CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6"

Transcripción

1 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino oloársl mnr u y rmonios n spios inrílmnt pquños. Esto h sio posil gris qu l sr humno s pz rlizr y isriminr forms gométris y rlizr on lls isños ivrsos pr plirlos n l friión máquins y prtos mplos n los ifrnts mpos l qu hr otiino. El prsnt pítulo stá orinto n s sntio; l srrollo ls hilis isriminión porntul visul y rpiz mntl mint l intifiión y l onto ls ivrss forms ls figurs gométris. I. CONTEO DE SEGMENTOS. Cuántos sgmntos hy n l figur mostr? T R I L C E Rsoluión : Prormos por inuión sor l númro "spios". T R = ; on spios T R I + = ; on spios T R I L + + = ; on spios T R I L C E ; on 5 spios En gnrl : Pr "n" spios : # sgmntos. Cuántos sgmntos hy n l siguint figur? : n(n ) E D C B F G H I A O Ñ N M L K J 9

2 Rz. Mtmátio. Cuántos sgmntos hy n l figur? II. CONTEO DE TRIÁNGULOS. Cuántos triángulos hy n ls figurs mostrs? I II III IV 5. Inir l númro triángulos n l figur : # triángulos : 6. Cuántos triángulos hy n ls figurs mostrs? ) # triángulos : ) # triángulos : 9 0 III. CONTEO DE CUADRADOS 7. Cuántos uros hy n un ls figurs mostrs? ) # uros : 0

3 TRILCE ) # uros : 5 6 IV. CONTEO DE CUADRILÁTEROS 8. Cuántos urilátros hy n un ls figurs mostrs? ) # urilátros n l ltur # urilátros n l s Totl urilátros : ) En l ltur : En l s : Totl urilátros : V. CONTEO DE CUBOS Cso : Cuno l sólio s un uo formo por uos simpls : n n n(n )... + n n En gnrl : Númro totl uos n(n )

4 Rz. Mtmátio Cso : Cuno l sólio s un prllpípo formo por uos simpls : m n p Númro totl uos m n p (m )(n )(p ) (m )(n )(p ) Así susivmnt ontinuno hst qu uno los ftors s. Ejmplo : Cuántos uos hy n l figur, sino qu n l onstruión s hn mplo loqus úios (uos simpls o unitrios) omo l uo somro. Númro totl uos = VI. CONTEO DE PARALELEPÍPEDOS L figur mustr un prllpípo qu pu str formo y s por uos simpls o por prllpípos simpls. m n p Númro Prllpípos m(m ) n(n ) p(p )

5 TRILCE 0. Cuántos sgmntos hy n l figur mostr? EJERCICIOS PROPUESTOS 06. Cuántos urilátros qu por lo mnos tng un n su intrior hy n l figur? ) 65 ) 60 ) 70 ) 7 ) Cuántos triángulos hy n l figur junt? ) 9 ) 8 ) 8 ) 7 ) Cuántos sgmntos hy n l figur? ) 6 ) 9 ) 8 ) 50 ) 5 0. Cuántos uros hy n totl n l figur? ) 79 ) 58 ) 09 ) ) Cuántos triángulos tinn por lo mnos un n su intrior? ) ) ) ) 5 ) 6 0. Cuántos sgmntos hy n l figur? ) 5 ) 5 ) 5 ) 55 ) 56 ) 7 ) 7 ) 7 ) 75 ) Cuántos triángulos hy n totl? 09. Cuántos urilátros hy n l figur? 5 ) 05 ) 06 ) 0 ) 00 ) 95 ) 59 ) 65 ) 6 ) 60 ) 6

6 Rz. Mtmátio 0. Cuántos triángulos hy n l figur mostr? ) 9 ) 0 ) ) ) 8 5. Cuántos urilátros hy n l figur? ) 66 ) 67 ) 68 ) 69 ) 70. Cuántos urilátros hy n l figur? ) 9 ) 0 ) ) ) 6. Cuántos triángulos hy n l figur? ) 6 ) 7 ) 5 ) 8 ) 9. Cuánts ltrs "U" s pun ontr omo máximo n l figur mostr? ) 56 ) ) 6 ) 8 ) Cuántos triángulos tinn n su intrior por lo mnos un striso? ) ) ) ) 5 ) 6. Cuántos sgmntos hy n l figur mostr? ) 5 ) 6 ) ) 9 ) 9 8. Cuántos stors irulrs s pu ontr n l figur? ) 80 ) 68 ) 7 ) 56 ) 78. Cuántos triángulos hy n l figur mostr? ) 0 ) 5 ) 60 ) 70 ) 0 9. Cuántos sgmntos hy n l siguint figur? ) ) ) ) 90 ) 5

7 TRILCE 0. Cuántos triángulos hy n l figur, qu tngn por lo mnos un ltr n su intrior? 5. Cuántos hxágonos hy n l figur? ) 7 ) 6 ) 8 ) 9 ) 0. Hllr l númro totl urilátros. ) 570 ) 600 ) 550 ) 50 ) Cuántos ángulos guos hy n l figur? 60 5 ) 95 ) 0 ) 05 ) 00 ) 0 6. Trzr ls igonls qu sn posils tl qu no ortn ningun rt horizontl iniqu uántos triángulos xistn ) 78 ) 85 ) 88 ) 5 ) Clulr l númro totl puntos ort n l figur mostr. ) 890 ) 900 ) 90 ) 870 ) 880. Cuántos triángulos hy n l figur? ) 9 ) 88 ) 96 ) 85 ) 90. Cuántos triángulos hy n l figur? ) 68 ) 76 ) 9 ) 9 ) 5 8. Dtrminr l máximo númro triángulos n l figur mostr ) 850 ) 900 ) 860 ) 87 ) 870 ) 550 ) 0 ) 75 ) 0 ) 0 5

8 Rz. Mtmátio 9. Cuántos urilátros hy n l siguint gráfio? ) 89 ) 80 ) 8 ) 8 ) 8. Cuántos sgmntos hy n l figur mostr? 9 0 ) 50 ) ) 0 ) ) 7 0. Clulr l ifrni ntr l númro totl hxágonos y l númro totl pntágonos xistnts n l figur junt ) 80 ) 95 ) 500 ) 85 ) 90. Cuántos triángulos hy n l siguint gráfio? ) 00 ) 00 ) 00 ) 000 ) Cuántos triángulos qu por lo mnos tngn un n su intrior hy n l figur? ) 8 ) 9 ) ) ) 5. Cuántos triángulos hy n l figur mostr? 00 ) 67 ) 68 ) 65 ) 69 ) Cuántos urilátros hy n l figur junt? ) ) 0 ) 00 ) 0 ) 0. Cuántos urilátros más qu triángulos hy n l figur mostr? ) 50 ) 5 ) 5 ) 56 )

9 TRILCE 7. Cuántos triángulos hy n l figur? ) 8 ) 8 ) 8 ) 85 ) 86. Cuántos smiírulos hy n l figur? ("O" : ntro) 0 O ) 0 ) 85 ) 87 ) 9 ) 9 8. En l siguint gráfio, hllr l ifrni ntr l númro urilátros y l númro triángulos. ) ) ) 5 ) 6 ) 7. Cuántos puntos ort hy n l figur? ) 89 ) 9 ) 90 ) 0 ) 0 9. Cuál s l númro totl uros qu pun formrs tl qu tngn solmnt omo vértis los puntos os n l figur? (Los puntos stán igulmnt spios) ) 5 ) 6 ) 7 ) 8 ) 0 0. Cuántos uros hy n l figur? ) 5 ) 0 ) 8 ) ). En l siguint figur, hllr l máximo númro sgmntos. (n) n ) n n 5 ) n n 6 ) n n ) n 5n ) n n 6 5. Cuántos ros hy n l figur junt? 9 0 ) 7 ) 68 ) 6 ) 70 ) 68. Cuántos stors irulrs hy n l figur? ("O" s ntro los írulos) ) 50 ) 560 ) 570 ) 575 ) Clulr l númro totl puntos ort n l figur mostr. O 9 0 ) 00 ) 89 ) 79 ) 95 ) 98 7

10 Rz. Mtmátio 7. Hllr l númro totl ángulos guos qu s nuntrn sor los los l triángulo rtángulo. 0 0 ) 95 ) 96 ) 97 ) 98 ) Si AB s iámtro, uánts smiorons irulrs s pun ortr? ) 6 ) 6 ) 80 ) 0 ) Cuántos sgmntos hy n totl n l siguint figur? R A B ) 90 ) 0 ) 00 ) 80 ) Cuántos ángulos guos hy n l figur junt? ) 85 ) 76 ) 98 ) 88 ) Cuántos triángulos hy n l figur mostr? 0 9 ) 60 ) 6 ) 5 ) 8 ) Cuántos uros hy n totl? ) 65 ) 0 ) 8 ) 5 ) 5. Cuántos urilátros hy n l figur mostr? ) 50 ) 5 ) 5 ) 8 ) 9 ) 5 ) 5 ) 5 ) 7 ) 8 5. Hllr l máximo númro puntos intrsión. En l figur hy 0 irunfrnis y utro rts prlls. 55. Cuántos sgmntos hy n l figur? n- n- n 8

11 TRILCE ) n(n ) ) n(n ) 59. Cuántos urilátros hy n l figur mostr? ) n(n ) ) n(n+) ) n n En l figur, si s pint too l sólio. Cuántos uos tinn rs pints? ) 60 ) 5 ) 0 ) 50 ) 55 ) ) ) ) 5 ) Cuántos urilátros (onvxos) s pun ontr n l siguint figur? 60. Cuántos ryos más omprnios ntr AOB s tinn qu trzr, pr qu n l figur hy n totl, 8 ángulos guos? A O B ) ) ) ) 5 ) 6 ) 50 ) 50 ) 05 ) 50 ) Hllr l totl igonls qu s pu trzr n los urilátros l siguint figur : ) 0 ) 7 ) 60 ) 6 ) 98 9

12 Rz. Mtmátio 0 Clvs Clvs

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces :

JUEGOS DE INGENIO. Capítulo TRILCE. A. TRANSMISIONES H : Horario ; AH : Antihorario AH H. Como A es más grande que B, Entonces : TRILCE Cpítulo 2 JUEGOS DE INGENIO. TRNSMISIONES : orrio ; : ntihorrio Como s más grn qu, Entons : mnos vults qu mos rorrn l mism nti ints Ls rus uis n un mismo j girn l mism vloi y n l mismo sntio Ejmplo

Más detalles

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro.

En un grafo se puede recorrer la información de diferentes maneras para llegar de un punto a otro. CAMINOS Y CIRCUITOS En un grfo s pu rorrr l informión ifrnts mnrs pr llgr un punto otro. Cmino Ciruito (Cilo) Ciruito simpl longitu n Cmino simpl longitu n ulquir suni noos n l qu pr son ynts. Es un mino

Más detalles

FACTORIZACIÓN. Capítulo TRILCE

FACTORIZACIÓN. Capítulo TRILCE TRILCE Cpítulo FACTORIZACIÓN Ftorizr un polinomio s somponrlo n os o más polinomios llmos ftors, tl moo qu, l multiplirlos, s otng l polinomio originl. Ejmplo : y ( y)( y) Ants ftorizr y ftorizo ftors

Más detalles

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO

DESIGUALDADES E INECUACIONES VALOR ABSOLUTO TRILCE Cpítulo DESIGUALDADES E INECUACIONES VALOR ABSOLUTO DESIGUALDADES Torms l Dsigul Dfiniión S nomin sigul l omprión qu s stl ntr os prsions rls, mint los signos rlión >,

Más detalles

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen.

Capítulo 1. Definición : Es la figura geométrica determinada por la reunión de dos rayos no alineados que tienen el mismo origen. pítulo 1 ÁNGULS finiión : Es l figur gométri trmin por l runión os ryos no linos qu tinn l mismo orign. Elmntos 1. Vérti :. Los : y Notión : * Ángulo : ), Ô * i l ángulo : m ) =. gión Intrior un ángulo

Más detalles

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1

Reducción de. Estados equivalentes. Reducción de estados equivalentes. Ejemplo. Tabla de estados Mario Medina C. 1 Ruión stos quivlnts Mrio Min. mriomin@u.l Ruión stos quivlnts Proso isño ntrior no sgur l númro mínimo stos Ruión númro stos Ru l númro lip-lops Ru l lógi ominionl Asignión vrils sto tmién pu ruir lógi

Más detalles

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia

Desarrollado por Ricardo Soto De Giorgis. Desarrollado por Ricardo Soto De Giorgis Representación de Grafos Matriz de Adyacencia . Grfos Un grfo s un onjunto puntos y un onjunto líns llms rists o ros, un ls uls un un punto llmo noo o vérti on otro. S rprsntn l onjunto vértis un grfo o G por V G V G = {,,,, El onjunto ros por A G

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO TRILCE Cpítulo 0 ECUACIONES DE PRIMER Y SEGUNDO GRADO Euions Son iguls oniionls, n ls qu l mnos istir un ltr llm inógnit : Ejmplo : - = 7 + Es un uión inógnit "". Soluión un uión Es l vlor o vlors l inógnit

Más detalles

UNIDAD. Polígonos. Se dedica este tema al conocimiento de los polígonos y al estudio de sus construcciones, y se inicia haciendo tres consideraciones:

UNIDAD. Polígonos. Se dedica este tema al conocimiento de los polígonos y al estudio de sus construcciones, y se inicia haciendo tres consideraciones: UNI Polígonos ÍNIE E ONTENIOS 1. ONEPTOS ÁSIOS SORE TRIÁNGULOS.......................................... 58 2. ONSTRUIONES ELEMENTLES E TRIÁNGULOS................................... 59 2.1. ritrios igul

Más detalles

Minimización por el método de QUINE-McCLUSKEY

Minimización por el método de QUINE-McCLUSKEY Minimizión por l métoo QUINE-MCLUSKEY S tinn os forms srrollr l métoo Quin-MClusky: on un ominión inri y un ominión iml. Ams forms s srrollrán mint os jmplos, rsptivmnt. Cominión BINARIA. S l funión: F(A,

Más detalles

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1

DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 12.1 Ejriios rlizos y prouios por Alro Aguilr Gutiérrz. Sions plns.. Diujr ls prts vists y oults ls sións qu proun los plnos P sor ls supriis s. P P g g P P Ejriios rlizos y prouios por Alro Aguilr Gutiérrz.

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

TRANSFORMADORES EN PARALELO

TRANSFORMADORES EN PARALELO TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS

UNIDAD: GEOMETRÍA POLÍGONOS CUADRILÁTEROS u r s o : Mtemátic Mteril N 13 GUÍ TÓRIO PRÁTI Nº 11 UNI: GOMTRÍ POLÍGONOS URILÁTROS POLÍGONOS FINIIÓN: Un polígono es un figur pln, cerrd, limitd por trzos llmdos ldos y que se intersectn sólo en sus

Más detalles

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A.

1º ITIS Matemática discreta Relación 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. ordenado por divisibilidad. Dibujar el diagrama de orden de A. º ITIS Mtmáti isrt Rlión 5 RETÍCULOS Y ÁLGEBRAS DE BOOLE. S A = {,2,3,4,6,8,9,2,8,24} orno por ivisiili. Diujr l irm orn A. 2. S X {,, } =. Diujr l irm orn (inlusión) ( X ). 3. S S = { 2,4,6,2,2} orno

Más detalles

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos

Algebra I 1er. Cuatrimestre 2013 Práctica 1 - Conjuntos lr I 1r. utrimstr 013 Práti 1 - onjuntos Si s un suonjunto un onjunto rrnil V, notrmos por l omplmnto rspto V. Por onvnión, si x s un númro rl positivo, x not l únio númro rl positivo uyo uro s x. 1. Do

Más detalles

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias

Perdidas Secundarias. Operaciones Unitarias Mecánica de Fluidos. Método de los Coeficientes de Perdida de Carga. Perdidas por Fricción Secundarias Oprions Unitris Máni d Fluidos Prdids por Friión Sundris EIQ 303 Primr Smstr 0 Prosor: Luis V A Ls prdids por riión (prdids d r) s pudn lsiir n dos tipos: ) ) Prdids Sundris Prdids Primris. Ls prdids d

Más detalles

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES

MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 6. RELACIONES MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO. RELACIONES DIAGRAMAS DE HASSE. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Digrms Hss Un rlión R:A B s orn pril o prilmnt orn si

Más detalles

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3

Una ecuación tiene dos miembros 3x 2 + 5x = 3 (x-3) + 3 TEMA : ECUACIONES CONCEPTO DE ECUACIÓN Un uión s un igul lgri qu solo s umpl pr irtos vlors trminos. A stos vlors qu hn irt l uión s ls llm soluions. 0 tin omo soluión X.. Un igul lgri qu s váli pr ulquir

Más detalles

Aquauno Video 2 Plus

Aquauno Video 2 Plus Cont l progrmor l grifo. Aquuno Vio 2 Plus Pág. 1 Guí uso 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 Cli! Pr Aquuno Vio 2 (ó.): 8454-8428 Pr Aquuno Vio 2 Plus (ó.): 8412 Ar l móulo progrmión, prsionno

Más detalles

9 Proporcionalidad geométrica

9 Proporcionalidad geométrica 82485 _ 030-0368.qxd 12//07 15:37 Págin 343 Proporionlidd geométri INTRODUIÓN El estudio de l proporionlidd geométri y l semejnz de figurs es lgo omplejo pr los lumnos de este nivel edutivo. omenzmos l

Más detalles

SECOS EN BAJA TENSIÓN PARA USO GENERAL

SECOS EN BAJA TENSIÓN PARA USO GENERAL SEOS EN J TENSIÓN PR USO GENERL TRNSMGNE s un mprs i l lorión Trnsformors pr l inustri ltróni: trnsformors uio, pulso y ontrol, Trnsformors sos j tnsión, lstos pr iluminión y utotrnsformors pr quipos protión

Más detalles

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n)

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n) TRILCE Cpítulo 7 PROGRESIONES Progrsió ritméti (PA) Es qull susió or l qu térmio, xpto l primro, s igul l térmio trior umto u vlor ostt llmo rzó l progrsió Rprstió u PA r r ( )r Númro térmios () r 4 Térmios

Más detalles

Razones y Proporciones

Razones y Proporciones Rzones y Proporiones 01. L rzón geométri e os números es 1/ y su rzón ritméti es 7. Hllr el myor. ) 117 ) 11 ) 119 ) 118 e) 110 0. L rzón geométri entre l sum e números y su ifereni es :. Hllr l rzón geométri

Más detalles

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2

3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2 MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SOLUIONES LOS EJERIIOS DE L UNIDD Pág. 1 Págin 187 PRTI Rzones trigonométrics de un ángulo 1 Hll ls rzones trigonométrics de los ángulos y en cd uno de los siguientes triángulos rectángulos. Previmente,

Más detalles

III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA

III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA C III CONCURSO REGIONAL DE COMPRENSIÓN LECTORA Y MATEMÁTICA - 2014 M POR LOS NIÑOS Y NIÑAS DE AMAZONAS MATEMÁTICA INSTITUCIÓN EDUCATIVA NOMBRES Y APELLIDOS INDICACIONES - Lee d pregunt on muh tenión. -

Más detalles

Triángulos y generalidades

Triángulos y generalidades Geometrí Pln y Trigonometrí (ldor) Septiemre Diiemre 2008 INOE 5/1 pítulo 5. Ejeriios Resueltos (pp. 62 63) (1) Los ldos de un triángulo miden 6 m, 7 m y 9 m. onstruir el triángulo y lulr su perímetro

Más detalles

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador

Programación II. Presentación Curso , grupo 216. Programación II. Programación II. Programación II. Iván Cantador Prsntión Curso 0-07, grupo Iván Cntor Dspho: B.8 E-mil: ivn.ntor@um.s Págin w: http://www.ps.um.s/~ntor - trnsprnis ls Mool: https://mool.um.s/ours/viw.php?i=8 - guí ont, punts, jriios y prolms, prátis

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO

OBJETIVO 1 CalCUlaR la RazÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: RECTA, SEMIRRECTA Y SEGMENTO OJETIVO 1 lulr l RzÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA:

344 MATEMÁTICAS 2. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. OBJETIVO 1 LA RAZÓN DE DOS SEGMENTOS NOMBRE: CURSO: FECHA: LULR OJETIVO 1 L RZÓN DE DOS SEGMENTOS NOMRE: URSO: EH: RET, SEMIRRET Y SEGMENTO Un ret es un líne ontinu formd por infinitos puntos, que no tiene ni prinipio ni finl. Dos puntos definen un ret. Por un

Más detalles

Clasifica los siguientes polígonos. a) b) c) d)

Clasifica los siguientes polígonos. a) b) c) d) 1 FIGURS PLNS EJERIIS PR ENTRENRSE Polígonos 1.44 lsific los siguientes polígonos. ) b) c) d) ) Pentágono irregulr cóncvo. b) Heptágono regulr convexo. c) ctógono irregulr cóncvo. d) Hexágono irregulr

Más detalles

1. Definición de Semejanza. Escalas

1. Definición de Semejanza. Escalas Tem 5. Semejnz Tem 5. Semejnz 1. Definiión de Semejnz. Esls. Teorem de Tles 3. Semejnz de Triángulos. riterios 4. riterios de Semejnz en triángulos retángulos 5. Teorems en triángulos retángulos 6. Relión

Más detalles

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA

CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA CUESTIONARIO DIAGNÓSTICO DE SITUACIÓN DEL DESARROLLO DE COMPETENCIAS EN LA RED/REA El srrll mptnis prv un mbi psitiv rimint nstnt trnsfrmins qu mprn ls prsns, ls lírs, ls rgnizins y ls sis. Ls intgrnts

Más detalles

PLANTEO DE ECUACIONES

PLANTEO DE ECUACIONES TRILCE Cpítulo 5 PLANTEO DE ECUACIONES Alumno U. sr qu ls mtmátis s un lnguj, por lo tnto pu sr srito y sor too lío. El ojtivo st pítulo s nsñrl U. ómo trnsformr nustro lnguj omún l lnguj mtmátio. Y sí

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

CONFIGURACIÓN ELECTRÓNICA

CONFIGURACIÓN ELECTRÓNICA Cpítulo CONFIGURACIÓN ELECTRÓNICA CONFIGURACIÓN ELECTRÓNICA L form omo los ltrons s istriuyn n los ifrnts oritls un átomo s su onfigurión ltróni. L onfigurión ltróni más stl, o sl, un átomo s qull n l

Más detalles

Enigmas 1: Productos envasados que se venden en los comercios

Enigmas 1: Productos envasados que se venden en los comercios Trr Cilo Primri Enigms 1: Proutos nvsos qu s vnn n los omrios Es un mtril vntjoso pr lrgr proutos qu s tinn qu protgr los ryos solrs Es un mtril qu onsrv muy in los limntos y s fáil oloión y lmnminto por

Más detalles

BLOQUE III Geometría

BLOQUE III Geometría LOQUE III Geometrí 7. Semejnz y trigonometrí 8. Resolución de triángulos rectángulos 9. Geometrí nlític 7 Semejnz y trigonometrí 1. Teorem de Thles Si un person que mide 1,70 m proyect un sombr de 3,40

Más detalles

FIGURAS PLANAS EJERCICIOS RESUELTOS - 3º E.S.O. 1 Calcula el valor de x en estos polígonos: 2 Calcula x en cada caso: a) b) a) b) c) 8 m.

FIGURAS PLANAS EJERCICIOS RESUELTOS - 3º E.S.O. 1 Calcula el valor de x en estos polígonos: 2 Calcula x en cada caso: a) b) a) b) c) 8 m. EJERIIOS RESUELTOS - 3º E.S.O. FIGURS PLNS 1 alcula el valor de en estos polígonos: a) b) 8 cm c) d) 10 dm 15 cm dm 8 m a) 6 3 7 5, m 3 m b) 8 + 15 89 17 cm c) 1 dm 5 dm 1 +5 169 13 dm d) 8 +8 18 11,3

Más detalles

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN

RESOLUCIÓN RESOLUCIÓN. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann K 11 aann difrncia s cro; ntoncs s múltiplo d 11

Más detalles

( ) RESOLUCIÓN M x m = P. RESOLUCIÓN Sea N uno de dichos números: N= 31q + 3q N= 34q Además, sabemos: resto < divisor RESOLUCIÓN RESOLUCIÓN.

( ) RESOLUCIÓN M x m = P. RESOLUCIÓN Sea N uno de dichos números: N= 31q + 3q N= 34q Además, sabemos: resto < divisor RESOLUCIÓN RESOLUCIÓN. SEMANA 6 MULTIPLICACIÓN-DIVISIÓN 1. Si al multiplican y multiplicar s l isminuy n y 4 rspctivamnt, l pruct isminuy n 198. Hall la suma ls factrs icha multiplicación si su ifrncia s 8. A) 6 B) 65 C) 67

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGIN 13 EJERCICIOS Operciones con ángulos y tiempos 1 Efectú ls siguientes operciones: ) 7 31' 15" 43 4' 57" b) 163 15' 43" 96 37' 51" c) (37 4' 19") 4 d) (143 11' 56") : 11 ) 7 31' 15" 43 4' 57"

Más detalles

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua

Hidrología. Ciencia que estudia las propiedades, distribución y circulación del agua 3/1/01 Hidrologí Cinci qu studi ls roidds, distribución y circulción dl gu Smn 4 - Procsos d Gnrción d l Prciitción. - Vor d Agu n l Atmósfr. - Agu rciitbl. Mcnismos d Elción d ls Mss d Air Concto gnrl

Más detalles

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre

Cálculo II (0252) TEMA 3 INTEGRAL IMPROPIA. Semestre Cálulo II (5) Smstr - TEMA 3 INTEGRAL IMPROPIA Smstr - Junio Dprtmnto d Mtmáti Aplid U.C.V. F.I.U.C.V. CÁLCULO II (5) Ls nots prsntds ontinuión tinn omo únio fin, l d prstr poyo l studint y filitr su ntndiminto

Más detalles

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES

INTEGRAL DEFINIDA ÁREAS Y VOLUMENES Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid

Más detalles

UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clave de Incorporación UNAM 1183 Ciclo GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clave 1400

UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clave de Incorporación UNAM 1183 Ciclo GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clave 1400 UNIVERSIDAD LATINOAMERICANA PREPARATORIA Clv Incorporción UNAM 118 Ciclo 01 01 GUÍA PARA EXAMEN EXTRAORDINARIO MATEMÁTICAS IV Clv 100 Eloró: Joclyn Villsñor Murillo y Enriqu Lgun Roríguz OBJETIVO DE LA

Más detalles

MATEMATICA Parte III para 1 Año

MATEMATICA Parte III para 1 Año Crpet e Trjos Prátios e MATEMATICA Prte III pr 1 Año APELLIDO Y NOMBRE DEL ALUMNO:... PROFESOR:... DIVISIÓN:... Crpet e Trjos Prátios e Mtemáti Prte III 1º ño Págin 1 POLÍGONOS TRIÁNGULOS 3) En el triángulo

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1

Más detalles

206 MÉTODOS NUMÉRICOS

206 MÉTODOS NUMÉRICOS 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt

Más detalles

( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K.

