Solución de los Problemas del Capítulo 3
|
|
|
- Jorge Herrera Nieto
- hace 9 años
- Vistas:
Transcripción
1 1. Slccion l rspust corrct y xpliqu por qué. Un lctrón qu tin un n= y m= ) Db tnr un m s =+1/ b) Pud tnr un l= c) Pud tnr un l=, ó 1 d) Db tnr un l=1 L rspust corrct s l c) porqu si n=, los posibls vlors pr l son y 1. Culquir d los dos s posibl, por tnto l rspust d) s incorrct porqu dic qu l db sr 1 y como m= no hy obligtoridd n l vlor d l, simpr qu s ó 1. Tmpoco s corrct l rspust ), y qu l stdo d spín podrí sr d m s =+1/ ó m s =-1/ y por tnto l plbr db hc incorrct l rspust.. Cuál o culs d ls siguints proposicions son corrcts pr un lctrón n un n= y m=? Justifíclo ) El lctrón s un orbitl d Es corrct, y qu si n =, l pud vlr, 1 y. Un vlor d m=, por tnto, sólo pud provnir d un l=, por tnto d un orbitl d. b) El lctrón stá n l trcr cp principl Es corrcto. n=1 s l primr cp; n= s l sgund cp, n= s l trcr cp. c) El lctrón pud str n un orbitl p No s corrcto. Si stuvir n p, l =1 y m no podrí sr nunc d) El lctrón pud tnr un m s =+1/ Corrcto. El vlor d m s pud sr +1/ ó -1/. En rlción con ls cps, subcps y orbitls ) Qué nombr rcib l cp con n=? Cp M o Cp trcr b) cuánts subcps s ncuntrn n st nivl?. Subcp s, subcp p y subcp d
2 c) cuántos orbitls pudn tnr los númros cuánticos n= y l=1?. p 1, p o y p -1. Si los xprsmos como orbitls rls: p x, p y y p z. d) cuántos orbitls pudn tnr los númros cuánticos n= y m=1? Dos. El qu tng l =1 y m =1, y l qu tng l = y m=1 ) cuál s l númro totl d orbitls n l nivl? 9= n n l m Pr un lctrón n un átomo hidrognoid qu stá dfinido por un vlor d n= y d l=1. Cuánto vl su nrgí n J? Cuánto vl l módulo d su momnto ngulr orbitl? Cuánto pud vlr l componnt L z d su momnto ngulr orbitl? Not: utilic l bibliogrfí pr obtnr l vlor d ls constnts qu ncsit. Pr un átomo hidrognoid l nrgí d sus stdos sólo dpnd dl númro cuántico n y no dl l. Est nrgí, s dirctmnt proporcionl, invrsmnt proporcionl n, sindo l constnt d proporcionlidd R, l constnt d Rydbrg. E(n) = - R /n R = 1, m -1 x, m.s -1 x 6, J.s = 1, J E(n) = - 1, / = -.5, J Módulo dl momnto ngulr orbitl dl lctrón: h h h L = l ( l + 1) = 1(1 + 1) = π π π Componnt L z dl momnto ngulr orbitl: Son posibls trs posibls vlors L z = L z = + 1 h π
3 L z = 1 h π 5. Dtrmin l vlor d r, como función d, pr l qu l probbilidd d ncontrr l lctrón s cro, cundo stá n un orbitl p n un átomo d hidrógno. Rlic l mism oprción pr l ión Li + Pusto qu ncsitmos l vlor d r qu hc l función d probbilidd (ψ ) nul. Sólo hmos d tnr n cunt l función rdil, y qu n ls otrs funcions ngulrs, l rdio no stá como vribl y por tnto, tng ést l vlor qu tng, l rmónico sférico no s vrá fctdo. Pusto qu l función qu d l probbilidd s l función d ond l cudrdo y lo qu ncsitmos s sbr dond ést s nul, podmos rzonr igulmnt sobr cundo l función d ond s nul (dond s nul l función d ond tmbién s nulrá l probbilidd) Función rdil d un orbitl p (R,1 ): R,1 = 7 / 8 r r r / 6 6 Clculmos los vlors qu pudn nulr st función r r 6 r / = i. Si r= l función s nul ii. Si r= l función tmbién s nul, y qu l xponncil s hc cro r 6 iii. Si =, l función tmbién s nul. 6 Dspjndo r d st últim xprsión: r = 1. En l hidrógno =1, por tnto s nul n, 6,. En l Li +, =, por tnto s nul n,, A mdid qu umnt l crg dl núclo los orbitls s contrn normmnt. 6. Rprsnt n dos dimnsions l función Y(θ,φ) pr un orbitl p y n l plno xy Si s h d rprsntr n l plno xy, l vlor d θ=π/ y por tnto snθ=constnt=1. Anlizrmos l vrición dl rmónico sférico con l vrición d φ. Utilizrmos l coordnd r pr rprsntr l vlor d l función rmónico sférico.
