206 MÉTODOS NUMÉRICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "206 MÉTODOS NUMÉRICOS"

Transcripción

1 6 MÉTODOS UMÉRICOS.. Alguos hhos mortts r ls rs vs wto: ls sguts so lgus ls ros más mortts ls rs vs wto: (. S s u rmutó K ) ( ) K tos [ K ] [ K ] CASO PARTICULAR: [ ] [ ] ( Est ro s osu l u l olomo trolt r los oos K ). [ ] K so úmros sttos [ ] tos st ( ). S s -vs otumt rl CASO PARTICULAR: [ ] l vlor mo). [ K ] ( ξ ) ( ) ( ξ )! (s r C [ ]) y ξ tl qu ( ξ ) r lgú ξ tr y (torm!. S s u úmro trmo tr los oos K tos l rror l romr ( ) mt l olomo troló ( ) r los oos os s: ( ) ( ) ( ) [ K ]( ) ( ) K( ). S C [ ] o [ ] oto los úmros K. Etos lm K [ K ] ( ) ( )! [ K ] vs CASO PARTICULAR: [ ] lm [ ] ( ) ( ) lm ( ) ( ) ( ) [ ] S ls sguts rs vs o rtó:

2 Cítulo. ITERPOLACIÓ POLIOMIAL Y AJUSTE POLIOMIAL 7 [ ] ( ) ( ) [ ] [ K ] vs! M ( ) ( )! Est ó t r v o rtó s vál smr qu rv otu l or orrsot. Tg uo r. tg.. Itroló Hrmt: Est troló s rr l troló u uó y lgus sus rvs u msmo outo oos. Como rmr mlo suogmos qu qurmos otrr u olomo mor gro osl qu stsg ( ) y (osrv qu s t oos sttos). Como hy oos omos sr rsolvr l rolm mt u olomo ( ) ( s l so vtorl rl toos los olomos gro mor o gul qu os o ots rls). Dgmos ( ) ( ) ( ) o so ots rls or trmr. Como tos ls oos musts ou : ( ) tos D uro o ls uos y s oluy qu o st u olomo gro mor o gul qu os qu rsulv l rolm lto. Ittmos o u olomo. Dgmos ( ) ( ) Ls oos musts ou :

3 8 MÉTODOS UMÉRICOS o s t qu Como l sstm t ts soluos: 8 tos l rolm lto t ts soluos ( ). Como u sguo mlo suogmos qu qurmos otrr u olomo mor gro osl qu trol y os oos sttos y s r tl olomo stsr ls utro oos sguts ( ) y Como hy oos ( uos) s rol sr qu u tl olomo u sr gro s r. Dgmos qu s l orm Est orm rsr l olomo s lt r smlr los álulos los ots y. Como ls utro oos sor ou : ; ooos y s lul. ooos y s lul.

4 Cítulo. ITERPOLACIÓ POLIOMIAL Y AJUSTE POLIOMIAL Como s osrv st rolm t soluó ú tmt los vlors y. Esturmos úmt u so sl r l ul u rolm l to tror t smr soluó ú rolm qu s ooo omo Itroló Hrmt. E st to rolms s suo ls sguts oos troló sor l olomo uso : ( ) Smr qu s rsr o stl l oó r u rto oo (o ( ) ( ) ot l vlor l rv or l olomo ( ) l oo ) tmé s stlr ls oos ( ) ( ) K ( ) ( ) S ot l úmro oos rsrts o stls sor l oo r... s r s s ls oos (Osrv qu ( ) ( ) ( ) ( ) ( * ) u vrr o ) tos l úmro totl oos sor l olomo qu otrmos or m s tl qu: m K El sgut torm grt st y u u olomo ( ) m ( gro mor o gul qu m) qu sts ls oos ( * ) tl olomo s llmrá olomo troló Hrmt. Torm: Est u úo olomo m sts ls oos troló Hrmt ( * ). ( gro mor o gul qu m) qu Dmostró: S ( ) m tos ( ) t m ots (or sr gro mor o gul qu m) y omo l úmro oos musts sor ( (*)) s tmé m tos tls oos gr u sstm m uos lls o m ógts y smos sgurr qu l mtr ots st sstm s vrtl r lo ul s sut ror qu l sstm homogéo soo AU t soluó ú U. El rolm homogéo soo osst otrr m Como ( ) ( ) ( ) ( ) tl qu ( ) r too o tos l olomo t u ro multl myor o gul qu (sgú torm qu : s

5 MÉTODOS UMÉRICOS ( ) ( α α α y ) ( α ) ( ) ) y or lo tto ( ) l uó or (sgú torm l tor: s ( ) )... tos α s u rí multl q sr u múltlo l olomo q o ( ) ( ) s u rí ( ) tos ( ) s u tor Osrv s mrgo qu q s gro m ( ) mtrs qu s gro lo más m. Columos tos qu ( ) m ( ) q( ) sí qu toos los ots l olomo so ro y tos l sstm AU t soluó ú U. Vmos omo s utr l olomo troló Hrmt mt uos mlos. Emlo : Suogmos qu qurmos otrr l olomo ( ) qu sts ( ) ( ) y ( ). Soluó: Pusto qu ls oos so troló Hrmt (s r l to (*)) o m ( s l úmro oos sor l oo y s l úmro oos sor l oo ) tos st u úo olomo qu sts ls oos s. Cosrmos l sgut tl rs vs ts: D.D. ( ) D.D. D.D. ( ) [ ] [ ] ( ) [ ] OTA: E st tl s rt l oo tts vs omo oos hy musts sor s oo. C uo los álulos qu r l tl s rl uso l ó r v o o s rtó sgú s l so. [ ] [ ] ( ) ( ó) [ ] [ ] ( ) ( )

