1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas"

Transcripción

1 Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8 lo lo lo.- Rsulv os los unts stms lo lo lo lo lo lo lo lo..- Rsulv l uón sn α tα.- Dmustr l unt nt. os sn.os sn os sn π 7.-Sno qusn qu π lul os t 8.- Smpl l unt prón. sn os os os

2 9.- Eprs n unón sn os l os 0.- Clul los lmntos qu ltn l unt tránulo, nno toos los psos suos. 0m, 9m, C70º m, A0º, B00º..- Dos los ompljos z z lulr: z z z zz El opusto onjuo uno llos. z.- Esr n orm polr los ompljos:.- Esr n orm nóm los unts ompljos. π π.- Hllr os númros ompljos, sno qu su ont s, sus rumntos sumn π sus móulos sumn 8..- Hllr os númros rls, tls qu l rsulto l prón 7 s mnro puro móulo 8..- Un ntn ro stá sujt l sulo on os ls qu ormn on l ntn ánulos º 8º. Los puntos sujón los ls stán lnos on l p l ntn stn ntr 98 m. Clul l ltur l ntn. 7.- Clul 8.- Smpl ls unts prons, prsno l rsulto n orm polr. 9.- Clul k pr qu los vtors, k, ormn un ánulo 0º. 0.- Hll l proón l vtor, sor,

3 .- In qu prs vtors ormn s,,,,, En so rmtvo prsr l vtor u, omo omnón lnl llos..- Dos los vtors,, lulr l vlor pr qu s vrqu: Sn prpnulrs El moulo l vtor s ul l móulo l vtor S - lul l prouto slr ntr mos vtors l ánulo qu ormn..- Clulr l métro l punto P-, rspto l rt r: Clul m n n ls rts uons r: m-0 s:n-80 sno qu son prpnulrs qu r ps por l punto P,-.- Hll l uón l rt prpnulr l rt -0 qu ps por l punto ort ls rts, 0.- Ds ls rts r: -0 s: -0 trmn l vlor pr qu: Ls rts sn prlls Ls rts sn prpnulrs. 7.- Clul l stn ntr ls unts rts. R: -00 s: Do l tránulo vérts A,, B,- C-,. Clul l punto mo uno sus los. Clul l stn l vért A l lo BC. Clul l stn ntr los los AB BC. Clul l lontu uno sus los

4 9.- Hll, n so, l uón l rt qu ps por l punto P,- s: Prll l rt -0,n orm prmétr. Prpnulr l rt -0, n orm ontnu. 0.- Estu l ontnu l unt unón. Rprséntl rámnt. >.- Clul los unts lmts. lm lm lm lm 9 lm lm 0.- Ds ls unons Ln Clul sus omnos Clul ls nvrss ls unons Clul o, o, o.- D l unón k Clul l vlor K pr qu l unt unón s ontnu n toos los rls..-trs un stuo moráo, s trmno qu l númro tnts rt polón, n los prómos ños, vnrá por l unón Cuntos tnts tn l polón tulmnt? ntro os ños? S s supon qu l unón us vál orm nn, rs qu l polón rrí nnmnt o s stlrí n torno trmno númro tnts?.- Un sñl soorro un tléono móvl A s su s os ntns B C sprs ntr Km., l ánulo B m º l ánulo C m º. Clul ls stns qu s un ls ntns B C l tléono móvl.

5 .- Trs pulos A, B C stán unos por rrtrs rts qu ormn un tránulo; l stn A st B s Km., A st C km. Y l ánulo ABC m 0º. Clul l stn l pulo B l C. 7.- Ds ls unons Ln k j Rprsnt ls unons, Clul,., : Clul l omno tos ls unons Clul o Clul l nvrs l unón. 8.- Rprsnt rámnt ls unts unons stu su ontnu nno prsntn lún tpo sontnu líl. 9.-Clul los unts límts. lm lm lm lm lm lm lm lm lm lm lm l k j lm 0.- Hll ls uons ls ntots ls unts unons, nno l poón l urv rspto lls. 9.- Clul l rv ls unts unons, utlzno l nón rv, n los puntos nos. n n.- Clul los unts lmts. lm lm lm 7 0 lm