( ) 2 2 ( ) RESOLUCIÓN * RESOLUCIÓN 2. RESOLUCIÓN Sea N el número. RESOLUCIÓN Raíz cúbica sabemos: SEMANA 12 POTENCIACIÓN Y RADICACIÓN N K. SEMANA 1 POTENCIACIÓN Y RADICACIÓN 1. Si l numral aann s un cuadrado prfcto; Calcul la suma d cifras d su raíz cuadrada? A) 15 B) 1 C) 19 D) 1 E) 1 aann = K 11 aann difrncia s cro; ntoncs s múltiplo d

Más detalles

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD

1 sen. f Solución: 3 ; 1. sen. 2 sen. f Solución: ; Solución: CONTINUIDAD Y DERIVABILIDAD Frnndo Frnádz-Rmos Mrín º.- Clcul l continuidd d ls guints uncions. ) 8 7 ) 8 6 c) d) sn ) º.- Dtrminr l vlor d los prámtros d ls uncions pr qu sn continus n todo ) sn Solución: ) Solución: c) cos sn sn

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un

Más detalles

CARRETONES y transbordadores

CARRETONES y transbordadores CARRETONES y trnsorors irionl trí sor ríls trí sor ríls orrint Crrtons irionls trí, sor ríls trí, sor ríls létrios. 2 Los rrtons GH prmitn l moviminto too tipo rgs nivl l sulo n too tipo inustris y pr

Más detalles

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015

Primer Parcial de Introducción a la Investigación de Operaciones Fecha: 5 de mayo de 2015 Primr Pril Introuión l Invstigión Oprions Fh: 5 myo 2015 INDICACIONES Durión l pril: 3 hrs. Esriir ls hojs un solo lo. No s prmit l uso mtril ni lulor. Numrr ls hojs. Ponr nomr y númro éul n l ángulo suprior

Más detalles

Guía 1: CONCEPTOS BÁSICOS DE GEOMETRÍA

Guía 1: CONCEPTOS BÁSICOS DE GEOMETRÍA OLIO LOS SROS ORZONS ONPION urso: echa:. ompleta la tabla: uía : ONPTOS ÁSIOS OMTRÍ onceptos efinición Representación Notación Punto Un punto es una ubicación exacta en el espacio. Plano Un plano es una

Más detalles

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN

INSTITUTO TECNOLÓGICO DE NUEVO LEÓN INVSTIAION OPRAIONS II LAORATORIO RS RSULVA LOS SIUINTS PROLMAS POR L MTOO FLUJO MAXIMO 1.- SUNO OIL QUIR NVIAR (POR HORA) LA MAXIMA ANTIA PTROLO POR UN OLOUTO S L NOO SO AL NOO SI. L PTROLO TIN QU PASAR

Más detalles

Introducción: Que pasa con el cuerpo

Introducción: Que pasa con el cuerpo Unidad 2 ONSTRUYE ESTRTEGIS PR DETERMINR L MEDID DEL ÁRE DE L SUPERFIIE Y VOLUMEN DE LGUNOS UERPOS GEOMÉTRIOS lase: Nombre: INTRODUIÓN Introducción: Que pasa con el cuerpo En nuestro entorno es común encontrar

Más detalles

Estructuras de Datos. Grafos. Grafos. Grafos. Tema 1. Grafos. Definiciónes básicas: Definiciónes básicas:

Estructuras de Datos. Grafos. Grafos. Grafos. Tema 1. Grafos. Definiciónes básicas: Definiciónes básicas: Estruturs Dtos m 1. 1. Dfiniions ásis 2. Implmntions 3. Funions mnipulión 4. Rorrios Dfiniións ásis: L torí grfos: rm l mtmáti omintori muy útil n l soluión prolms prátios qu s formuln mnr nturl por mio

Más detalles

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado:

También pueden descomponerse los segmentos en función de los vectores posición lo que da como resultado: EL ÁLGER GEÉTRI EL ESPI Y TIEP 87 6. GEETRÍ EL TETRER Volmn l ttrro El volmn n ttrro s l st prt l volmn l prllpípo q lo ontin (vés igr 5.6). El volmn l prllpípo s igl l proto trior trs rists lsqir no prlls.