6 Cítulo. ITERPOLACIÓ POLIOMIAL Y AJUSTE POLIOMIAL [ ] [ ] ( ) [ ] El olomo ( ) [ ] [ ] ( ) [ ] ( )( ) s r ( ) ( ) ( ) sts ls oos s. E to: ( ) ( ) ( ) ( ) ( [ )] ( ) ( ) ( ) E olusó ( ) s l olomo troló Hrmt r ls oos s. Emlo : Us l métoo rs vs ts wto r otr l olomo Hrmt qu trol l sgut tl: Soluó: Como úmro oos sor l oo y úmro oos sor l oo vs y l oo vs: tos l tl s rt l oo os trs vs. Así qu s ostruy l sgut tl rs D.D. D.D. D.D: D.D. D.D. [ ] [ ] [ ] [ ] [ ] 6 [ ] 7 6 [ ] 7 6 [ ] [ ] [ ] E st tl los álulos s rl omo s otuó:

7 MÉTODOS UMÉRICOS [ ] [ ] [ ] [ ] 7! ;! [ ] [ ] 7! [ ] [ ] 8! Lugo l olomo sts ls oos s. E to: 6 5 ; 7 ; Ero: Eutr l olomo troló Hrmt uo tos ls oos s u úo oo s r r ls oos..5 Itroló trgoométr y sr t Fourr: A otuó srrmos u to troló o ls uos áss utls o so los olomos lgr u vrl rl so los olomos llmos trgoométr. Dó: U olomo trgoométro gro lo más s ulqur uó l orm [ ] s Como s osrv s u uó ró ríoo s r r too π π R. El rolm trés st v s: D u uó ró ríoo y utos π o π... oos gulmt sos l trvlo [ ] π s qur "romr " l uó l trvlo [ ] π l sto los mímos uros

8 Cítulo. ITERPOLACIÓ POLIOMIAL Y AJUSTE POLIOMIAL otuos mt u olomo trgoométro... s r s qur qu π sos.... moo qu ( ) r trol l uó los oos gulmt E st gur l tmño so s π h. S u mostrr vr or mlo K ág y qu: Est u úo olomo trgoométro gro mor o gul qu l orm [ ( ) s( ) ] π qu trol los oos gulmt sos.... Tl olomo t ots ( ) ( ) ( )... ( ) s ( )... [ ( ) s( ) ] stso ls oos trors s rá l olomo trgoométro troló r los tos ( ) sr t (srt) Fourr r. Emlo Cosr l uó [ ππ ] rló ( π) r too R... o y t rómt or l. L grá st uó s omo s :

9 MÉTODOS UMÉRICOS Arommos l trvlo [ π ] mt l olomo trgoométro orrsot π π π. E st so h y tos los oos so: π π π y. D uro o l ó s t qu ( ) ( ) π π y π ( ) π. Etos l olomo trgoométro trolt r st so s: o [ ( ) s( ) ] ( ) ( ) π π

10 Cítulo. ITERPOLACIÓ POLIOMIAL Y AJUSTE POLIOMIAL 5 π π s π π s π s s s π π π π π π π π 8π s π s π s s s π π π 8π π π Lugo l olomo trgoométro troló uso s π π Como ro omru qu st olomo sts ls oos troló r l uó [ ] ππ. L grá l uó t l omo [ ] uto o l l olomo π r l sgut gur:

11 6 MÉTODOS UMÉRICOS El rolm lto l omo st rt tmé u rsolvrs uso vrl oml omo sgu: Dó: U olomo ol gro lo más s ulqur uó l orm s [ ] [ ( ) s( ) ] q ( ) s( ) ( s : Fórmul Eulr : Fórmul D Movr). C { / R } Osrv qu q s u olomo l vrl oml s( ). Uso olomos ols l rolm lto (troló trgoométr) u sr trsormo l rolm otrr u olomo ol q (... ) o ots omlos tls qu q( ) ( )... o π... (oos gulmt sos l trvlo [ π ]). S u mostrr qu l olomo ol gro lo más qu mor rom u uó ( π ró) los utos sgú Mímos Curos s q ( )... o ots ( )... y st olomo trol l π uó los oos... s r q ( ) ( )... S osrmos l msmo mlo tror: π ( ) ( ) π y ( ) π. Eotrmos l olomo ol qu q trol los oos. Dmos lulr los ots omo sgu:

12 Cítulo. ITERPOLACIÓ POLIOMIAL Y AJUSTE POLIOMIAL 7 [ ] π π () [ ] π π π π π π π π s π π s π π { } π π π π π 8π s 8π π s π π π π Lugo l olomo ol uso s: [ ] [ ] s π s π π π s π s π π π q

13 8 MÉTODOS UMÉRICOS Osrv qu l rt rl l olomo ( ) trormt. El olomo ol q s l olomo trgoométro oto q ( ) y su orrsot olomo trgoométro ( ) π o toos los oos... s r q... ro o srmt s t qu q r utos. L grá l trvlo [ π ] tto l uó [ π π ] t rómt uto o l rt rl mgr l olomo ol mustr l sgut uo: q ( ) s

c. C=(c ij )=i-j [0] b. B=(b ij )=mín(i,j) [1] x x

c. C=(c ij )=i-j [0] b. B=(b ij )=mín(i,j) [1] x x MTEMÁTICS CCSS II TEM: DETERMINNTES DETERMINNTES Dtrmt suo or S om trmt l mtr ur or os t l º rl rsultt t Ejmplos: ) ) ) s rprst Dtrmt trr or S om trmt l mtr ur or l º rl rsultt : t Est prsó s oo omo rl

Más detalles

Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden

Potencial periódico Término de corrección Término sin de segundo orden perturbación Término de corrección de primer orden Bds d rgí otdo Tor d Boch. Torí d ctró cs r.org d ds. Modo d Krog-Py. jo. stdo Sódo Potc áss otc qu s usó áss tror fu u otc tt. s áss d uy u rsutdo s s ctr trs tá us ocurr u tto d ctros. S rgo, otros trs

Más detalles

Formulario de matemáticas

Formulario de matemáticas Forlro tát lgr- Sgo (+) (+) = + (-) (-) = + (+) (-) = - (-) (+) = - (+) / (+) = + (-) / (-) = + (+) / (-) = - (-) / (+) = - Fro Proto otl ftorzó ( ) ( ) ( ) ( ) ( ) ()() ()( ) ( )( ) ()( ) L lo ot rl log

Más detalles

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes.

