónemente rest

Más detalles

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22

CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE TEMA 1. ACTIVIDADES 1.11 A 1.22 CALCULO GRADO EN INGEN INFORM DEL SOFTWARE - TEMA ACTIVIDADES A Sa ( 0 / 0 0 a Es drivabl por la drca n 0? Es drivabl por la izquirda n 0? Es drivabl n 0? Razonar las rspustas b Obtnr la unción drivada

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE DEPRTMENTO DE MTEMÁTIS lumno/ 4º ESO Nº TRIGONOMETRI 1º PRTE 84 Introuión Un rinto poligonl simpr lo pomos iviir n triángulos. omo por jmplo Lo pomos iviir n triángulos D E F G H I J K L M N Ñ O P Q R

Más detalles

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1)

Opción A. Para resolver esta indeterminación se aplica la regla de L Hôpital enunciada con anterioridad: (Indeterminación) (1) º BACHILLERATO. Resuelve los siguientes ites: Opión A ) L= os sen (Indeterminión) g Pr resolver est indeterminión se pli l órmul: Por tnto, L os sen os sen e e Se resuelve el siguiente ite: os sen (Indeterminión)

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES STER BDJOZ RUEB DE ESO (OGSE) UNIVERSIDD DE STI Y EÓN JUNIO - (RESUETOS por ntonio nguino) TEÁTIS II Tipo áio: hors inutos ritrios gnrls vluión l pru: S osrvrán funntlnt los siguints sptos: orrt utiliión

Más detalles

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

OPCIÓN A. Ejercicio 1. (Puntuación máxima: 3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k: UNIVERSIDDES PÚBLICS DE L COMUNIDD DE MDRID PRUEB DE CCESO ESUDIOS UNIVERSIRIOS (LOE) EMEN MODELOCURSO - MEMÁICS PLICDS LS CIENCIS SOCILES II INSRUCCIONES: El lumno deerá elegir un de ls dos opiones o

Más detalles

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS I UNIDAD 8 LÍMITES DE FUNCIONES CONTINUIDAD CONCEPTOS PREVIOS: Dcimos qu: y s l tind, si tom vlors cd vz más próimos Ejmplo: L scunci d númros ; ; ; 9; 8; ;

Más detalles

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006

ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 de febrero de 2006 ESCUELA UNIVERSITARIA DE INGENIERÍA TÉCNICA AERONÁUTICA DEPARTAMENTO DE MATEMÁTICA APLICADA Y ESTADÍSTICA EXAMEN DE CÁLCULO I 1 d fbrro d 006 Timpo: horas 30 minutos Cada problma db ntrgars n hojas d xamn

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.

MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado. MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejrcicio, Opción A Junio, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción A Rsrva, Ejrcicio, Opción B Rsrva, Ejrcicio, Opción

Más detalles

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13

2º Bachillerato: ejercicios modelo para el examen de las lecciones 11, 12 y 13 º Bachillrato: jrcicios modlo para l amn d las lccions, y 3 Sa la unción F ( ) t dt a) Calcular F (), studiar l crciminto d F() y hallar sus máimos y mínimos. b) Calcular F () y studiar la concavidad y

Más detalles

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.

TEMA 6: INTEGRAL DEFINIDA. APLICACIONES. TEMA 6: INTEGRAL DEFINIDA. APLICACIONES.. Áre jo un urv El prolem que pretendemos resolver es el álulo del áre limitd por l gráfi de un funión f() ontinu y positiv, el eje X y ls siss = y =. Si l gráfi

Más detalles

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx

dx x 2 dx 22. x2 +x-2 dx cos 2 x+cosx senx Integrles Clculr l integrl: +e + -+ + sen(+) 6-7 - 8 9 - + ln - 9- + (-)cos 6 ln 7 e 8 sen 9 e - + + + +- +- -6 - ++ () Describir el método de integrción por cmbio de vrible () Usndo el cmbio de vrible

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide

IES Mediterráneo de Málaga Solución Septiembre 2013 Juan Carlos Alonso Gianonatti OPCIÓN A. se pide IES Mditáno d Málg Solución Sptimb Jun los lonso Ginontti Ejcicio.- liicción máim puntos Dd l unción: 7 s pid ( 7 puntos Hll ls síntots d dich gic OPIÓN b ( 7 puntos Dtmin los intlos d cciminto dcciminto

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

MÉTODO INDUCTIVO. Capítulo TRILCE

MÉTODO INDUCTIVO. Capítulo TRILCE pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.

Más detalles

CAPÍTULO. Aplicaciones

CAPÍTULO. Aplicaciones CAPÍTULO Aliiones. Longitud de urvs Entre los roblems que dieron origen l integrl, menionmos en el ítulo el de lulr l longitud de un urv, dd omo l gráfi de un funión f./ ontinu en un intervlo Œ; b. f./

Más detalles

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b

Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.

F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz. nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos OPCIÓN A IES CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO - (RESUELTOS por Antonio nguiano) ATEÁTICAS II Timpo máimo: horas minutos Contsta d manra clara raonada una d las dos opcions

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

Representación de Funciones.

Representación de Funciones. T 5 Rprsntación d Funcions EJERCICIOS DE DESARROLLO 1- Elmntos Fundamntals para la Construcción d Curvas 1 Halla l dominio d stas funcions: a 5 + 7 + b d y g + 5 5 + = ln + + 1 ln +1 = y ( ) f ( ) Halla

Más detalles

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición.