6 .- Estu l ontnu l unt unón. Rprséntl rámnt. >.- Clul utlzno l nón rv l rv l unt unón n l punto no. n.- Clul l rv ls unts unons, utlzno ls órmuls rvr. Ln sn os os 8.- Clul ls uons ls ntots ls unts unons, nno l poón l urv rspto lls. 7.- Ds ls unts unons Clul sus omnos. Rprsnt ls unons nno qu tpo unons son. Clul o Clul l nvrs 8.- Clul l rv ls unts unons utlzno ls props ls rvs. Ln Ln sn sn os os. os

x x 1) Resuelve las siguientes ecuaciones: 2) Resuelve las siguientes ecuaciones exponenciales: d) 3 9

x x 1) Resuelve las siguientes ecuaciones: 2) Resuelve las siguientes ecuaciones exponenciales: d) 3 9 Pnnts ºB CCNN Ejros Euons Inuons Rsulv ls sgunts uons: Rsulv ls sgunts uons ponnls: 8 0 8 0 7 Rsulv ls sgunts uons logrítms: log log log log log log log log log log log log Utlzno l métoo Guss, rsulv los

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

TEMA 8: DETERMINANTES

TEMA 8: DETERMINANTES DETERMINNTES MTEMÁTICS II TEM : DETERMINNTES Dtrnnts orn os trs S non trnnt l tr ur orn os t l nº rl rsultnt t Ejplos: s rprsnt S non trnnt l tr ur orn l nº rl rsultnt : t Est prsón s ono oo rl Srrus Ejros:

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

MÉTODO INDUCTIVO. Capítulo TRILCE

MÉTODO INDUCTIVO. Capítulo TRILCE pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar:

IES Mediterráneo de Málaga Solución Septiembre 2010 (Específico) Juan Carlos Alonso Gianonatti OPCIÓN A. 2, se pide determinar: IES Mdirráno d Málg Soluión Spimr (Espíio) Jun Crlos lonso Ginoni OPCIÓN E.- Dd l unión ( ), s pid drminr: ) El dominio, los punos d or on los js y ls sínos ( puno) ) Los inrvlos d rimino y drimino, y

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log

EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE DEPRTMENTO DE MTEMÁTIS lumno/ 4º ESO Nº TRIGONOMETRI 1º PRTE 84 Introuión Un rinto poligonl simpr lo pomos iviir n triángulos. omo por jmplo Lo pomos iviir n triángulos D E F G H I J K L M N Ñ O P Q R

Más detalles

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A

IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts

Más detalles

, donde a y b son números cualesquiera.

, donde a y b son números cualesquiera. Mtemátis Mtries José Mrí Mrtínez Meino (SM, www.profes.net) MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

Problemas de trigonometría

Problemas de trigonometría Prolems de trigonometrí Reliones trigonométris de un ángulo. Clulr ls rzones trigonométris de un ángulo α, que pertenee l primer udrnte, y siendo que 8 sin α. 7 sin α + os α 8 7 + os α os α 64 5 5 osα

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

Derivadas: Teoría y ejercicios DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: Drivds: Torí jrcicios Bcillrto DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán.

Más detalles

Estrategia FOVISSSTE en productos

Estrategia FOVISSSTE en productos Estt FOVISSSTE n poutos Inmnt l númo otomnto étos Hoy usos popos lmtos Más usos FOVISSSTE qun más lo nst Los usos los étoonls s pln p los smntos tos qu ms los nstn Búsqu nnmnto Mo l vvn lobos Los smntos

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes.

TEMA 4: MONOMIOS Y POLINOMIOS MONOMIOS Es el producto de un número por una o varias letras. Todo monomio consta de varias partes. TEM : MONOMIOS Y OLINOMIOS MONOMIOS Es l prouto un númro por un o vris ltrs. Too monomio onst vris prts. El ro un monomio s l númro ltrs qu tin s lul sumno los ponnts ls ltrs. El ro l monomio ntrior srá.