6.1 Cálculo de primitivas. 6.3 El Teorema fundamental del cálculo. 6.4 Área de una región entre dos curvas. 6.5 Cálculo de volúmenes. Tem 6. Itegró 6. Cálulo e prmtvs. 6. Áre e tegrl ef. 6.3 El Teorem fumetl el álulo 6.4 Áre e u regó etre os urvs. 6.5 Cálulo e volúmees. 6.6 Logtu e ro superfe e revoluó. E.U.Polté e Sevll. Fumetos Mtemátos

Más detalles

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas

1.- Resolver utilizando el método de Gauss el siguiente sistema. 3.- Resuelve tres de las siguientes ecuaciones exponenciales y logaritmicas Colo L Conpón EJERCICIOS REPASO PARA SEPTIEMBRE º BACHILLERATO-B 00-0 NOMBRE:.- Rsolvr utlzno l métoo Guss l unt stm. z z z 8.- Rsulv os ls unts uons 7.- Rsulv trs ls unts uons ponnls lortms lo lo 7 8

Más detalles

1 i. Hojas de Problemas Álgebra IX

1 i. Hojas de Problemas Álgebra IX Hojs e Polems Álge IX 7 Se A l ml e uoes :R * R es o log, " N R *{ R:>} Estu su eee lel e el R-eso etol AlR *,R Hll l mesó y u se el sueso que ege Soluó: Es log log log S m, y m so lelmete eeetes: α β

Más detalles

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales

Capítulo 4: Rotaciones Multidimensionales con Operaciones Vectoriales Cítulo 4: Rotcos Multdmsols co Orcos ctorls Como s vo l cítulo tror s ud hcr rotr u ojto l sco D roorcodo - utos o cohrlrs s dcr s roorco l j d rotcó l cul s l rrstcó d u sml -D. E st cítulo s lz y td

Más detalles

SEMEJANZA DE TRIÁNGULOS

SEMEJANZA DE TRIÁNGULOS IES ÉLAIOS Curso - Ruprión ª Evluión ÁREA: MATEMÁTICAS º ESO OPCIÓN B TEMAS,, 6 y 7 ACTIVIDADES DE RECUPERACIÓN DE LA ª EVALUACIÓN SEMEJANZA DE TRIÁNGULOS. S quir onstruir un prtrr on orm triángulo rtángulo.

Más detalles

Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios, problemas y cuestiones Unidad 2. Polinomios y fracciones algebraicas Matemáticas aplicadas a las Ciencias Sociales I Soluios los jriios prolms ustios Ui oliomios rios lgris Mtmátis plis ls Ciis Soils I EJECICIOS SUMA ESTA Y MULTILICACIÓN DE OLINOMIOS Dos los poliomios Dtrmi si stá ruios si so ompltos ii su gro Clul trmi

Más detalles

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A

variables aleatorias discretas, la función de probabilidad conjunta del vector aleatorio ( X,..., se define como: ) A cors loros. só más d dos dmsos Dcó: S... rbls lors dscrs l ucó d robbldd cou dl cor loro... s d como: ddo culqur couo A R...... P... P... A...... A...... s ucó ssc ls sgus rodds:.................. orm

Más detalles

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A

EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -

Más detalles

MÉTODO INDUCTIVO. Capítulo TRILCE

MÉTODO INDUCTIVO. Capítulo TRILCE pítulo É V l É V r lys prtir l osrvión los hhos, mint l gnrlizión l omportminto osrvo; n rli, lo qu rliz s un spi gnrlizión, sin qu por mio l lógi pu onsguir un mostrión ls its lys o onjunto onlusions.

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior.

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR. Ecuaciones lineales homogéneas con coeficientes constates de orden dos y superior. Prof Eriqu Mtus Nivs Dotordo Eduió Mtmáti ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Euios lils homogés o ofiits ostts d ord dos suprior Apliqu l método d rduió pr dtrmir u soluió d l uió o homogé dd los

Más detalles

Números Racionales 1. INTRODUCCIÓN

Números Racionales 1. INTRODUCCIÓN Númros Rionls Título: Númros Rionls Trgt: PROFESORES DE MATEMÁTICAS Asigntur: Mtmátis Autor: Emilin Oliván Clz Lini n Mtmátis Prosor Mtmátis n Euión Sunri 1 INTRODUCCIÓN En l ominio intgri (DI) los númros

Más detalles

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura

Tema 4: Regresiones lineales y no lineales TEMA 4. REGRESIONES LINEALES LINEALES Y NO. 1. 2. 3. Introducción 4. Nomenclatura T 4: grsos lls o lls TEMA 4. EGEIONE LINEALE LINEALE Y NO.. 3. Itroduccó 4. Nocltur 5. Llzcó Ajust grsó ll ll d últpl cucos 6. 7. 8. grsos EUMEN Progrcó o lls Mtlb Cálculo uérco Igrí T 4: grsos lls o lls.

Más detalles

ESTADISTICA. L : Límite inferior de la clase mediana. F : Frecuencia absoluta acumulada de la clase

ESTADISTICA. L : Límite inferior de la clase mediana. F : Frecuencia absoluta acumulada de la clase ESTADISTICA. Curto Año Mo 013 Prstó Tulr : Mr ls ( x ) : Es u vlor qu rprst los tos l trvlo ls s lul omo l smsum los límts ror y supror l trvlo ls y stá uo l puto mo l msmo. L L sup x M : Pr tos o grupos

Más detalles

ESTADISTICA. F : Frecuencia absoluta acumulada de la clase. me : Frecuencia absoluta simple de la clase mediana.