DERIVADAS. Las gráficas A, B y C son las funciones derivadas de las gráficas 1, 2 y 3, pero en otro orden. = 0 utilizando la definición. DERIVADAS Dinición d drivada Ejrcicio nº.- Las gráicas A, B y C son las uncions drivadas d las gráicas, y, pro n otro ordn. Cuál s la drivada d cual? Justiica tus rspustas. Ejrcicio nº.- Calcula la drivada

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Pdr Povd (Gudi Mtmátics I UNIDAD 9 LÍMITES DE FUNCIONES CONTINUIDAD Límit d un unción n un punto Límits ltrls Límit d un unción n un punto Límits n l ininito Comportminto d un unción cundo Comportminto

Más detalles

= + 3x dx = x + C. Reglas de Integración elementales estándar

= + 3x dx = x + C. Reglas de Integración elementales estándar .. Antidrivds: UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS, UNIDAD III Hst hor hmos studido lo qu s dnomin El Cálculo

Más detalles

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral.

Objetivos. Cálculo de primitivas. La integral definida. Funciones integrables. Aplicaciones geométricas de la integral. TEMA Ojetivos. álulo de rimitivs. L integrl deinid. Funiones integrles. Integrles imrois. Aliiones geométris de l integrl. Plnter y lulr integrles de uniones de un vrile y lirls l resoluión de rolems reltivos

Más detalles

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre:

INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL. TERCERA EVALUACIÓN Septiembre 17 de Nombre: INSTITUTO DE CIENCIAS MATEMÁTICAS CÁLCULO DIFERENCIAL TERCERA EVALUACIÓN Sptimbr 7 d Nombr: Parallo: Firma: TEMA ( puntos) Justificando su rspusta, califiqu como vrdadra o falsa, cada proposición: a) La

Más detalles

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis

OPCIÓN A. MATEMÁTICAS 2º BACHILLERATO B Lo contrario de vivir es no arriesgarse. Fito y los Fitipaldis MATEMÁTICAS º BACHILLERATO B --5 Lo contrario d vivir s no arrisgars Análisis Fito y los Fitipaldis OPCIÓN A.- a) S dsa construir un parallpípdo rctangular d 9 dm d volumn y tal qu un lado d la bas sa

Más detalles

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución:

2. En el punto x = 0, f ( x) a) Un mínimo local. b) Un máximo local. c) Ninguna de las anteriores. Solución: Análisis Matmático (Matmáticas Emprsarials II) PROBLEMAS DE FUNCIONES DE UNA VARIABLE. Pguntas d tipo tst. (J). La función f ( ) ln: a) Tin puntos stacionarios (o críticos, s dcir, puntos cuya primra drivada

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matmático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. GRUPO: A B C CUESTIONARIO DE RESPUESTA MÚLTIPLE (50%) La función y : a) Tin una

Más detalles

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; =

CÁLCULO DE LÍMITES. Por otro lado es importante distinguir en el cálculo de límites, los casos indeterminados de los determinados: = ; = ; = CÁLCULO DE LÍMITES Propidds d los límits.- ( b ) b.- ( b ) b.- ( b ) b.- ( b ) b b.- ( ) ( ) 6.- k k b Por otro ldo s importt distiguir l cálculo d límits, los csos idtrmidos d los dtrmidos: Csos dtrmidos:

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES

EJERCICIOS UNIDADES 3 y 4: INTEGRACIÓN DE FUNCIONES IES Padr Povda (Guadi) EJERCICIOS UNIDADES y : INTEGRACIÓN DE FUNCIONES (-M;Jun-A-) San f : R R y g : R R las funcions dfinidas rspctivamnt por f ( ) = y g( ) = + a) ( punto) Esboza las gráficas d f y

Más detalles

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS

EJERCICIOS DE REPASO PARA SELECTIVIDAD: ANÁLISIS EJERCICIOS DE REPSO PR SELECTIVIDD: NÁLISIS Ejrcicio. San f : R R y g : R R las funcions dfinidas por f( = -( + + a + b y g( = c S sab qu las gráficas d f y g s cortan n l punto (, y tinn n s punto la

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b):

Podemos calcular la suma de las áreas de los rectángulos superiores que es una aproximación por exceso del área R(f; a, b): TEMA 6: INTEGRAL DEFINIDA. 6.1 Integrl efini omo límite e sums superiores o inferiores. 6. Propiees e l integrl efini. 6. Regl e Brrow. 6.4 Apliiones e l integrl efini (Áre). 6.1 Integrl efini. Se f un

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS II UNIDAD LÍMITES Y CONTINUIDAD LÍMITE DE UNA FUNCIÓN EN UN PUNTO Fíjt n l comportminto d l unción ( tom vlors crcnos cundo Si s proim, l unción tom vlors crcnos

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y f (x) y el eje OX desde un punto y fx fx hst

Más detalles

CÁLCULO DE ÁREAS DE RECINTOS PLANOS

CÁLCULO DE ÁREAS DE RECINTOS PLANOS CÁLCULO DE ÁREAS DE RECINTOS PLANOS Ejercicio Hllr el áre del recinto limitdo por l gráfic de = sen el eje OX entre 0 π Ejercicio Clculr el áre del recinto limitdo por ls curvs =, = 0 8 = + 8, =, ls verticles

Más detalles

Integrales de funciones de una variable.

Integrales de funciones de una variable. Tem Integrles de funciones de un vrible... L integrl definid como áre. L integrl definid de un función cotd y positiv corresponde l áre encerrd entre l curv y fx) y el eje OX desde y f x f x un punto hst

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles