, donde a y b son números cualesquiera.
|
|
- Vicenta Reyes Castilla
- hace 5 años
- Vistas:
Transcripción
1 Mtemátis Mtries José Mrí Mrtínez Meino (SM, MJ6 D l mtriz enuentr tos ls mtries P tles que P = P. Soluión: Se ese que Por tnto, ee umplirse que: Por tnto, P, one y son números ulesquier.
2 Mtemátis Mtries José Mrí Mrtínez Meino (SM, GS6 ) Sen, y C tres mtries tles que el prouto C es un mtriz y el prouto C t es un mtriz ur, sieno C t l trspuest e C. Clul, rzonno l respuest, ls imensiones e, y C. ) D M, otén tos ls mtries que onmutn on M, es eir, que verifin M = M. ) Clul l mtriz Y que verifi M Y + M Y =, sieno M l mtriz en ), M l mtriz invers e M e l mtriz uni e oren. Soluión: ) Pr multiplir os mtries es neesrio que el número e olumns e l primer oini on el número e fils e l segun. Es eir, pueen multiplirse mtries e imensiones m n por n p, sieno el resulto un mtriz e imensión m p. Por tnto, si el prouto C es un mtriz, l mtriz ee ser e imensión n, l e imensión n p, y l C e imensión p. Pr que pue relizrse el prouto C t, mtries ( n) ( p), es neesrio que n =. Y si el resulto, que es e imensión p, es un mtriz ur, entones p =. Por onsiguiente: es un mtriz e imensión ;, e imensión ; y C e imensión. ) Si ee umplirse que: = ; = ; =. L mtriz ) M M, pues M M M t ij (Tmién puee otenerse por el métoo e Guss Jorn.) Como M Y + M Y = (M + M ) Y =. Luego: Y / / Y
3 Mtemátis Mtries José Mrí Mrtínez Meino (SM, PS7 Se l mtriz. ) Compror que verifi O, on mtriz ienti y O mtriz nul.( punto) ) Clul ) sánose en los prtos nteriores y sin reurrir l álulo e inverss hll l mtriz que verifi l igul. Soluión: ) Multiplino se tiene: Por tnto, O. ) Como. Por tnto, ) De ) ( Luego,
4 Mtemátis Mtries José Mrí Mrtínez Meino (SM, CNS7 Resolver l euión mtriil ) (, sieno, e Soluión: Operno en l euión se tiene: ) ( Multiplino por por mos los se tiene: Como se tiene que Not: L invers e puee lulrse por el métoo e GussJorn. sí: F F L invers es.
5 Mtemátis Mtries José Mrí Mrtínez Meino (SM, MJ7 Ds ls mtries se pie: ) (, puntos). Enontrr ls oniiones que een umplir,, pr que se verifique =. ) (, puntos). Pr = = =, lulr. Soluión: ) Multiplino e igulno se otiene: = = 7 7 Dee umplirse que: 7 7 = = ) Pr = = =,. Luego: ; ;
6 Mtemátis Mtries José Mrí Mrtínez Meino (SM, 6 PVS7 Sen, y ls mtries s por, y 6 Contestr rzonmente l siguiente pregunt. Existe lgún vlor e R tl que l igul se iert? En so firmtivo hllr iho vlor e. Soluión: Hllmos : = ) ( Pr que ee umplirse, l menos, que: = =. Este vlor e umple l igul e los emás elementos e ms mtries; por tnto, sí existe el vlor e peio en l uestión.
7 Mtemátis Mtries José Mrí Mrtínez Meino (SM, 7 NS7 D l mtriz enuentr os mtries, y C, e tmño y e rngo, tles que el rngo e se y el rngo e C se. Soluión: Hy infini e soluiones. Por ejemplo, y C. Como puee verse:, que tiene rngo. C, que tiene rngo.
8 Mtemátis Mtries CVS7 6 x Ds ls mtries y, se pie: y ) Otener rzonmente toos los vlores e pr los que es l úni soluión e l euión. ) Resolver l euión mtriil. Soluión: ) O O 6 x 6 y x y Se tiene el sistem (6 ) x y. x ( ) y Pr que este sistem teng soluión úni es neesrio que el rngo e l mtriz e oefiientes vlg. Pr ello: 6 7 y. Por tnto, siempre que y l euión soluión será. tenrá soluión úni, y est ) L euión es l orresponiente uno =. D lugr l sistem x y x y x t L soluión e este sistem es x = y. Luego, l mtriz soluión es y t José Mrí Mrtínez Meino (SM,
9 Mtemátis Mtries José Mrí Mrtínez Meino (SM, 9 CTJ6 Ds ls mtries y ) Clul y. ) Comprue que Soluión: ) ) Do que = y que se umple que. Tmién puee verse multiplino.
10 Mtemátis Mtries CMJ6 ) Despej l mtriz en funión e e en l euión ( ), sieno y mtries urs e oren os, e l mtriz ienti e oren os. ) Resuelve l euión, si e l mtriz ienti e oren os. Soluión: ) Operno se tiene: ( ) ( ) ) De ( ) L invers e es, ( t ij ), sieno ij l mtriz e los juntos e. Como Por tnto: y ij José Mrí Mrtínez Meino (SM,
PROBLEMAS DE ÁLGEBRA DE MATRICES
Mtemátis Álger e mtries José Mrí Mrtínez Meino PROLEMS DE ÁLGER DE MTRCES Oservión: L myorí e estos ejeriios proeen e ls prues e Seletivi D l mtriz enuentr tos ls mtries P tles que P P Soluión: Se ese
Matrices y determinantes
Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net) Mtries eterminntes CTS. Sen ls mtries, C. Hll l mtri ( C). Soluión: Mtemátis CCSS II Mtries José Mrí Mrtíne Meino (SM, www.profes.net)
Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:
Uni Mtries PÁGINA 7 SOLUCIONES. L resoluión e los sistems puee expresrse e l form siguiente: L segun mtriz proporion l soluión x 5,y 6. L últim mtriz proporion l soluión x, y, z 4. . Vemos que P P. Pr
Hacia la universidad Álgebra lineal
Hi l universi Álger linel OPCIÓN A Soluionrio. Un mtriz ur A se llm ntisimétri uno su trspuest es igul su opuest. Otén l form generl e un mtriz A e oren que se ntisimétri. Clul A, A y A. Consieremos l
CUESTIONES RESUELTAS 1. VECTORES Y MATRICES FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA
CUESTIONES RESUELTS. VECTORES Y MTRICES FUNDMENTOS DE MTEMÁTICS. º GRDO GESTIÓN ERONÚTIC. Se el onjunto e vetores } tl que entones se verifi:. El onjunto M es linelmente inepeniente.. El onjunto M tiene
Matemática II Tema 4: matriz inversa y determinante
Mtemáti II Tem 4: mtriz invers y eterminnte 2012 2013 Ínie Mtriz invertile 1 Definiión y propiees 1 Cómputo e l mtriz invers 3 Determinnte e un mtriz 4 Propiees e los eterminntes 4 Cómputo el eterminnte
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - S - 59 7 Mtemátis ISSN: 988-79X 6 MTRICES. MTRIZ INVERS. DETERMINNTES. plino ls propiees e los eterminntes y sin utilizr l regl e Srrus, lulr rzonmente ls ríes e l euión polinómi. Enunir ls propiees
TEMA 9. DETERMINANTES.
Uni.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl e eterminntes. Determinnte e mtries e oren y oren... Determinnte mtries urs e oren.. Determinnte mtries urs e oren.
MATRICES: un apunte teórico-práctico
MRICES: un punte teório-prátio Definiión Un mtriz e tmño n x m es un rreglo e números reles oloos en n fils (o renglones) y m olumns, e l siguiente form: [ ].. n Los números se llmn elementos o entrs e
Determinantes D - 1 DETERMINANTES
Determinntes D - DETERMINNTES Determinnte e un mtri ur e oren os Definiión: D un mtri ur e oren os numero rel: Det (), se llm eterminnte e l El eterminnte e un mtri ur e oren os es igul l routo e los elementos
DETERMINANTES. 1. Calcular el valor del determinante. Solución: Determinante tipo Van der Mondem. sustituyendo en la primera expresión
DETERMINANTES. lulr el vlor el eterminnte ² ² ² Soluión: Sno ftor omún e en lª fil Sno ftor omún e en l ª fil ² ² ² ² ² ² Determinnte tipo Vn er Monem. ² ² ² ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) sustituyeno
MATRICES Y DETERMINANTES
MATRICES Y DETERMINANTES EJERCICIOS RESUELTOS D l triz A, qué relión een gurr ls onstntes pr que se verifique l igul A A. Cluleos A : A. Coo se h e uplir que A A, teneos que:, por tnto se otiene el siguiente
ALGEBRA. 1. Si A y B son matrices cuadradas de orden n, se cumple la relación (A-B) 2 = A 2-2AB+B 2?
ejeriiosemenes.om. Si A B son mtries udrds de orden n, se umple l relión (AB) A ABB?. Siendo que d e f. Hllr el vlor de: g h i ( e) i h g d g i d f ) (d e) f i e h ) h e ) h/ / e/ e i h i f i f. Enuni
DETERMINANTES SELECTIVIDAD ZARAGOZA
DETERMINANTES SELECTIVIDAD ZARAGOZA. (S-97)Hllr el rngo de l mtriz B 0 0 según se el vlor del prámetro [,5 puntos] Puesto que el menor 0 0 rgb 0 () 0 ( ) 0 ) Pr 0 r(b) ) Pr 0 0 - B 0-0 0 - r(b) 0-0 - 0-0
TEMA 5: FRACCIONES. Las fracciones permiten trabajar de manera simbólica con cantidades no enteras.
Alonso Fernánez Glián TEMA FRACCIONES Ls friones permiten trjr e mner simóli on nties no enters.. CONCEPTO DE FRACCIÓN Un frión es un expresión e l form numeror enominor ( 0) Represent el resulto e iviir
TEMA 2. Determinantes Problemas Resueltos
Memáis II (hillero de Cienis). Soluiones de los prolems propuesos. Tem Clulo de deerminnes TEM. Deerminnes Prolems Resuelos. Hll el vlor de los siguienes deerminnes ) ) ) C Soluión ) Se desrroll por l
Solución: Las transformaciones y el resultado de hacer el determinante en cada caso son: 1º. A A
Memáis II Deerminnes PVJ7 Se l mriz 9 8 7 Se l mriz que resul l relizr en ls siguienes rnsformiones: primero se mulipli por sí mism, espués se min e lugr l fil segun l erer finlmene se muliplin oos los
MATRICES , B= , B= , I= ,I= 6.- Hallar todas las matrices A que satisfacen a la ecuación. , se pide : Calcular 3A A t -2I. ,hallarx 2 y X 3.
Ejeriios de ÁLGEBRA º Bhillerto págin MATRICES.- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Dds ls mtries A=, B=, lulr A+B, A-B,AB,BA, AA,BB..- Clulr A -A I, siendo: A=, I=.- Resolver el sistem
MATRICES Y DETERMINANTES
Drio Estudio C/ Grn Ví, 8 Mdrid, Espñ T: () 9 98 E: info@drioestudio.es www.drioestudio.es. Dds ls tries A y B, lulr: ) A B ) A t B t. Dds ls tries A, B, C y D, relizr todos los produtos que sen posiles..
IES CASTELAR BADAJOZ Examen Junio de 2011(Específico) Solución Antonio Mengiano Corbacho UNIVERSIDAD DEL PAÍS VASCO MATEMÁTICAS II
IES STELR BDJOZ Emen Junio e (Espeífio) ntonio engino orho UIVERSIDD DEL PÍS VSO TEÁTIS II TEÁTIS II Tiempo máimo: hor minutos Instruiones: El lumno elegirá un e ls os opiones propuests un e ls utro uestiones
Tema 2 Matrices Matemáticas CCSSII 2º Bachillerato 1
Tem Mtries Mtemátis CCSSII º hillerto TEM MTRICES OPERCIONES CON MTRICES EJERCICIO D l mtri ompre qe = I sieno I l mtri ienti Usno l fórml nterior ll Compromos qe = - I igles Son I Utilino qe = - I llmos
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
CRISTINA RONDA HERNÁNDEZ Matrices y determinantes 1
RISTIN ROND HERNÁNDEZ Mries deerminnes OLEGIO SN LERTO MGNO MTEMÁTIS II MTRIES Y DETERMINNTES. 8 MODELO OPIÓN Ejeriio. [ 5 punos] Dds ls mries lul l mriz P que verifi P = T ( T es l mriz rnspues de )..
que verifican A 2 = A.
. Hll ls mtries A que verifin A A.. Do el sistem: m ( m ) m ) Disútelo en funión el vlor e m. ) Resuélvelo en el so m represent gráfimente l situión. 3. Consieremos ls mtries B C Hll un mtri A tl que A
Determinantes. Ejercicio nº 1.-
Deerminnes Ejeriio nº.- Hll el vlor e los siguienes eerminnes. En el pro ), lul, emás, los posiles vlores e pr que el eerminne se ero: Ejeriio nº.- ) Clul el vlor el eerminne: ) Resuelve l euión: Ejeriio
UNIDAD 14 LA ELIPSE Y LA HIPÉRBOLA
UNIDAD LA ELIPSE Y LA HIPÉRBOLA EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd plirás ls definiiones los elementos que rterizn l elipse l hipérol en ls soluiones de ejeriios prolems. Ojetivo.
Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles.
Memáis CCSS II Mries José Mrí Mríne Meino Mries Oservión: L morí e esos ejeriios se hn propueso en ls prues e Seleivi, en los isinos isrios universirios espñoles.. Sen ls mries, C. Hll l mri = ( C). Soluión:.
Una ecuación lineal con dos incógnitas tiene infinitas soluciones y si las representamos forman una recta.
TEMA : SISTEMAS DE ECUACIONES ECUACIONES LINEALES CON DOS INCÓGNITAS Un euión linel on os inógnits es un igul lgeri el tipo: + = one e son ls inógnits,, son números onoios. Un soluión e un euión linel
TEMA 7: DETERMINANTES
lonso Fernández Glián TEM : DETERMINNTES El determinnte de un mtriz udrd es ierto número que se lul prtir de ell y que ontiene informión signifitiv sore l mtriz.. DETERMINNTES DE ORDEN Y El álulo de determinntes
TEMA 2. DETERMINANTES
TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se
SESIÓN 11 SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I
Mtemátis I SESIÓN SISTEMA DE ECUACIONES DE PRIMER GRADO CON DOS INCOGNITAS I I. CONTENIDOS:. Conepto y representión geométri.. Métodos de soluión: o Igulión o Sustituión. o Reduión (sum y rest). o Determinnte.
. b) Una matriz Y tal que. . Hallar A n para todo numero entero. B y. B Encontrar la
Uni : Mtries. Clul, sieno D l mtri ; ) Clul, ) Hll un le generl pr lulr n. D l mtri, lul, si eisten ls siguientes mtries: ) Un mtri X tl que X. ) Un mtri Y tl que Y (PU). D l mtri. Hllr n pr too numero
ECUACIONES DE PRIMER Y SEGUNDO GRADO
UNIDAD ECUACIONES DE PRIMER Y SEGUNDO GRADO EJERCICIOS RESUELTOS Ojetivo generl. Al terminr est Unidd resolverás ejeriios y prolems que involuren l soluión de euiones de primer grdo y de segundo grdo Ojetivo.
TEMA 9. DETERMINANTES.
Unidd.Determinntes TEM. DETERMINNTES.. Coneptos previos, permutiones. Definiión generl de determinntes. Determinnte de mtries de orden y orden... Determinnte mtries udrds de orden.. Determinnte mtries
EJERCICIOS DE POTENCIAS Y LOGARITMOS. 1.- Calcula, mediante la aplicación de la definición, el valor de los siguientes logaritmos: log
EJERCICIOS DE POTECIAS Y LOGARITMOS - Clul, medinte l pliión de l definiión, el vlor de los siguientes ritmos: ) ) 79 ) 09 e) f) g) h) - Clul, medinte l pliión de l definiión, el vlor de los siguientes
A es de 2 2 y tiene dos valores propios distintos, por lo tanto es diagonalizable sobre IR.
Sergio Ynsen Núñez. Se A 8 3 3 Muestre que A es digonlizle sore IR. Soluión: 8 3 3 6 5 3 Los vlores propios de A sony3 A es de y tiene dos vlores propios distintos, por lo tnto es digonlizle sore IR. Otr
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO
UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
Colegio Sn Ptriio A-09 - Inorpordo l Enseñnz Ofiil Fundión Edutiv Sn Ptriio MATEMÁTICA º AÑO Trjo prátio Nº 8 Sistems de dos euiones lineles on dos inógnits Un sistem de euiones es un onjunto de dos o
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE ZARAGOZA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)
ES CSTELR DJOZ Menguino PRUE DE CCESO (LOGSE) UNVERSDD DE ZRGOZ SEPTEMRE (RESUELTOS por ntonio Menguino) MTEMÁTCS Tiempo máimo: hors Se vlorrá el uso del voulrio l notión ientíi Los errores ortográios,
determinante haciendo todos los productos, Tema 8. Determinantes.
Tem. Determinntes.. Definiión de determinntes.. Propieddes de los determinntes.. Cálulo de determinntes de orden myor que (No entr en seletividd).. Rngo de un mtriz.. Mtriz invers... Definiión del determinnte
Ejercicios TIPO de estequiometría Factores Conversión 4º ESO diciembre
Ejeriios TIPO e estequiometrí Ftores Conversión 4º ESO iiemre 011 1 1. Cálulos ms ms. Cálulos ms volumen. Cálulos volumen volumen 4. Cálulos on retivos impuros 5. Cálulos on renimiento istinto el 100 %
ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS
ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS Cinemáti e Menismos Tem 3 Itzir Mrtij López Mier Loizg Grmeni Deprtmento e Ingenierí Meáni Meknik Ingeniritz Sil 2 ANÁLISIS ESTRUCTURAL DE MECANISMOS PLANOS 1.
1 - Resolver los siguientes determinantes usando propiedades 1/10
- Resolver los siguientes determinntes usndo propieddes ) ) / ) d) e) f) / / g) / / / / / / / / / / / / / h) / / / / / / / / / / / / / / / i) / / / / j) / / 8 / k) h k w k w h w h k h k w - Hllr los vlores
B y sus traspuestas,. c) Ninguna de las anteriores. Solución: En este caso se cumple b), pues:
nálisis eáio (eáis Eresriles ) José rí rínez eino ROLES DE TRCES DETERNNTES eguns e io es () Ls ries, y sus rsuess, y, ulen: ) ) ) Ningun e ls neriores Soluión: En ese so se ule ), ues: L resues es ) ()
CALCULO DE CENTROS DE MASA: PLACAS
CALCULO DE CENTROS DE MASA: PLACAS Clulr l posiión el entro e mss e l siguiente pl suponieno que su ms está uniformemente istribui por to ell: b b( 1 k 3 ) Soluión: I.T.I. 1,, I.T.T. 1, En primer lugr,
SELECTIVIDAD: MATRICES. B y
SELETIVIDD: MTRIES EJERIIO. ) Sen dos ries udrds del iso orden que ienen invers. Ron si su produo iene invers. ) Dds ls ries - D, Deerin si D iene invers, en ese so, hálll. EJERIIO. onsider ls ries,. )
SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS
nstituto Dr. Jun Segundo Fernández Áre y urso: Mtemáti 4º ño. Profesor: Griel Bejr TRABAJO PRÁCTICO Nº. SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS RESOLUCIÓN DE SISTEMAS DE ECUACIONES Ténis de
Sus términos son antecedente y consecuente. Proporción. Una proporción es una igualdad entre dos razones.
Rzón y proporión. Rzón. Rzón entre os números y es el oiente. Sus términos son nteeente y onseuente. Proporión. Un proporión es un igul entre os rzones. Se lee es omo es.,, y son los términos e l proporión.
2.- Dadas las matrices A y B. Calcula A+B, A-B, A 2, B 2, AB, BA
ejeriiosemees.om MTRICES Y DETERMINNTES. Dds ls mtries Hllr ) ) B ).B d) B. e) +B f) C. g) C.B h) C.D i) j) B k) + l) B.B uioes. Dds ls mtries B. Clul +B, B,, B, B, B uió D C B.B / / / / / / / / B / /
Determinantes Bachillerato 2º. Determinantes. Los determinantes históricamente son anteriores a las matrices, pero por el auge de éstos han quedado
Determinntes hillerto º Determinntes Introduión: Los determinntes histórimente son nteriores ls mtries, pero por el uge de éstos hn queddo relegdos un º plno. El uso de los determinntes nos permitirá:
ECUACIONES DE PRIMER GRADO
IES Jun Grí Vldemor Deprtmento de Mtemátis TEMA : ECUACIONES º ESO Mtemátis B ECUACIONES DE PRIMER GRADO PASOS PARA RESOLVER UNA ECUACIÓN DE PRIMER GRADO. Eliminr préntesis si los hy). Eliminr denomindores
Cuestionario Respuestas
Cuestionrio Respuests Copright 2014, MtemtiTu Derehos reservdos 1) Un ineuión o desiguldd on un vrile (inógnit) es un enunido en que se presentn dos epresiones, l menos un on l vrile entre ells uno de
se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.
Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se
ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013
ÁLGR (Seleividd ) José Mrí Mríne Medino LGUNOS PROLMS D SLCTVDD PROPUSTOS N Mries deerinnes rgón, junio Deerin el rngo de l ri, que ree oninuión, según los vlores de : ) Deerin, si eise, un ri,, que verifique
MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES
Mtrices. Estudio de l comptibilidd de sistems Abel Mrtín & Mrt Mrtín Sierr MATRICES Y DETERMINANTES. ESTUDIO DE LA COMPATIBILIDAD DE SISTEMAS. APLICACIONES. Actividd propuest Escribe un mtri A de dimensión
Ejemplo para transformar un DFA en una Expresión Regular
Ejemplo pr trnsformr un DFA en un Expresión Regulr En este texto vmos ver uno e los métoos que se usn pr trnsformr utómts finitos eterminists en expresiones regulres, el métoo e eliminión e estos. Cuno
DETERMINANTES. 1. Utiliza las propiedades de los determinantes para calcular el valor de. a, b, c, d R.
Memáis II Deerminnes DETERMINNTES Oservión: L morí e esos ejeriios se hn propueso en ls prues e Seleivi, en los isinos isrios universirios espñoles.. Uiliz ls propiees e los eerminnes pr lulr el vlor e,,,
SISTEMAS DE ECUACIONES DE PRIMER GRADO
el log e me e i: Memáis I. Sisems e euiones. pág. SISTEMAS DE ECUACIONES DE PRIMER GRADO Un sisem e os euiones e primer gro on os inógnis puee esriirse sí: += `+`=` one los oefiienes e ls inógnis los érminos
UNIDAD 6 DETERMINANTES. 1. DETERMINANTE DE ORDEN UNO. Dada una matriz cuadrada de orden uno A = ( a DETERMINANTE DE ORDEN DOS.
IES Pr Pov Guix Mtátis II UNIDD DETERMINNTES.. DETERMINNTE DE ORDEN UNO. D un triz ur orn uno sri o in, oo l núro rl:. DETERMINNTE DE ORDEN DOS. D un triz ur orn os oo l núro rl: Ejplos:, s in l rinnt,
a vectores a y b se muestra en la figura del lado derecho.
Produto ruz o produto vetoril Otr form nturl de definir un produto entre vetores es trvés del áre del prlelogrmo determindo por dihos vetores. El prlelogrmo definido por los h vetores y se muestr en l
UNIDAD VI LA ELIPSE 6.1. ECUACIÓN EN FORMA COMÚN O CANÓNICA DE LA ELIPSE
UNIDAD VI LA ELIPSE OBJETIVO PARTIULAR Al onluir l unidd, el lumno onoerá plirá ls propieddes relionds on el lugr geométrio llmdo elipse, determinndo los distintos prámetros, su euión respetiv vievers.
MATRICES. Una matriz como la anterior con m filas y n columnas, diremos que es de orden mxn o de dimensión mxn
Mtrices MATRICES. DEFINICIÓN. Un mtriz A de m fils y n columns es un serie ordend de m n números ij, i,,m; j,,...n, dispuestos en fils y columns, tl como se indic continución:... n... n A........... m
INTEGRALES IMPROPIAS
INTEGRALES IMPROPIAS INDICE.- Integrles impropis de primer espeie....- Integrles impropis de segund espeie.- Integrles impropis del tipo C... 8 4.- Criterios de omprión 8.- Biliogrfi 0 DEFINICION DE INTEGRALES
En donde x representa la incógnita, y a, b y c son constantes.
FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.
Dadas las matrices: y. a) Hallar A 10. b) Hallar la matriz inversa de B. c) En el caso particular de k=0, halla B 10. (PAU Septiembre )
Dds ls mtrices: ) Hllr A. b) Hllr l mtri invers de B. c) En el cso prticulr de k=, hll B. (PAU Septiembre 4-5) ) A = = A = = = O A 4 = A A= O A = O ; lo mismo A 5, A 6 por tnto A = b) B = = ; Es un mtri
TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1
TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz
MATRICES. 1. Determinar la matriz transpuesta de cada una de las siguientes; , B= , C= 2. Efectúa la siguiente operación con matrices y calcula A
MTRICES. Determinr l mtriz trnspuest de cd un de ls siguientes;,, C 8. Efectú l siguiente operción con mtrices y clcul. Sen 8, y C determinr: ) t C ) (-C) t t c) -C( t -) d) - t -(C). Dds ls siguientes
MATRICES. MATRIZ INVERSA. DETERMINANTES.
DP. - AS - 59 7 Mteátics ISSN: 988-79X 5 6 MATRICES. MATRIZ INVERSA. DETERMINANTES. () Define rngo de un triz. () Un triz de tres fils y tres coluns tiene rngo tres, cóo vrí el rngo si quitos un colun?
Problemas puertas lógicas, karnaugh...
ENUNCIADOS Prolems puerts lógis, krnugh... 1. Psr el iruito formo por puerts lógis o iruito ominionl funión lógi o Boolen 2. Psr puerts lógis ls funiones oolens siguientes : F= AB'C'+D'+A+B'' F = A+B'+C'D''+A'+B''CA+B''
TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...
Deprtmento de Mtemátics TEM : MTRICES Un mtriz de orden mxn es un conjunto de m n números reles dispuestos en m fils y n columns... n... n... m m m... mn los números reles ij se les llm elementos de l
MATRICES. siendo. Ejercicio nº 1.- Ejercicio nº 2.- Dadas las matrices: b) Halla una matriz, X, tal que AX = B. Ejercicio nº 3.-
MTRICES Ejeriio nº - Ejeriio nº - Ds ls mtries: ) Hll n mtriz tl qe Ejeriio nº - Reselve el sigiente sistem mtriil: Ejeriio nº - Cll los vlores e pr qe l mtriz: verifiqe l eión l one l O son respetivmente
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL
FUNCIÓN CUADRÁTICA Y LA ECUACIÓN DE UNA PARÁBOLA HORIZONTAL El prolem de l práol horizontl Qué relión h entre ls propieddes nlítis de l funión udráti ls propieddes geométris de l práol horizontl? Como
MATRICES Y DETERMINANTES
Mtries MATRICES Y DETERMINANTES Muhos prolems que se presentn en l estísti, eonomí, meáni lási, ingenierí meáni - elétri y ún en ls ienis iológis y soiles se orn meinte el empleo e ls mtries. El onepto
5. RECTA Y PLANO EN EL ESPACIO
Teorí ejeriios de Mtemátis II. Geometrí Rets plnos en el espio. RECTA Y PLANO EN EL ESPACIO. PUNTOS EN EL ESPACIO Semos que pr determinr l posiión de un punto en el plno neesitmos tomr, por un prte, un
Tema 3. DETERMINANTES
Tem. DETERMINNTES Definición de determinnte El determinnte de un mtriz cudrd es un número. Pr l mtriz, su determinnte se denot por det() o por. Pr un mtriz de orden,, se define: Ejemplo: Pr un mtriz de
3º) (Andalucía, Junio, 00) Determina una matriz A simétrica (A coincide con su traspuesta) sabiendo que:
PROLEMS SORE MTRICES. PROFESOR: NTONIO PIZRRO. http://ficus.pntic.mec.es/pis NDLUCÍ-MTEMÁTICS PLICDS LS CCSSII: º) (ndlucí, Junio, 98) Si son dos mtrices culquier, es correct l siguiente cden de igulddes?:
2º DE BACHILLERATO MATRICES Y DETERMINANTES Soluciones -1- DETERMINANTES MATRIZ INVERSA. Anulamos. pivotando
º DE HLLERTO MTRES Y DETERMNNTES Soluones -- DETERMNNTES MTRZ NVERS. lulr el vlor del determnnte. Hllr, en funón de, el vlor del determnnte: en Sndo on votndo nulmos en Sndo ( ( en Sndo ( ( (. Enontrr
Matrices M - 1 MATRICES. Definición.- Una tabla de mxn elementos de K dispuestos en m filas y n columnas de la forma ...
Mtrices M - - Mtrices Se K un cuerpo MATRICES Definición- Un tl de n eleentos de K dispuestos en fils n coluns de l for recie el nore de tri de diensión n n n n En un tri el eleento ij ocup el lugr deterindo
3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p
IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrices deterinntes Mtrices deterinntes. Ejercicios de Selectividd. º.- Junio 99. i) Define rngo de un triz. ii) Un triz de tres fils tres coluns tiene rngo
22. Trigonometría, parte II
22. Trigonometrí, prte II Mtemátis II, 202-II 22. Trigonometrí, prte II Extensión del dominio Se P un punto sore l irunfereni x 2 + 2 =. Est irunfereni tiene rdio entro el origen O(0, 0). Denotmos por
1.6. BREVE REPASO DE LOGARITMOS.
.. BREVE REPASO DE LOGARITMOS. Sistems de ritmos. Si ulquier número positivo puede tomrse omo Bse, eiste infinito número de sistems de logritmos, pero trdiionlmente, solo se utilizn dos sistems: o ritmos
INTEGRAL INDEFINIDA. Derivación. Integración
Integrión. Cálulo de áres. INTEGRAL INDEFINIDA FUNCIÓN PRIMITIVA F() es un primitiv de f() si F ()= f(). Esto se epres sí: f() = F'() = F() L integrión es l operión invers l derivión, de modo que: FUNCIONES
A puede expresarse como producto de matrices elementales
TLLER GEOMETRÍ VECTORIL Y NLÍTIC FCULTD DE INGENIERÍ-UNIVERSIDD DE NTIOQUI - Profsor: Jim nrés Jrmillo Gonzálz jimj@onptoomputorsom Prt l mtril s tomo oumntos los profsors lrto Jrmillo Grimlo Ols En los
Óvalo dados los dos ejes: óvalo óptimo
l óvlo es un urv err y pln que está ompuest por utro, o más, ros e irunferéni simétrios entre sí. Suele venir efinio por os ejes que mrn sus imensiones y sirven e ejes e simetrí e los ros. Se emple freuentemente
Departamento de Matemáticas
Deprtmento e Mtemátis PROBLEMAS DE TRIGONOMETRÍA. RESOLUCIÓN DE TRIÁNGULOS. 1º Un señl e rreter ini que l peniente e ese trmo es el 1%, lo que quiere eir que por metros que reorre en horizontl siene 1
Toda expresión que conste de una expresión algebraica en su denominador y en el numerador.