ESTADISTICA.  F : Frecuencia absoluta acumulada de la clase. me : Frecuencia absoluta simple de la clase mediana. ESTADISTICA. Prstó Tulr : Mr ls ( x ) : Es u vlor qu rprst los tos l trvlo ls s lul omo l smsum los límts ror y supror l trvlo ls y stá uo l puto mo l msmo. L L sup x M : Pr tos o grupos : Es l m rtmét

Más detalles

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n)

PROGRESIONES. Capítulo TRILCE. Progresión aritmética (P.A.) 3. Número de términos (n) TRILCE Cpítulo 7 PROGRESIONES Progrsió ritméti (PA) Es qull susió or l qu térmio, xpto l primro, s igul l térmio trior umto u vlor ostt llmo rzó l progrsió Rprstió u PA r r ( )r Númro térmios () r 4 Térmios

Más detalles

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 2 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux táts pls ls CCSS II UNIDD DETERINNTES.. DETERINNTE DE ORDEN UNO. D un trz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un trz ur orn os oo l núro rl: Eplos:, s n l rnnt,

Más detalles

= 0 ' = 0 ' Fracciones equivalentes (productos cruzados iguales): c. Fracción generatriz:

= 0 ' = 0 ' Fracciones equivalentes (productos cruzados iguales): c. Fracción generatriz: Dprtmto Mtmátis http://www.olgiovirggri.org/so/mt.htm Aritméti. ARITMÉTICA... Cojutos umérios. I Númros tros: úmros turls Númros riols: os juto o sus opustos (úmros imls prióios gtivos). Númros turls:

Más detalles

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8).

1) Halla La ecuación del lugar geométrico de los puntos del plano cuya distancia a P(1,2) es doble que su distancia a Q(-1,8). ÓNIS º BHILLERTO ) Hll L uión lugr gométrio los untos lno u istni P(,) s ol qu su istni Q(-,). ( R, P) ( R, Q) ( ) ( ) ( ) ( ) ( ) ) Enuntr l irunfrni irunsrit l triángulo vértis (-,); B(-,); (-,). lul

Más detalles

( ) ( ) El principio de inducción

( ) ( ) El principio de inducción El priipio e iuió U ejemplo seillo pr empezr Si hemos oío hlr e progresioes ritmétis (series e úmeros e form que l iferei etre os oseutivos es siempre l mism, omo,,, 0,) prolemete o será fáil lulr l sum

Más detalles

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No. 1. ECUACIONES DIFERENCIALES

UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No. 1. ECUACIONES DIFERENCIALES UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE CIENCIAS BASICAS DEPARTAMENTO DE MATEMATICAS Y ESTADISTICA GUIA No.. ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES U cució ircil s u cució l qu

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE

DEPARTAMENTO DE MATEMÁTICAS Alumno/a 4º ESO Nº TRIGONOMETRIA 1º PARTE DEPRTMENTO DE MTEMÁTIS lumno/ 4º ESO Nº TRIGONOMETRI 1º PRTE 84 Introuión Un rinto poligonl simpr lo pomos iviir n triángulos. omo por jmplo Lo pomos iviir n triángulos D E F G H I J K L M N Ñ O P Q R

Más detalles

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS

61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr

Más detalles

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6: DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Gux ás II UNIDD : DETERINNTES.. DETERINNTE DE ORDEN UNO. D un rz ur orn uno sr o n, oo l núro rl:. DETERINNTE DE ORDEN DOS. D un rz ur orn os oo l núro rl: Eplos:, s n l rnn, y s, s n l rnn.

Más detalles

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades

( ) ( ) 60 ( ) ( ) ( ) Opción A. Ejercicio A.1- Se sabe qué Calcular, de manera razonada, aplicando las propiedades IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Oió Ejiio.- S s ué. Clul d od lido ls oidds duds l lo d los siguits dtits: B B IES Mditáo d Málg Soluió Juio Ju Clos loso Giotti Ejiio..- Hll l uió dl

Más detalles

S-\v as. v--.' v.w 32. V.'-i'.v,

S-\v as. v--.' v.w 32. V.'-i'.v, vo u * I V s.- sm# 8KB Sl..V-v-"' -. - yv:» S vs W: g> >: S-\v s -.v. ;*K\ *> v M v--.' v.w 32. s;. v.; *. :>S * II hv#?' -> -. * - ESTADO B M 83 SS'S'o sm IS v'v#\ v&? s V.'-'.v, M I * st^w : V v-\f #

Más detalles

A puede expresarse como producto de matrices elementales

A puede expresarse como producto de matrices elementales TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los

Más detalles

TEMA 1. OPERACIONES BANCARIAS A CORTO

TEMA 1. OPERACIONES BANCARIAS A CORTO 1 E 6 TEMA 1. OPERACIONES BANCARIAS A CORTO PLAZO (I) 1.1. Itrouccó 1.2. Cuts corrts 1.3. Cuts corrts bcrs 1.4. Cuts créto 1.5. Cálculo los ttos fctvos 1. INTROUCCIÓN Toos los rchos rsrvos. Qu prohb l

Más detalles

TEMA 8: DETERMINANTES

TEMA 8: DETERMINANTES DETERMINNTES MTEMÁTICS II TEM : DETERMINNTES Dtrnnts orn os trs S non trnnt l tr ur orn os t l nº rl rsultnt t Ejplos: s rprsnt S non trnnt l tr ur orn l nº rl rsultnt : t Est prsón s ono oo rl Srrus Ejros:

Más detalles

Matemáticas II Bloque VI Carlos Tiznado Torres

Matemáticas II Bloque VI Carlos Tiznado Torres Mtmátis II loqu VI rlos Tizno Torrs IRUNFERENI El írulo y l irunfrni son os ojtos gométrios qu hn llmo l tnión y hn sio l ojto stuio un grn númro mtmátios s timpos ntiguos, sino más grn utili práti pr

Más detalles

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS

ASIGNATURAS DESARROLLO DE INGENIERIA DE LA CALIDAD Y GERENCIA DE VALORACION DE EMPRESAS UVRS TÉ MBÍ FULT S MSTRTVS Y OÓMS RRR: MSTRÓ MPRSS TÍTULO: GRO OMRL Malla urricular 009 (ctualizada gosto 01) SGTURS VL 10 0 VL 9 VL 8 VL 7 6 VL 6 4 VL 5 SRROLLO GR L L Y RSPOSBL SOL GR VLORO MPRSS RGRÍ

Más detalles

FRACCIONARIOS Y DECIMALES

FRACCIONARIOS Y DECIMALES FRACCIONARIOS Y DECIMALES Hg clck obr l t qu coultr: 1. Núro Frccoro - Frccoro grl - Frccoro hoogéo y htrogéo - Clfccó lo frccoro - Frcco quvlt - Ruccó frcco (plfccó) - Covró frccoro cl 2. Núro Dcl Núro

Más detalles

ALGUNOS RESULTADOS SOBRE MARTINGALAS DISCRETAS FINITAS Some results on finite discreet martingales

ALGUNOS RESULTADOS SOBRE MARTINGALAS DISCRETAS FINITAS Some results on finite discreet martingales et et eh Año V No 4 Agosto e 009 Uvers eológ e Perer N 0-70 ALGUNO RULAO OBR MARNGALA CRA FNA ome results o te sreet mrtgles RUMN este rtíulo se reset vros eemlos e mrtgls srets ts sí omo se emuestr lguos

Más detalles

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x)

(esta notación fue elegida por el matemático Leonhar Euler) De hecho la función f ( x) INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 9 OCTUBRE

Más detalles

RESOLVIENDO PROBLEMAS DE MATEMÁTICA

RESOLVIENDO PROBLEMAS DE MATEMÁTICA Mtemát Fís Astoomí shom 6 ESOLVIENDO POBLEMAS DE MATEMÁTICA ESOLUCIÓN DE LOS POBLEMAS POPUESTOS POBLEMA 8 (6 Hll l eó el lg geométo e los tos ese oe se ee tz os tgetes qe fome ete sí áglo eto l v: SOLUCIÓN:

Más detalles

Determinantes D - 1 DETERMINANTES

Determinantes D - 1 DETERMINANTES Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos

Más detalles

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.

UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS. IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,

Más detalles

3A,,. Prueba que M es un subespacio

3A,,. Prueba que M es un subespacio .- Dtin os tis us X Y on tls qu: Y X Y X.- Estui l inpnni linl ls tis C.- Pu qu ls siguints tis son un s l spio vtoil ls tis us on.- S onsi l onjunto } R. Pu qu s un suspio vtoil.- Hll os tis us on os

Más detalles

Introducción y Aritmética Flotante Semana del 24 al 28 de septiembre de 2018

Introducción y Aritmética Flotante Semana del 24 al 28 de septiembre de 2018 Introducción y Aritmética Flotante Semana del 24 al 28 de septiembre de 2018 Coordinador Académico del Laboratorio: Profesor Jaime Figueroa Nieto (jaime.figueroa@usm.cl) Ayudante Coordinador y de Software:

Más detalles

Índice General. Disposiciones iniciales y definiciones generales

Índice General. Disposiciones iniciales y definiciones generales Índice General Int r o d u c c i ó n... xxvii CAPÍTULO I Disposiciones iniciales y definiciones generales Dis p o s i c i o n e s iniciales y de f i n i c i o n e s ge n e r a l e s... 1 Capítulo II Trato

Más detalles

ANÁLISIS DE ERROR DE ESTADO ESTABLE

ANÁLISIS DE ERROR DE ESTADO ESTABLE AÁLISIS DE ERROR DE ESTADO ESTABLE El rror stcoro s u dd d l xcttud d u t d cotrol. S lz l rror stcoro dbdo trds scló, rp y prábol. COTROL AALÓGICO COTROL DIGITAL Esqu Error Fucó d trsfrc d ll Es ( Rs

Más detalles

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2.

Supongamos que divide también a 3n + 1, entonces divide a (3n + 1) (3n 3)=4 o divide a (3n + 3) (3n + 1) = 2, entonces a = 2. Hojs de Problems Algebr III 8. ) Demostrr que s es r, los úmeros turles y so rmos etre s. b) Demostrr que s m, etoces l ctdd de úmeros eteros ostvos dsttos de cero que o so myores que m y que o se dvde

Más detalles

Tema31.INTEGRACIÓN NUMÉRICA.MÉTODOS DE INTEGRACIÓN.

Tema31.INTEGRACIÓN NUMÉRICA.MÉTODOS DE INTEGRACIÓN. tgrco uérc étodos d tgrcó NGRACÓN NUÉRCAÉODOS D NGRACÓN troduccó Clculo tgrl y drcl rs udtls cálculo tsl l cálculo tgrl c dl cálculo d árs l org dl cálculo tgrl pud rotrs l Grc clásc clculo d árs por l

Más detalles

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO

INESTABILIDAD 6 PROBLEMAS FÍSICOS Y DE GRABACIÓN 7 PROBLEMA DEL MANDO A 160 DAÑO FÍSICO Ó Ó SÍT Ó R Ó SÍT T (*) S ÓS TS "" (*-**) ST TZRS R R SRÓ R SÍT T R SST S ÓS RRÓ R - RS T S ÓS SÍT R.8-00/0 8 STT TRTT SÉS Ú T T RÍ RT Ó RÓ T Ú / / S / S TRR ÍS SÉS RÁ STS / STWR / / S / R / R(S) ST S

Más detalles

l ij l'; 1r" 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,?

l ij l'; 1r 1râ I 't i 4-1.} ,ffi,h) 4,i4 r z l,9 11,{ .Jn 1,{ 'l 'l J, J,t J,t 1,a -5^ l.{ l,{' ''' l. I, I fié \bi a j d i' .iq I '11 .J.f 3,? ,' ḻ.) r Ë'.' -f,.-.. =(-,, '; -'..f - ' -. -^ 0 '..'.., ḷ C. c).,' C., c. C!.c.' - ạ - C. ( rô -, '.r,.,. ',, - v ) - '.. ) r, -) '_ r Ë )'.., ^,' à ',, ' ',.' ( ) ' ',' r r ) - r c c,', ḷ,' s ) c, -

Más detalles

La obtención y proyección de tablas de mortalidad empleando curvas spline

La obtención y proyección de tablas de mortalidad empleando curvas spline X Ruó Nol Ivtgó Dmogá Méo Méo, DF, - Novm L otó poó tl motl mplo uv pl Aljo M Vlé El Colgo Méo ovm Itouó El ál uméo popoo l tumto téo o p llv o too lo pomto mtmáto tt o lgotmo qu pmt u muló o álulo E l

Más detalles

OPERACIONES CON LÍMITES DE FUNCIONES Ls oprcios co límits, tto u puto como l ifiito, ti us propidds álogs qu dbmos coocr: PROPIEDADES El límit d l sum o difrci d dos fucios s l sum o difrci d los límits

Más detalles

DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD PÉNDULO SIMPLE

DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD PÉNDULO SIMPLE EERIACIÓ E A ACEERACIÓ E A GRAVEA PÉUO SIPE Atoo J. Brbro / ro Hrdz Puh / Alfoso Clr / Pblo uñz / José A. d oro / Ptr orl pto. Fís Apld UC Pédulo spl O O s Y X os s El oto O td rsturr l posó d qulbro O

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD : INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los vlos,,

Más detalles

FUNCIONES DERIVABLES EN UN INTERVALO

FUNCIONES DERIVABLES EN UN INTERVALO DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.

Más detalles

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1

(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1 EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z

Más detalles

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x

REGRESION LINEAL SIMPLE. = α + β + ε. y = α + β x REGREION LINEAL IMPLE FORMULARIO Mdl d Rgrsó Ll mpl Jrg Glt Rsc + β + ε qu β s fjs, ε s u vrl ltr c sprz E(ε) 0 vrz V(ε) σ fj. Ls prámtrs dl mdl s, β σ. rprst l vrl dpdt, qu tm vlrs fjs dtrmds pr l prmtdr.

Más detalles

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando

2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando º DE HLLERTO MTRES Y DETERMNNTES Soluones -- DETERMNNTES MTRZ NVERS. lulr el vlor del determnnte. Hllr, en funón de, el vlor del determnnte: en Sndo on votndo nulmos en Sndo ( ( en Sndo ( ( (. Enontrr

Más detalles

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x }

1. ÁREA BAJO UNA CURVA. INTEGRAL DEFINIDA. PROPIEDADES. Sea f continua en [ ] = K con. : Conjunto finito de puntos P { x x,, x, x } IES P Pov (Gui Mtmátis II UNIDD INTEGRL DEFINID.. ÁRE BJO UN CURV. INTEGRL DEFINID. PROPIEDDES., o (,. S otiu [ (Positiv [ Ptiió [, : Cojuto iito putos P {,,, } < < < K < K o, Diámto l ptiió P : Myo los

Más detalles

1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4)

1.2 INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (1.2_CvR_T_062, Revisión: , C2, C3, C4) . INTEGRACION, DIFERENCIACIÓN DE FUNCIONES Y EXPANSIONES EN SERIES. (._CvR_T_06, Rvisió: 5-0-06, C, C3, C4).. DERIVADA DE UNA FUNCIÓN. Dfiició: f f ( ) f ( ) lim, si l límit ist. 0 Notció: f ', f ( ) E.g.:

Más detalles

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6

CONTEO DE FIGURAS. Capítulo TRILCE T R I L C E 5 6 TRILCE Cpítulo CONTEO DE FIGURAS INTRODUCCIÓN El srrollo l tnologí n los últimos ños, h sio rlmnt vrtiginoso, ls pizs, y omponnts los prtos mornos s hn ruio notlmnt su tmño y quirio un sin fin forms, puino

Más detalles

UNA APROXIMACIÓN A LA TEORIA DE LOS

UNA APROXIMACIÓN A LA TEORIA DE LOS UNA APROXIMACIÓN A LA TEORIA DE LOS ESPACIOS DE HILBERT Crlos S Ch Mrch dc 000 DIVULGACIÓN DE LA MATEMÁTICA EN LA RED ESPACIOS DE HILBERT DEFINICIÓN DE ESPACIO DE HILBERT: Itroduccó: Escos Vctorls Bs dmsó

Más detalles

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.

Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2. Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción

Más detalles

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores.

210. Se considera el experimento aleatorio consistente en tirar tres dados al aire y anotar los puntos de las caras superiores. Hojs de Prolems Estdístc I. Se cosder el expermeto letoro cosstete e trr tres ddos l re y otr los putos de ls crs superores. ) utos elemetos tee el espco de sucesos? ) lculr l proldd de scr l meos dos.

Más detalles

Enfrentando. cesantía INUND. ntía INUNDAC

Enfrentando. cesantía INUND. ntía INUNDAC frto i F f I C D tí IU o B t B o t tr it D D o I o CS SUICID F i F i f f I C tí IUD B to B o t t i D D tr o o CS SUICIDI F F i i f f tí IUDCI to B B o t t tr i D o I ID IC U o FCS S i i f f I CI tí IUDC

Más detalles

CAPÍTULO VIII APLICACIONES DE LA INTEGRAL

CAPÍTULO VIII APLICACIONES DE LA INTEGRAL PÍTULO VIII PLIIONES DE L INTEGRL 8. VOLÚMENES DE SÓLIDOS DE REVOLUIÓN o reó pl es r lreeor e eje e revoló eer sólo e revoló. L prmer reó reslt e rr reó pról lreeor el eje, metrs qe e el seo so se h ro

Más detalles

Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada)

Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada) Aéndice Anexo 1 Características de las haciendas en la Sierra de Alcara,z a mediados del siglo XVIII (Catastro de Ensenada) Ŝ o o N r r N V 7 M N rn Ŝ.. n,. 5 v1 M o0 M v M N M N r N j 7 N M N V N 00

Más detalles

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 7 SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IES Pdr Povd (Gudi) Mtátics II Dprtto d Mtátics Bloqu II: Álgr il Profsor: Ró ort Nvrro Uidd : Sists d Ecucios ils UNIDD SISTEMS DE ECUCIONES INEES DEFINICIONES U sist d cucios lils co icógits s u prsió

Más detalles

MCD Y MCM DE POLINOMIOS FRACCIONES ALGEBRAICAS

MCD Y MCM DE POLINOMIOS FRACCIONES ALGEBRAICAS TRILE pítulo MD Y MM DE POLINOMIOS FRAIONES ALGEBRAIAS Rgl pr lulr l MM y MD Poliomios :. S ftoriz los poliomios os.. El MD strá formo por l multipliió toos los ftors primos omus los poliomios os, osiros

Más detalles

Métodos Numéricos 06/09/2017

Métodos Numéricos 06/09/2017 Métodos Numérios 6/9/7 SOLUCION DE ECUACIONES NO LINEALES Clsiiió de Métodos METODO DE BISECCION Por ejemlo: = 6 + 5 = 5 6 + = se - e = - / = l 6 - k = Métodos Numérios 7 De itervlo Aiertos Gráio Biseió

Más detalles

es divergente. es divergente.

es divergente. es divergente. .- Dtrmir l cráctr d l sri sgú los vlors d = +. Solució: sido = + = Si = = lim = s divrgt. = Si < < lim = s divrgt. = Si = = lim = s divrgt. = Si >, plicdo l critrio d D`Almrt: + ( + ) ( + ) + lim = lim

Más detalles

Circuitos de 2º Orden

Circuitos de 2º Orden ru d º Ord ru Sr Prll dr l u d l Fg.. () () () () () () Fgur. ru r prll Pld l u d rhff mb ru d ( ) ( τ ) dτ ( ) d ( ) ( τ ) dτ ( ) d ( ) d ( ) d ( ) ( ) d ( ) d ( ) d ( ) Obr qu l u pld qu drb l rr l ó

Más detalles

APROXIMACION DE FUNCIONES

APROXIMACION DE FUNCIONES APROXIMACION DE FUNCIONES Metodos Numercos 6 Fmls de Fucoes Bses - Moomos : 3 - Trgoométrcs: sωt cosωt sωt... - Fs. Sle: olomos trozos - Fs. Eoecles: e e 4 Metodos Numercos 6 Iterolcó Suogmos teer u cojuto

Más detalles

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS

DETERMINACIÓN DE LOS ELEMENTOS DE ORIENTACION INTERIOR Y LAS DISTORSIONES DEL OBJETIVO DE LAS CÁMARAS FOTOGRÁFICAS NO MÉTRICAS DETERMINCIÓN DE LOS ELEMENTOS DE ORIENTCION INTERIOR LS DISTORSIONES DEL OBJETIVO DE LS CÁMRS FOTOGRÁFICS NO MÉTRICS B D. Díz Ríuz, Gl Ház S S Hé Gzáls Gí Jsé Mul Cvz P GEOCUB IC,, Pl. C.P. 00, CH, Cu,

Más detalles

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris):

Árboles binarios. Árbol: definición. Árbol (del latín arbor oris): Árol: iniión Árols inrios Árol (l ltín ror oris): Plnt prnn, trono lñoso y lvo, qu s rmii irt ltur l sulo. (otrs, vr Rl Ami Espñol ) Frno Guii Polno Esul Innirí Inustril Pontiii Univrsi Ctóli Vlpríso,

Más detalles

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:

DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe: DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién

Más detalles

ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1

ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL. e = log. d dx. d v v dv. d dx. en particular: ( log v) = 1 ALGUNAS FÓRMULAS ESTÁNDAR DE CÁLCULO DIFERENCIAL E INTEGRAL Síolos. E ls tls siguits,, c, y ot costts, itrs qu u, v, w y so vrils, u, v, y w so tos fucios. L s l sist Npirio o tié llo turl logritos s ot

Más detalles

Índice de Actividad Empresarial no Petrolera (IAE-NP) Una Propuesta Metodológica de Mejora

Índice de Actividad Empresarial no Petrolera (IAE-NP) Una Propuesta Metodológica de Mejora Documento de Trabajo No. 2012-01 [Working Paper] Índice de Actividad Empresarial no Petrolera (IAE-NP) Una Propuesta Metodológica de Mejora por José Ramírez Centro de Estudios Fiscales - SRI [jframirez@sri.gob.ec]

Más detalles

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,...

1.- Estudie el carácter de la serie numérica. 1 es divergente, la serie n propuesta será divergente. Solución.- Puesto que, n = 1, 2, 3,... TUTORÍA DE MATEMÁTICAS III (º A.D.E.) -mil: imozs@lx.ud.s http://tlfoic.t/wb/imm EJERCICIOS DE SERIES NUMÉRICAS PROPUESTOS EN EXÁMENES.- Estudi l cráctr d l sri uméric. (Fbrro 00, x. or.) Solució.- Pusto

Más detalles

6. INTERPOLACIÓN POLINOMIAL: SPLINES

6. INTERPOLACIÓN POLINOMIAL: SPLINES 6. INTERPOLACIÓN POLINOMIAL: SPLINES Jorge Edurdo Ortz Trvño jeortzt@unl.edu.o http:/www.doentes.unl.edu.o/jeortzt/ Coeentes de un polnomo de nterpolón Un método dreto pr lulr los oeentes de un polnomo

Más detalles

TEMA 9: DETERMINANTES

TEMA 9: DETERMINANTES más º llo. Ál Lnl TE : DETERNNTES. DETERNNTE DE UN TRZ UDRD. PROPEDDES DE LOS DETERNNTES. ENOR OPLEENTRO Y DJUNTO DE UN ELEENTO DE UN TRZ UDRD. DESRROLLO DE UN DETERNNTE POR LOS ELEENTOS DE UN LÍNE. ENORES

Más detalles

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Cpít ulo RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL Dfiniions Pvis: I. ÁNGULO EN POSICIÓN NORMAL Llmo tmién n posiión nóni o stán. Es quél ángulo tigonométio uo véti oini on l oign l sistm

Más detalles

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada.

Método del spline cúbico. Cuando un número grande de datos tiene que ajustarse a una curva suave, la interpolación de Lagrange no es adecuada. MÉTODO DEL PLINE CÚBICO PROGRAMACIÓN AVANZADA emestre 09- Método del sple úo. Cudo u úmero grde de dtos tee que justrse u urv suve l terpoló de Lgrge o es deud. Pr esto se emple el método del sple úo este

Más detalles

COSAS DE DIVISORES Y HOTELES

COSAS DE DIVISORES Y HOTELES COSAS DE DIVISORES Y HOTELES E est sesió trtremos de resolver el siguiete rolem: Prolem: El hotel de ls mil hitioes. Cuet ue e ierto ís hí u gr hotel ue teí 000 hitioes y otros ttos emledos. Estos, u dí

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación E.T.S.I. Idustrils y Tlcomuicció Curso 00-0 Grdos E.T.S.I. Idustrils y Tlcomuicció Asigtur: Cálculo I Tm : Sucsios y Sris Numérics. Sris d Potcis. Ejrcicios propustos Obtr los cutro primros térmios, sí