4 Tbl d vlors d l función:.snφ = (/4π) 1/ φ snφ φ snφ 18º 1º,174 19º -,174 º,4 º -,4 º.5 1 -,5 45º,77 5 -,77 6º ,866 9º º,866 -,866 15º, ,77 15,5 -, Dtrmin n Å cul s l rdio d máxim probbilidd pr l lctrón n un orbitl 1s dl átomo d hidrógno. Pr clculr l rdio d máxim probbilidd, hmos d clculr l rdio d l suprfici sféric qu proporcion l máxim probbilidd d ncontrr l lctrón n ll.
5 Rcordmos lo qu signific l función dnsidd d probbilidd rdil. P = π 4 r Ψ1 s 4π r = ár d l sfr d rdio r. P= r R(r) Pr un orbitl 1s st función s: dp dr Pr vr cundo st función s máxim n función dl rdio, dbmos oprr pr ncontrr dond stá s máximo, s dcir plicr l drivd primr igulr cro: r / / 4 r r r = dscomponindo n términos (scndo fctors comuns) 4 P = r 4 r. por tnto l iguldd s cumpl si: = d dr r / r / r / ( r 4 1 r = r=; r= ; r= / Si clculmos l drivd sgund d l función y sustituimos los vlors ntriors ncontrdos, obtndrmos un vlor d l drivd sgund > pr los dos primros vlors d r y < pr l último vlor. Por tnto r mx = /. En l cso dl H, st vlor s, como pud prcirs n l figur. ) =, Dnsidd d probbilidd rdil pr un orbitl 1s.
6 8. Tnindo n cunt qu los puntos d máximo y mínimo n ls funcions sn y cos coincidn con puntos d máximo pr ls funcions sn y cos, dtrminr, pr l orbitl d xy, ) culs son ls dirccions d máxim probbilidd. b) Culs son los vlors d θ y φ pr los qu l probbilidd s nul c) qué plnos dfinn sos puntos n coordnds crtsins Función ngulr d los orbitls d xy, 1/ 5 ( d ) = ( sn θ ϕ ) Y, ± xy sn 4π ) Ls dirccions d máxim probbilidd srán qulls qu hgn qu l vlor d l función ngulr (xcptundo l término constnt) vlg uno. Es dcir: sn θsnφ = ±1, lo cul sólo s cirto si sn θ= ±1 y snφ = ±1. Pr qu sn θ= ±1, s db cumplir qu θ=π/, lo cul sitú l plno d máxim probbilidd n l plno XY. Pr qu snφ = ±1; φ = π/ + kπ, sindo k un númro ntro o cro; o s, φ = π/4 + kπ / Si k= φ = π/4, s dcir 45º, lo qu coincid con l bisctriz dl primr cudrnt dl plno XY d coordnds crtsins Si k=1 φ = π/4 + 1.π/ = π/4 s dcir 15º, lo qu coincid con l bisctriz dl sgundo cudrnt dl plno XY d coordnds crtsins. Si k= φ = π/4 + π = 5π/4 s dcir 5º, lo qu coincid con l bisctriz dl trcr cudrnt dl plno XY d coordnds crtsins. Si k= φ = π/4 + π/ = 7π/4 s dcir 15º, lo qu coincid con l bisctriz dl curto cudrnt dl plno XY d coordnds crtsins. b) Pr qu l función ngulr s nul, bst con qu lguno d los fctors dl producto s nul. Es dcir, sn θ=, ó snφ = Pr qu sn θ=, l ángulo db sr o un númro ntro d vcs π. Como l ángulo θ sólo tom vlors ntr y π, sólo stos dos vlors cumpln l condición. Los vlors d θ = dfinn los puntos sobr l j positivo d ls. Los vlors d θ = π dfinn los puntos sobr l j ngtivo d ls. Así pus, l j s un j nodl. Pr qu snφ =, l ángulo db sr o un númro ntro d vcs π, por lo qu: φ = + (k/) π Si φ =, los puntos stán sobr l prt positiv dl j X Si φ = π/, los puntos stán sobr l prt positiv dl j Y Si φ = π, los puntos stán sobr l prt ngtiv dl j X Si φ = π/, los puntos stán sobr l prt ngtiv dl j Y
7 c) Conjugndo los vlors obtnidos pr θ y pr φ, nos qud qu l plno X s un plno nodl y l plno Y s otro plno nodl.
IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho UNIVERSIDAD DE EXTREMADURA MATEMÁTICAS II
IES CASTELAR BADAJOZ Emn Junio d (Gnrl) Antonio ngino Corbcho UNIVERSIDAD DE ETREADURA ATEÁTICAS II ATEÁTICAS II Timpo máimo: hor minutos Instruccions: El lumno lgirá un d ls dos opcions propusts Cd un
TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES
3. LÍMITES COLEGIO RAIMUNDO LULIO Frnciscnos T.O.R. Cód. 8367 TEMA 3 LÍMITES Y CONTINUIDAD DE FUNCIONES Dfinición: S dic qu l límit d l función f s igul L, cundo tind, si cundo s proim, f s proim L, sin
Deducción de las reglas de derivación. Partiendo de las derivadas de la función potencial, la función exponencial y la función seno, ( ) ( ) 1
dmttmtics.wordprss.com Btriz d Otto Lópz Dducción d ls rgls d drivción Prtindo d ls drivds d l función potncil, l función ponncil l función sno, = R = f = =, f = sn = cos, f,, d ls rgls d drivción pr l
3dx dx 3. dx 1-4x. 7. 3xdx 4+x x 2
MsMtscom Intgrls Clculr l intgrl: ++ + (-) (+) - 7 + 8 ln - cos sn - - - + (+) ln ln 7 8 cos ln + + - +- - - + -+ ++ Ls gráfic (i), (ii) y (iii) corrspondn, no ncsrimnt por s ordn, ls d un función drivbl
26 EJERCICIOS de LOGARITMOS
6 EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
TRANSFORMADORES EN PARALELO
TRNFORMDORE EN PRLELO. Trnsformdors d igul rzón d trnsformción Not: no s tomn n cunt ls pérdids n l firro. q q q llmrmos s cumpl b. Trnsformdors d rzón d trnsformción un poco distints Rfridos l scundrio:
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis =, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién ts d vrición instntán. Intrprtción ométric d
UNIVERSIDAD DE LA RIOJA JUNIO lim
IES Mditrráno d Málg Emn Junio d Jun Crlos lonso Ginontti UNIVERSIDD DE L RIOJ JUNIO El lumno contstrá los jrcicios d un d ls dos propusts ( o ) qu s l ofrcn. Nunc dbrá contstr jrcicios d un propust jrcicios
OPCIÓN A. Días de lectura Total de páginas Quijote Eva E D ED Marta E 5 D + 14 (E 5).( D + 14) Susana E 11 D + 44 (E 11).( D + 44)
IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti OPCIÓN..- Ev Mrt Susn son trs jóvns migs qu s compromtn lr El Quijot st vrno. Cd un por sprdo n unción dl timpo dl qu dispon dcid lr un mismo
3º.- Junio i) Producto de matrices: definición, condiciones para su realización. Si A M m n. (la matriz A tiene m filas y n columnas), B M n p
IES EL PILES SELECTIVIDD OVIEDO DPTO. MTEMÁTICS Mtrics dtrinnts Mtrics dtrinnts. Ejrcicios d Slctividd. º.- Junio 99. i) Dfin rngo d un triz. ii) Un triz d trs fils trs coluns tin rngo trs, cóo pud vrir
REPRESENTACION GRAFICA.