TEMA : Epresiones Rcionles Contenio TEMA H: Epresiones Rcionles... Introucción epresiones rcionles... PRÁCTICA: Inic los vlores que no formn prte el conjunto solución... Simplificr Epresiones Rcionles...
INVERSA DE UNA MATRIZ
NVES E UN TZ l igul que pr hllr determinntes, restringiremos nuestro estudio mtrices cudrds utiliremos l mtri identidd de orden n ( n ). Podemos demostrr que si es culquier mtri cudrd de orden n, entonces
SISTEMAS DE ECUACIONES
SISTAS D CUACIONS. Resolver los siguientes sistems de dos euiones lineles on dos inógnits. Se puede resolver por ulquier método, pero deido que es fáil despejr l de l primer euión, lo resuelvo por sustituión.
LAS MATRICES COMO TRANSFORMACIONES LINEALES DEL PLANO
IES Rel Instituto e Jovellnos LAS MATRICES COMO TRANSFORMACIONES LINEALES DEL LANO. Ls mtries omo trnsformiones lineles el plno A lo lrgo e este tem estuiremos un serie e moifiiones el plno que llmremos
Determinantes de una matriz y matrices inversas
Determinntes de un mtriz y mtrices inverss Determinnte de un mtriz Está definido solmente pr mtrices cudrds. El determinnte de un mtriz cudrd es un número rel. Definición: Si = [ ij ] es un mtriz de dimensión
GUIA DE TRABAJO DE MATEMÁTICA DE REPASO GENERAL
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION INSTITUTO TÉCNICO JESUS OBRERO CATIA - CARACAS. CATEDRA: MATEMÁTICA 6to. Año. Docente: Lic. An C. López e Aris GUIA DE
Determinantes y la Regla de Cramer
Determinntes y l Regl de Crmer Mtriz Invers Not: un mtriz cudrd que no tiene invers se llm mtriz singulr. Ejemplo: Hllr l invers de A. A 4 Si l plicr el método de Guss se obtiene ceros en los elementos
Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:
Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión
1º (junio 1994) i) Estudiar, para los diferentes valores del parámetro a, la existencia de
Sistems de ecuciones lineles SISTEMAS DE ECUACIONES LINEALES EJERCICIOS DE SELECTIVIDAD º (junio 994) i) Estudir, pr los diferentes vlores del prámetro, l eistenci de soluciones del sistem resolverlo cundo
LOS NÚMEROS REALES. Los número 1,2,3 se denominan números naturales. El conjunto de los números naturales se representan con la letra N, así
LOS NÚMEROS REALES Los número,, se enominn números nturles. El onjunto e los números nturles se representn on l letr N, sí N {,,K } Si se sumn os números nturles el resulto es otro nturl, pero si se rest
m 2 9 8 La fórmula cuadrática que se usó para construir el ejemplo anterior es un caso particular
Funión Cudráti Unidd Conepto Un negoio de deorión, Alfomri Confort, onfeion tpies udrdos que miden entre metros de ldo, on diseños elusivos pedido. Queremos ver que superfiie tiene los tpies. Teniendo
Sistemas de Ecuaciones lineales Discusión con parámetros. Discutir el siguiente sistema de ecuaciones lineales según el valor del parámetro a:
ALGEBRA Sistems de Euiones lineles Disusión on prámetros Disutir el siguiente sistem de euiones lineles según el vlor del prámetro : + ( + ) = + = + = Interpretión: Del enunido se dedue que se trt de un
PROBLEMAS RESUELTOS. a) Simplificar por el método de Karnaugh la siguiente expresión:
PROLEM REUELTO ) implifir por el métoo e Krnugh l siguiente expresión: ) Diujr un iruito que relie ih funión on puerts lógis (eletivi nluz). Otenemos l expresión nóni y relizmos el mp e Krnugh pr utro
Esto es sólo una muestras de los ejercicios, repasa también los de la libreta y los del libro.
MATEMÁTICAS º ESO Esto es sólo un muestrs e los ejeriios, reps tmién los e l liret los el liro. Deprtmento e Mtemátis Coleio Sgro Corzón e Jesús ontever. eliz ests operiones: - 8 - -. Efetú: - - - - -