Más detalles

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS

Escaleno: Obtusángulo: un ángulo obtuso TEOREMAS FUNDAMENTALES O PROPIEDADES DE LOS TRIÁNGULOS TRIÁNGULO: Superfiie pln limitd por tres segmentos o ldos que se ortn dos dos en tres vérties. NOMNLTUR: Los vérties se nombrn on letrs minúsuls y los ldos on letrs myúsuls emplendo l mism letr que el

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Conceptos generales de triángulos GUICEN023MT22-A16V1 GUÍ DE EJERITIÓN VNZD onceptos generles de triángulos rogrm Entrenmiento Desfío GUIEN023MT22-16V1 Mtemátic En l figur, RQ = 24 cm, RS SQ y RM SN. Si M es el punto medio de SQ y N es el punto medio de RQ,

Más detalles

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales

Practica Sistemas electrónicas Practica 1: Aplicaciones lineales de los amplificadores operacionales Prctic Sistms lctrónics Prctic : Apliccions linls d los mplificdors oprcionls Autor: Profsor rsponsbl: Profsor cuidnd: né Wrnr Ibld Slvdor Brcho dl Pino osrio Csnuv Arpid Objtivo d l práctic: El objtivo

Más detalles

de Thales y Pitágoras

de Thales y Pitágoras 8 Teorems de Thles y Pitágors 8.1. Cuents y problem del dí 1. Reliz l siguiente operción: 874,53 + 3 607,8 + 875,084 2. Reliz l siguiente operción, obtén dos decimles en el cociente y hz l prueb de l división:

Más detalles

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS

TEMA 2 INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS Frnisnos T.O.R. Cód. 867 TEMA INTEGRAL DEFINIDA. CÁLCULO DE ÁREAS. INTEGRAL DEFINIDA El álulo de l integrl definid, que se denot por: f ( d, onsiste en lulr l integrl de l funión f( en el intervlo [, ].

Más detalles

MI AMIGO AMADO. E G#m A B ERES PAZ, MI REFUGIO Y MI ESCONDEDERO E G#m A B C#m MI AMIGO, AMADO EN QUIEN YO ESPERO EL DÍA

MI AMIGO AMADO. E G#m A B ERES PAZ, MI REFUGIO Y MI ESCONDEDERO E G#m A B C#m MI AMIGO, AMADO EN QUIEN YO ESPERO EL DÍA MI MIO MDO #m ON MI LM SÑOR, Y TODO LO QU SOY T DORRÉ, T DORRÉ #m ON MI O SÑOR, Y TODO L ORZÓN T DORRÉ, T DORRÉ RS RND Y TODO PODROSO RS VID Y ÚN MUHO MÁS #m RS PZ, MI RFUIO Y MI SONDDRO #m MI MIO, MDO

Más detalles

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a

Perímetros. Cuadrado: EL PERÍMETRO: a a P = a + a + a + a P = 4a Perímetros EL PEÍMETO: udrdo: P El perímetro de ls figurs puede medirse usndo uniddes de medid de longitud. Por lo tnto se puede medir en centímetros, decímetros, metros. Ejemplo: El perímetro del triángulo

Más detalles

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012

SISTEMAS BINARIO, DE IMAL, OCTAL y HEXADECIMAL. b) 100112. e) 101012 Carrra: Tcnicatura Suprir n Análisis y Prgramación d Sistmas Asignatura: Arquitctura d cmputadras Prfsr: Ing. Gabril Duprut Trabaj práctic Nr. : Sistmas d numración y códigs A l larg d st práctic cnstruirá

Más detalles

SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos

SGUICES029MT22-A16V1. SOLUCIONARIO Teorema de Thales y división de segmentos SGUIS09MT-1V1 SOLUIONRIO Teorema de Thales y división de segmentos 1 TL ORRIÓN GUÍ PRÁTI TORM THLS Y IVISIÓN SGMNTOS Ítem lternativa 1 omprensión 5 7 8 9 10 11 1 1 1 S 15 1 S 17 18 S 19 0 S 1 S S 5 S 1.

Más detalles

Proyecciones ortogonales (diédricas y triédricas)

Proyecciones ortogonales (diédricas y triédricas) Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

MANUAL DE ROPA HOSPITALARIA PARA LOS CENTROS ASISTENCIALES DEL SEGURO SOCIAL DE SALUD - ESSALUD

MANUAL DE ROPA HOSPITALARIA PARA LOS CENTROS ASISTENCIALES DEL SEGURO SOCIAL DE SALUD - ESSALUD MANUAL DE ROPA HOSPITALARIA PARA LOS CENTROS ASISTENCIALES DEL SEGURO SOCIAL DE SALUD - ESSALUD JUNIO 2014 MANUAL DE ROPA HOSPITALARIA GERENCIA CENTRAL DE PRESTACIONES DE SALUD OFICINA DE RECURSOS MÉDICOS

Más detalles

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad?

1 La recta principal, en el plano, mide 44 cm. Cuánto mide en la realidad? PÁGIN 164 El director del equipo nliz un plno en el cul 1 cm corresponde 20 m en l relidd. Su mquet de l moto es l décim prte de lrg que l moto rel. L moto de l fotogrfí es l mism que se ve en l mquet.

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.

MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3. Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem

Más detalles

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1

Matemática. Primaria. Nombre: Sección: Nº de orden: 4P_10A_1 Mtemáti. Primri Nomre: P_10A_1 Seión: Nº e oren: 1 L iliote e un esuel tiene registros liros e iferentes áres. Oserv: Cnti e liros en l iliote Cieni y Amiente Mtemáti Comuniión C vle 5 liros Según el gráfio,

Más detalles

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal

TRIGONOMETRÍA. 1. ÁNGULOS 1.1. Ángulo en el plano Criterios de orientación de ángulo Sistema de medida de ángulos. Sistema sexagesimal . ÁNGULOS.. Ángulo en el plno TRIGONOMETRÍA Dos semirrets en el plno, r y s, on un origen omún O, dividen diho plno en dos regiones. Cd un de de ests regiones determin un ángulo. O es el vértie de los

Más detalles

MCD Y MCM DE POLINOMIOS FRACCIONES ALGEBRAICAS

MCD Y MCM DE POLINOMIOS FRACCIONES ALGEBRAICAS TRILE pítulo MD Y MM DE POLINOMIOS FRAIONES ALGEBRAIAS Rgl pr lulr l MM y MD Poliomios :. S ftoriz los poliomios os.. El MD strá formo por l multipliió toos los ftors primos omus los poliomios os, osiros

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds

Más detalles

51 EJERCICIOS DE VECTORES

51 EJERCICIOS DE VECTORES 51 EJERCICIOS DE VECTORES 1. ) Representr en el mismo plno los vectores: = (3,1) b = ( 1,5) c = (, 4) = ( 3, 1) i = (1,0) j = (0,1) e = (3,0) f = (0, 5) b) Escribir ls coorens e los vectores fijos e l

Más detalles

SenB. SenC. c SenC = 3.-

SenB. SenC. c SenC = 3.- TRIANGULOS OBLICUANGULOS Se llmn oliuángulos por que los ldos son oliuos on relión uno l otro, no formndo nun ángulos retos. Hy seis elementos fundmentles en un tringulo: los tres ldos y los tres ángulos,

Más detalles

MÓDULO Nº5 COMPARADORES Y SUMADORES

MÓDULO Nº5 COMPARADORES Y SUMADORES MÓULO Nº OMPRORES Y SUMORES UNI: LÓGI OMINTORI TEMS: omprors. Sumors. OJETIVOS: Explir qu s un ompror y sus prinipls rtrístis. Explir qu s un sumor y sus prinipls rtrístis.. omprors: ESRROLLO E TEMS En

Más detalles

SISTEMA DE COORDENADAS EN EL PLANO

SISTEMA DE COORDENADAS EN EL PLANO Mtemáti Diseño Inustril Coorens en el lno Ing. Avil Ing. Moll SISTEMA DE CRDENADAS EN EL LAN SISTEMA UNIDIMENSINAL Es sio que es posile soir los números reles on los puntos e un ret reípromente. Es lo

Más detalles

Óvalo dados los dos ejes: óvalo óptimo

Óvalo dados los dos ejes: óvalo óptimo l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO

11. Triángulos SOLUCIONARIO 1. CONSTRUCCIÓN DE TRIÁNGULOS 2. MEDIANAS Y ALTURAS DE UN TRIÁNGULO SLUINRI 95 11. Triángulos 1. NSTRUIÓN DE TRIÁNULS PIENS Y LUL Justific si se pueden dibujr los siguientes triángulos conociendo los dtos: ) Tres ldos cuys longitudes son 1 cm, 2 cm y 3 cm b) Un ldo de

Más detalles

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010

Examen de Introducción a la Investigación de Operaciones Fecha: 14 de Diciembre de 2010 Emn Introuión l Invstigión Oprions Fh: 4 Diimr 00 INDICACIONES Durión l mn: 4 hrs. Esriir ls hojs un solo lo. Numrr ls hojs. Ponr nomr y éul inti n l ángulo suprior rho hoj. Esriir n l primr hoj l totl

Más detalles

Álgebra I Práctica 1 - Conjuntos

Álgebra I Práctica 1 - Conjuntos FEyN - U - Sguno utimst 203 Álg I Páti - onjuntos Si s un suonjunto un onjunto nil V, notmos po l omplmnto spto V.. Do l onjunto = {, 2, 3}, tmin uáls ls siguints imions son vs i) ii) {} iii) {2, } iv)

Más detalles

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras.

POLIEDROS - PRISMAS POLIEDRO. I. POLIEDRO: es el sólido limitado por cuatro o más regiones poligonales llamados caras. POIROS - PRISMS POIRO I. POIRO: es el sólido limitdo por cutro o más regiones poligonles llmdos crs. RIST TR TUR RIST SI PRISM VRTI S R 1. PRISM: l prism es un poliedro cuys crs lterles son tres o más

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

7 Semejanza. y trigonometría. 1. Teorema de Thales

7 Semejanza. y trigonometría. 1. Teorema de Thales 7 Semejnz y trigonometrí 1. Teorem de Tles Si un person que mide 1,70 m proyet un sombr de,40 m y el mismo dí, l mism or y en el mismo lugr l sombr de un árbol mide 15 m, uánto mide de lto el árbol? Se

Más detalles

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)

OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44) IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo

Más detalles

UNIDAD TEMÁTICA: Intersección de superficies. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 14.

UNIDAD TEMÁTICA: Intersección de superficies. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. HOJA DE EJERCICIOS: 14. DIBUJO GEOMÉTRICO. DEPARTAMENTO DE DIBUJO. SISTEMA DIÉDRICO. MÉTODO DIRECTO. UNIDAD TEMÁTICA: Intrscción suprficis. HOJA DE EJERCICIOS: 4. Los puntos A B C D I J K L son los vértics ls ss ispusts orizontlmnt

Más detalles

x x = 0 es una ecuación compatible determinada por que sólo se

x x = 0 es una ecuación compatible determinada por que sólo se Euiones Denominmos euión l iguldd que se stisfe pr uno o más vlores de l(s) vrile(s), o inógnit(s), que interviene en ell. Ejemplos: + 5 + 5 + 6 0 + 0 Denominmos euión lgeri tod euión del tipo: n n n +

Más detalles