REPRESENTACION GRAFICA. Calcular puntos notabls así como intrvalos d monotonía y curvatura d: ² - = 0 ; ² = ; = son los valors d qu anulan l dnominador D = R- y () = 0 ; - 4 = 0 ; = 0 posibl ma, min Monotonia:
INTEGRAL DEFINIDA ÁREAS Y VOLUMENES
Intgrl indinid. gl d Brrow INTEGA DEFINIDA ÁEAS Y OUMENES siguint rgl, qu s s n l torm undmntl dl cálculo intgrl, rlcion l intgrl dinid con ls intgrls indinids prmit clculr ls intgrls dinids. intgrl dinid
IES Mediterráneo de Málaga Solución Junio 2004 Juan Carlos Alonso Gianonatti OPCIÓN A
IES Mditrráno d Málg Solución Junio Jun rlos lonso Ginontti OPIÓN - undo l ño 8 Bthovn scrib su Primr Sinoní su dd s di vcs mor qu l dl jovncito Frn Schubrt Ps l timpo s Schubrt quin compon su célbr Sinoní
Tema 8 Límites Matemáticas II 2º Bachillerato 1. EJERCICIO 1 : Da una definición para estas expresiones y represéntalas gráficamente: c) 2.
Tm Límits Mtmátics II º Bchillrto TEMA LIMITES CÁLCULO DE LÍMITES EJERCICIO : D un dinición pr sts prons y rprséntls gráicmnt: ) ) 9 6 c) ) ) Cundo s proim, l unción s hc muy grnd ) Cundo s proim, l unción
DERIVADAS. La derivada de una función f en el punto de abscisa x = a, se define como el siguiente límite, si existe:
DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. DERIVADAS Dinición d drivd. L drivd d un unción n l punto d bscis, s din como l siuint límit, si ist: lím A l drivd d un unción n un punto s l llm tmbién
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE NAVARRA JUNIO 2012 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CSTELR DJOZ nguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE NVRR JUNIO (GENERL) (RESUELTOS por nonio nguino) TEÁTICS II Timpo máimo: hors minuos Rlir un d ls dos opcions propuss ( o ) OPCIÓN º) Esudi l
F U T S W W P V F W P V G U T S P V G F P V W P V P V W. nfec. G nfe C. Energía libre y fuerza electromotriz.
nrgí libr y furz lctromotriz. Dsd un punto d vist trmodinámico, sbmos qu tmprtur constnt, l disminución d l nrgí libr d Hlmholtz, F (pr un procso rvrsibl), rprsnt l trbjo totl (W) hcho sobr los lrddors,
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES
PROBLEMAS RESUELTOS DE RECTAS TANGENTES Y NORMALES ) (Part d un problma d Slctividad d Cincias y Tcnología 007) Sa f: R R la función dfinida por f() =. Dtrmina la cuación d la rcta tangnt a la gráfica
Materia: MATEMÁTICAS II PROPUESTA A. e x e x. 2x + 1. e x e 2x 3e x + 2 dx
Prubs d ccso Ensñns Univrsiris Oficils d Grdo. chillro. O. E. Mri: MTEMÁTCS nsruccions: El luno dbrá consr un d ls dos opcions propuss o. os jrcicios dbn rdcrs con clridd, dlldn ronndo ls rspuss. Puds
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE MURCIA JUNIO 2012 (GENERAL) MATEMÁTICAS II SOLUCIONES Tiempo máximo: 1 horas y 30 minutos ----------
IES ASTELAR BADAJOZ A nguino PRUEBA DE AESO (LOGSE) UNIVERSIDAD DE URIA JUNIO (GENERAL) ATEÁTIAS II SOLUIONES Timpo máimo: hors minutos Osrvcions importnts: El lumno drá rspondr tods ls custions d un d
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 7. INTEGRALES DEFINIDAS E IMPROPIAS
FUNDAMENTOS MATEMÁTICOS (Grdo n Ingnirí Informátic) Práctic 7. INTEGRALES DEFINIDAS E IMPROPIAS.- L intgrl dfinid d Rimnn. L intgrl dfinid d Rimnn surg prtir dl prolm dl cálculo d árs d suprficis dlimitds
1.3.4 Ejercicios resueltos sobre la función exponencial y logarítmica