Más detalles

perspectiva cónica & proyección de sombras

perspectiva cónica & proyección de sombras expresión grái rojs mioletti primer ño este ossier es sólo un poyo el ontenio pso en lses, pensno en reorzr oneptos que pueen ser un tnto omplejos e explir... y más, e entener. l prouni on l que se ps

Más detalles

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1

Teorema Maestro. Introducción. Arturo Díaz Pérez. Recurrencia general para estrategias divide y vencerás. Análisis y Complejidad de Algoritmos 1 Arturo Díz Pérez Aálisis y Diseño e Aloritmos Teorem Mestro Arturo Díz Pérez Aálisis y Diseño e Aloritmos Mestro- Itroucció Recurreci eerl pr estrteis ivie y vecerás T + T T Aálisis y Diseño e Aloritmos

Más detalles

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A

I.E.S. Mediterráneo de Málaga Junio 2012 Juan Carlos Alonso Gianonatti PROPUESTA A I.E.S. Mditrráno d Málg Junio Jun Crlos lonso Ginontti PROPUEST.- ( punto) S f() un función positiv n l intrvlo [ ] sí ( ) f pr. Si l ár itd por f() l j d bciss (j O) ls rcts s igul clcul l ár dl rcinto

Más detalles

4 Lugar Geométrico de las Raíces.

4 Lugar Geométrico de las Raíces. ute: Lug Geométo e l Ríe L uó e lo olo e tem lele otee l fomó elevte e éte E efeto t e ét e uee olu e u etl teít ám etát E ete ítulo e ev el oeto e Lug Geométo e l Ríe omo el gáfo e l uó e lo olo e u tem

Más detalles

POTENCIA BASE EXPONENTE VALOR

POTENCIA BASE EXPONENTE VALOR TEMA POTENCIAS Y RADICALES CONCEPTO DE POTENCIA Un potni s un or rvi sriir un prouto oro por vrios tors iuls. = Los lntos qu onstitun un potni son L s l potni s l núro qu ultiplios por sí iso n st so l.

Más detalles

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma:

UNIDAD 3: SISTEMAS DE ECUACIONES LINEALES. 1. DEFINICIONES. Un sistema de m ecuaciones lineales con n incógnitas es una expresión de la forma: IE Pdr Povd (Gudi) Mtátics plicds ls CC II Dprtto d Mtátics Bloqu I: Álgr il Profsor: Ró ort Nvrro Uidd : ists d Ecucios ils UNIDD : ITEM DE ECUCIONE INEE DEFINICIONE U sist d cucios lils co icógits s

Más detalles

ÁREAS DE REGIONES SOMBREADAS

ÁREAS DE REGIONES SOMBREADAS TILE pítulo 0 ÁE E EGIE E Ejplo º i s un uro lo y "" s ntro, ntons l ár l rgión sor s: soluión : or trslo rgions sors sí tnos qu l ár l rgión sor s un triángulo, qu s igul l urt prt l uro. so Ejplo º i

Más detalles

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES 3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin

Más detalles

4. Medios dependientes de la frecuencia.

4. Medios dependientes de la frecuencia. 4. Mos s l frcuc. Uo los logros ás ors l MFT h so l or clculr os s l frcuc.,,4 S brgo sos éoos s bs srrollos ácos qu so xusos for uy suc y ás bsos éoos ácos o usuls l lgu l físc, ls coo l rsfor Z. Por

Más detalles

PROFESIOGRAMA CLAVE DENOMINACION DEL PUESTO NIVEL SALARIAL TRAMO DE CONTROL CLAVE REPORTA A NIVEL SALARIAL FUNCIONES

PROFESIOGRAMA CLAVE DENOMINACION DEL PUESTO NIVEL SALARIAL TRAMO DE CONTROL CLAVE REPORTA A NIVEL SALARIAL FUNCIONES ÓG: R--19 / Versión: 0 /.:07/12/04 ÉUL VLUÓ UT ctualización: nero 2009 RGRM LV M L UT VL LRL RTR TRM TRL LV RRT VL LRL J RTV RÓ GRL UVR TLÓG LV URV VL LRL BG GRL RTR VULÓ RTR R M RTR MTRÓ Y Z JTUR RTMT

Más detalles

ALGUNOS COMENTARIOS ACERCA DE LA CLASIFICACIÓN DE ACTIVIDADES ECONÓMICAS (CAE) Y DEL NOMENCLADOR DE ACTIVIDADES ECONÓMICAS (NAE)

ALGUNOS COMENTARIOS ACERCA DE LA CLASIFICACIÓN DE ACTIVIDADES ECONÓMICAS (CAE) Y DEL NOMENCLADOR DE ACTIVIDADES ECONÓMICAS (NAE) ágina 1 GUOS OMTROS R SFÓ TVS OÓMS () Y OMOR TVS OÓMS () RS FRS TR Y l tiene un primer nivel de apertura en las sferas, lo que no incluye el. l concepto de industria para el difiere bastante del sector

Más detalles

Respuesta en régimen permanente a una entrada senoidal, resonancia y frecuencia natural de oscilación

Respuesta en régimen permanente a una entrada senoidal, resonancia y frecuencia natural de oscilación ur: Ig. Jrg lg - JTP Má zd Pág d 6 Fuld d Igrí Ursdd Nl d Mr dl Pl - rg spus rég pr u rd sdl, rs fru url d sló Supgs qu s u ss ll, r l p sl, rrzd pr su fuó prl, l uál grss u sñl.. s µ E grl, l sld dl ss

Más detalles

DETERMINANTES SELECTIVIDAD ZARAGOZA

DETERMINANTES SELECTIVIDAD ZARAGOZA DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0

Más detalles

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica.

Parte 1: Fundamentos matemáticos. Parte 2: Mecánica Cuántica. INTRODUCCIÓN L MECÁNIC CUÁNTIC Prte : Fudmetos mtemátos Prte : Meá Cuát Prte : FUNDMENTOS MTEMÁTICOS Espos etorles ompleos de dmesó ft Operdores leles Represetó mtrl Proyetores utolores y utoetores Operdor

Más detalles