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

Ecuaciones de Poisson y Laplace

Ecuaciones de Poisson y Laplace Elctc y Mgntsmo / Elctostátc Dfncón Los conuctos n lctostátc. mpo un cg puntul. plccons l Ly Guss Intgls supposcón. Potncl lctostátco Dfncón Intptcón. Intgls supposcón. Ecucons Posson y Lplc. oncons Intfs.oncons

Más detalles

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos)

( ) = Junio Problema 3.- (Calificación máxima: 2 puntos) Modlo. Problm B.- (Cliiión máim puntos) L igur rprsnt l grái d un unión [ ; ] R. Contésts rzondmnt ls prgunts plntds. ) Cuál s l gno d d?. L intgrl dinid rprsnt l ár (on gno) nrrd por l urv, l j y ls rt

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

c. C=(c ij )=i-j [0] b. B=(b ij )=mín(i,j) [1] x x

c. C=(c ij )=i-j [0] b. B=(b ij )=mín(i,j) [1] x x MTEMÁTICS CCSS II TEM: DETERMINNTES DETERMINNTES Dtrmt suo or S om trmt l mtr ur or os t l º rl rsultt t Ejmplos: ) ) ) s rprst Dtrmt trr or S om trmt l mtr ur or l º rl rsultt : t Est prsó s oo omo rl

Más detalles

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma

a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 6 FUNCIONES LOGARÍTMICAS Un función ponncil d s tin l form f ( pr tod R > 0 y. Si l s s s llm ponncil nturl tin l form dond f (. L.- Con l informción qu cunt

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO TEÁTS PRUES DE ESO L UNVERSDD DE OVEDO.- rs Drnns.- ODELO DE PRUE Prouo rs: onpo. onons pr su rlón. Es posl qu pr os rs no urs pun sr?. S D E son rs rs urs ul nsón ls qu D E S pu surr qu D E? Por qué?.

Más detalles

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + )

I.E.S. Mediterráneo de Málaga Julio 2014 Juan Carlos Alonso Gianonatti OPCIÓN A ( ) ( ) ( ) ( ) ( ) 2 > 0 ( + ) ( + ) x > 0 ( - ) ( + ) ( + ) ( + ) I.E.S. Mdirráno d Málg Julio Jun Crlos lonso Ginoni OPCIÓN.- S l unción ) Clculr pr qu () ng un rmo n l puno (, ). (, punos) ) Clculr los rmos d l unción () cundo. ( puno) R R Crcin ) ln ln ln ) ( ) (

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

1) Resolver las siguientes ecuaciones:

1) Resolver las siguientes ecuaciones: Rsolvr las sunts uaons: a j k l,, Rsolvr las sunts nuaons: a RECONOCIMIENTO DE ECUACIONES LINEALES Una uaón s lnal s n lla no a proutos varals, las varals sólo uran lvaas a la prmra potna, no a varals

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

1. Representa sobre la recta los siguientes números racionales: 3. De las siguientes fracciones, indica cuáles son equivalentes. Razona tu respuesta:

1. Representa sobre la recta los siguientes números racionales: 3. De las siguientes fracciones, indica cuáles son equivalentes. Razona tu respuesta: Tm Númros ronls.. Rprsnt sor l rt los sunts númros ronls. Orn ls sunts rons mnor mor,,,,,,,,. D ls sunts rons, n uáls son quvlnts. Rzon tu rspust. Smpl ls sunts rons. Clul l rón nrtrz los sunts mls Dmls

Más detalles

III. Campo eléctrico y conductores

III. Campo eléctrico y conductores III. Cmpo léctrco y conuctors El prolm l potncl. Cpc léctrc Grl Cno Gómz, G 7/8 Dpto. Físc F Aplc III (U. Svll) Cmpos Elctromgnétcos tcos Ingnro Tlcomunccón Grl Cno G Gómz, 7/8 Plntmnto l prolm Dscrpcón

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

UNIVERSIDAD DE LA RIOJA JUNIO lim

UNIVERSIDAD DE LA RIOJA JUNIO lim IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios

Más detalles

Permutaciones. Fundamentos de Informática II. Permutaciones. Permutaciones. Permutaciones Notación de ciclos.

Permutaciones. Fundamentos de Informática II. Permutaciones. Permutaciones. Permutaciones Notación de ciclos. Funntos Inorát II Prosor Cuo Loos oos@n.uts. Unvrs Tén Fro Snt Mrí Funntos Inorát II ILI 153 Un prutón un onunto nto X, s un yón X X. S pu vr qu y n! prutons n un onunto n ntos Un prton α pu sr sunt: 1

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

= 0 ' = 0 ' Fracciones equivalentes (productos cruzados iguales): c. Fracción generatriz:

= 0 ' = 0 ' Fracciones equivalentes (productos cruzados iguales): c. Fracción generatriz: Dprtmto Mtmátis http://www.olgiovirggri.org/so/mt.htm Aritméti. ARITMÉTICA... Cojutos umérios. I Númros tros: úmros turls Númros riols: os juto o sus opustos (úmros imls prióios gtivos). Númros turls:

Más detalles

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx

Problemas y preguntas de tipo test. Integrales indefinidas. 1. Calcula las siguientes integrales: b) dx = dx Análisis Mmáio. Ingrls Prolms y prguns d ipo s Ingrls indfinids. Clul ls siguins ingrls: ) d ) d ) S sri l ingrndo omo s indi: d = d ) (sin ) d d os d) = d ln ) d = d 7 / 5 / / 7 / = d ) Ajusndo onsns:

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I Soluios los jriios prolms ustios Ui oliomios rios lgris Mtmátis plis ls Ciis Soils I EJECICIOS SUMA ESTA Y MULTILICACIÓN DE OLINOMIOS Dos los poliomios Dtrmi si stá ruios si so ompltos ii su gro Clul trmi

Más detalles

Función exponencial y logarítmica:

Función exponencial y logarítmica: MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)

Más detalles

PROBLEMAS DE ÁLGEBRA DE MATRICES

PROBLEMAS DE ÁLGEBRA DE MATRICES Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese

Más detalles

Matrices y determinantes

Matrices y determinantes Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)

Más detalles

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes. Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos

Más detalles

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos).

TRIGONOMETRÍA II = = ; procediendo igual que antes, pero con h : longitudes de los lados son proporcionales a los senos de los ángulos opuestos). TEMA: 1. TEOREMA DE LOS SENOS despejndo h de ms igulddes: En generl tendremos que resolver triángulos no retángulos, y, en ellos, no es posile plir ls definiiones de ls rzones trigonométris de sus ángulos.

Más detalles

ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA G D A ALELUYA, ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA, G D A D ALELUYA, ALELUUUYA SANTO

ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA G D A ALELUYA, ALELUYA. D A Bmi F#mi ALELUYA, ALELU ALELUYA, G D A D ALELUYA, ALELUUUYA SANTO NTR UNTS VS --0 1---3-3-3 1---5-5 1 3 0 --1---3---5-5-5---3---6-6---3---5---1 UNTS VS SINO NIÑO T R ON MIS VRSOS T I QU T MB //POO POO ON L TIMPO mi OLVINOM TI mi POR MINOS QU S LJN M PRI// HOY H VULTO

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

FACTORIZACIÓN. Capítulo TRILCE

FACTORIZACIÓN. Capítulo TRILCE TRILCE Cpítulo FACTORIZACIÓN Ftorizr un polinomio s somponrlo n os o más polinomios llmos ftors, tl moo qu, l multiplirlos, s otng l polinomio originl. Ejmplo : y ( y)( y) Ants ftorizr y ftorizo ftors

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ---------- IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..

Más detalles

Resolución de triángulos rectángulos

Resolución de triángulos rectángulos Resoluión de triángulos retángulos Ejeriio nº 1.- Uno de los tetos de un triángulo retángulo mide 4,8 m y el ángulo opuesto este teto mide 4. Hll l medid del resto de los ldos y de los ángulos del triángulo.

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

INTEGRAL INDEFINIDA. Derivación. Integración

INTEGRAL INDEFINIDA. Derivación. Integración Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES

Más detalles

Se desea saber como se ha de procesar el producto de forma que se minimicen los costos totales.

Se desea saber como se ha de procesar el producto de forma que se minimicen los costos totales. Emn d l Asgntur Optmzcón d Procsos 5º curso d Ingnrí Químc uno mpo: h. Prolm En un fctorí hy qu procsr un fluo ddo F m /h d un producto qu s otn d un tnqu d lmcnmnto clntándolo n cutro undds térmcs qu

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

Números Racionales 1. INTRODUCCIÓN

Números Racionales 1. INTRODUCCIÓN Númros Rionls Título: Númros Rionls Trgt: PROFESORES DE MATEMÁTICAS Asigntur: Mtmátis Autor: Emilin Oliván Clz Lini n Mtmátis Prosor Mtmátis n Euión Sunri 1 INTRODUCCIÓN En l ominio intgri (DI) los númros

Más detalles

1 - Resolver los siguientes determinantes usando propiedades 1/10

1 - Resolver los siguientes determinantes usando propiedades 1/10 - Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores

Más detalles

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V

Calcula el volumen del cono circular recto más grande que está inscrito en una esfera de radio R. Por lo tanto el volumen del cono es: π V Apllidos Nombr: N.P. : Ejrcicio. (,5 puntos) Calcula l volumn dl cono circular rcto más grand qu stá inscrito n una sra d radio. D acurdo con la igura adjunta, s aprcia qu l radio d la bas dl cono s: La

Más detalles

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA

2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / / / / / / C. +B B.

Más detalles

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n)

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n) TRILCE Cpítulo 7 PROGRESIONES Progrsió ritméti (PA) Es qull susió or l qu térmio, xpto l primro, s igul l térmio trior umto u vlor ostt llmo rzó l progrsió Rprstió u PA r r ( )r Númro térmios () r 4 Térmios

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión

DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno

Más detalles

INTEGRALES LECCIÓN 13

INTEGRALES LECCIÓN 13 INTEGRALES LECCIÓN 13 Índie: Cálulo de áres. Ejemplos. Prolems. 1.- Cálulo de áres Si y son dos uniones ontinus en el intervlo [,] tles que, entones el áre de l reión del plno limitd por sus ráis y ls

Más detalles

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales:

3,2. 2) Determina la ecuación ordinaria y el resto de los elementos de las elipses con las siguientes ecuaciones generales: REPASO EXAMEN SEMESTRAL MATEMATICAS GRUPO 0 TEMA: ELIPSE ) Dtrmin l uión orinri, uión gnrl y l rsto los lmntos ls lipss on los siguints lmntos: *Horizontl C, 7 V ', B, ) Dtrmin l uión orinri y l rsto los

Más detalles

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y

Si v y w son ambos vectores, entonces el resultado de las operaciones v + w y v w son. Dichas operaciones cumplen con propiedades conmutativas y Crso nzdo d Fnómnos d Trnsport Dr. Jn Cros Frro Gonzáz Dprtmnto d Ingnrí Qímc Insttto Tcnoógco d Cy Oprcons con Vctors Adcón y sbstrccón d ctors S y w son mbos ctors, ntoncs rstdo d s oprcons w y w son

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a

CANTABRIA / JUNIO 01. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1a CNTRI / JUNIO. LOGSE / MTEMÁTICS PLICDS LS CIENCIS SOCILES / ÁLGER / LOQUE Un imporor e gloos los impor e os olores: e olor nrnj (N) e olor fres (F). Toos ellos se envsn en pquees e, unies, que vene los

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:

Más detalles

UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clave de Incorporación UNAM 1183 Ciclo GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clave 1400

UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clave de Incorporación UNAM 1183 Ciclo GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clave 1400 UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clv Incorporción UNAM 118 Ciclo 01 01 GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clv 100 Eloró: Joclyn Villsñor Murillo y Enriqu Lgun Roríguz OBJETIVO DE LA

Más detalles

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti

BLOQUE A. IES Mediterráneo de Málaga Solución Junio 2011 Juan Carlos Alonso Gianonatti IES Mdirráno d Málg Solución Junio Jun Crlos lonso Ginoni BLOQUE CUESTIÓN..- Dmusr sin uilir l rgl d Srrus sin dsrrollr dircmn por un il /o column qu.indiqu n cd pso qu propidd (o propidds) d los drminns

Más detalles

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1

Tomamos el menor formado por las dos primeras columnas y la primera y tercera filas. 1 1 Blu I. Álg Mtmátis II Autvluión Págin D l mti M m m : ) Hll ls vls m u ls vts il M sn linlmnt innints. ) Estui l ng M sgún ls vls m. ) P m, lul l invs M. ) P u ls vts il M sn linlmnt innints, n (M ) tin

Más detalles

26 EJERCICIOS de LOGARITMOS

26 EJERCICIOS de LOGARITMOS 6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.

Más detalles

CALCULO DE CENTROS DE MASA: PLACAS

CALCULO DE CENTROS DE MASA: PLACAS CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

TEMA 3 DETERMINANTES. Cálculo de determinantes. EJERCICIO 1 : Calcular los siguientes determinantes: a b c a b c.

TEMA 3 DETERMINANTES. Cálculo de determinantes. EJERCICIO 1 : Calcular los siguientes determinantes: a b c a b c. Ejeriios volunrios Te Deerinnes y resoluión e sises Meáis CCSSII º Bh. TEMA DETERMINANTES Cálulo e eerinnes EJERCICIO : Clulr los siguienes eerinnes: ) ) ) ) e) f) g) h) i) j) ) l) ) n) ñ) o) p) q) r)

Más detalles

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades.

INTEGRALES 5.1 Primitiva de una función. Integral indefinida. Propiedades. INTEGRALES 5. Primitiva d una unción. Intgral indinida. Propidads. 5. Intgración d uncions racionals. 5. Intgración por parts. 5. Intgración por cambio d variabls. 5. Primitiva d una unción. Intgral indinida.

Más detalles

( ) RESOLUCIÓN M x m = P. RESOLUCIÓN Sea N uno de dichos números: N= 31q + 3q N= 34q Además, sabemos: resto < divisor RESOLUCIÓN RESOLUCIÓN.

( ) RESOLUCIÓN M x m = P. RESOLUCIÓN Sea N uno de dichos números: N= 31q + 3q N= 34q Además, sabemos: resto < divisor RESOLUCIÓN RESOLUCIÓN. SEMANA 6 MULTIPLICACIÓN-DIVISIÓN 1. Si al multiplican y multiplicar s l isminuy n y 4 rspctivamnt, l pruct isminuy n 198. Hall la suma ls factrs icha multiplicación si su ifrncia s 8. A) 6 B) 65 C) 67

Más detalles

PUEBLO TRADICIONAL PAMPA DE CAMARONES B LA PLANICIE E E EL DORADO L K SACHACA K E URBANIZACION EL PALACIO I ETAPA D K A D A CAMPO VERDE E B PARQUE

PUEBLO TRADICIONAL PAMPA DE CAMARONES B LA PLANICIE E E EL DORADO L K SACHACA K E URBANIZACION EL PALACIO I ETAPA D K A D A CAMPO VERDE E B PARQUE J URS OPO U POT OVR QUNT MONTO S ONS RSN TUYN QUNT MONTO UR OS MNTS 0 N 09 00 0 0 07 0 0 PUO TRON TUYN STNQU YNUR 0 0 00 RRO OORO PRQU 0 K UR. TUYN PRQU 0 PRQU 0 ' ' UR. UN PSTOR J QUNT TUYN UR. TUYN N..

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

LICEO MARTA DONOSO ESPEJO EJERCICIOS DE POTENCIAS APLICANDO DEFINICION

LICEO MARTA DONOSO ESPEJO EJERCICIOS DE POTENCIAS APLICANDO DEFINICION LIO MT ONOSO SJO JIIOS OTNIS LINO FINIION MULTILIIÓN Y IVISIÓN 1. Simplific: ) 5 5 e) 4 6 4 7 i) 6 7 : 6 b) 6 6 4 f) 9 8 9 6 j) 4 6 c) 5 7 g) 5 7 : 5 d) 5 7 h) 5 4 : 5. Simplific: ) 9 6 9 e) 5 0 i) 5 5

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE CASTILLA Y LEÓN JUNIO (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES STER BDJOZ RUEB DE ESO (OGSE) UNIVERSIDD DE STI Y EÓN JUNIO - (RESUETOS por ntonio nguino) TEÁTIS II Tipo áio: hors inutos ritrios gnrls vluión l pru: S osrvrán funntlnt los siguints sptos: orrt utiliión

Más detalles

IES Real Instituto de Jovellanos de Gijón 1º de Bachillerato Matemáticas I (Modalidad de Ciencias y Tecnología) CONTENIDOS PENDIENTES DE SUPERAR

IES Real Instituto de Jovellanos de Gijón 1º de Bachillerato Matemáticas I (Modalidad de Ciencias y Tecnología) CONTENIDOS PENDIENTES DE SUPERAR IES Rl Instituto Jovllnos d Gijón - Dprtmnto d Mtmátis - Curso 0/0 IES Rl Instituto d Jovllnos d Gijón º d Bhillrto Mtmátis I Modlidd d Cinis y Tnologí CONTENIDOS PENDIENTES DE SUPERAR Contnidos Comuns

Más detalles

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p

3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir

Más detalles