.. Ejrcicios rsultos sobr l función ponncil rítmic. Us ls propidds d l función ponncil (torm ) pr simplificr totlmnt l siguint prsión:. Prub qu Simplifiqu inicilmnt l numrdor l dnomindor d l frcción. Así:
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8. LÍMITE DE UNA FUNCIÓN 8.. LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límit d una función n un punto f () = l S l: El it cuando tind a c d f() s l c Significa:
Función exponencial y logarítmica:
MATEMÁTICAS LA FUNCIÓN EXPONENCIAL Y LOGARÍTMICA º DE BACHILLER Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii)
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas y x 12x 2 y log 2 x ln x e e y ln 1 x
. Drivar las siguints funcions simplificar l rsultado n la mdida d lo posibl. ) 4) 7) ) 4 5 5 5 7 5) 8) ) 5 6) 5 9) 4 5 0) ) 7 ) ) 4) 4 5) 6) 7) 8) 9) ) 5) 0) 4 ln ) ln log 6) ln 8) ln ) 9) ) 5) 4) 7)
ECUACIONES EXPONENCIALES
ECUACIONES EXPONENCIALES. Rsolvr ls siguins cucions ponncils ) Eponncils con igul s, s iguln los ponns. ) Los dos érminos s pudn prsr como ponncils d igul s. c) 0' Los dos érminos s pudn prsr como ponncils
Análisis. b) Calcular razonadamente b y c para que sea derivable y calcular su función derivada.
MATEMÁTICAS º BACHILLERATO B 6-3- Análisis OPCIÓN A.- Dada la función + b + c f = Ln( + ) > a) Calcular sus asínoas b) Calcular razonadamn b y c para qu sa drivabl y calcular su función drivada. a) El
Solución de la ecuación de Schödinger para una partícula libre.
Solución d l cución d Schöding un tícul lib. Vmos nliz l volución tmol d l función d ond d un tícul lib con un jmlo concto. Ptimos d l siguint condición inicil: (; ) ik dond y k son dos constnts ls. Lo
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS
ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN. Dd l gráfic d l función f qu s djunt l prsnt, idntifiqu
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS
ESCUELA SUPEIO POLITÉCNICA DEL LITOAL INSTITUTO DE CIENCIAS MATEMÁTICAS Mtmátics d Nivl 0A Invirno 00 Sgund Evlución Ingnirís Abril d 00 Nombr: VESIÓN 0. Si g s un función d l n l cu gráfic stá dd por:
Por sólo citar algunos ejemplos, a continuación se mencionan las aplicaciones más conocidas de la integral:
Fcultd d Contdurí Administrción. UNAM Apliccions d l intgrl Autor: Dr. José Mnul Bcrr Espinos MATEMÁTICAS BÁSICAS APLICACIONES DE LA INTEGRAL Eistn muchos cmpos dl conociminto n qu istn pliccions d l intgrl.
61.1 6.1. SERIES NUMÉRICAS INFINITAS 6.2. SERIES DE TÉRMINOS POSITIVOS 6.3. SERIES ALTERNANTES 6.4. SERIES DE POTENCIAS
Cp. 6 Sris 6. 6.. SERIES NUMÉRICAS INFINITAS 6.. SERIES DE TÉRMINOS POSITIVOS 6.. SERIES ATERNANTES 6.. SERIES DE POTENCIAS Objtivo: S prtd qu l studit: Dtrmi covrgci o divrgci d sris. Empl sris pr rsolvr
PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE GALICIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos
IES CSTELR DJOZ Mnguino PRUE DE CCESO (LOGSE) UNIVERSIDD DE GLICI SEPTIEMRE - (RESUELTOS por ntonio Mnguino) MTEMÁTICS II Timpo máimo: hors minutos El lumno db rspondr solmnt los jrcicios d un d ls opcions
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamn Parcial. Análisis. Matmáticas II. Curso 010-011 I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. PRIMERA EVALUACIÓN. ANÁLISIS Curso 010-011 19-XI-010 MATERIA: MATEMÁTICAS II INSTRUCCIONES
IES Mediterráneo de Málaga Solución Junio 2014 Juan Carlos Alonso Gianonatti BLOQUE A
IES Mditrráno d Málg Solución Junio Jun Crlos lonso Ginontti BLOQUE CUESTIÓN.: Sbindo qu, clcul, sin dsrrollr ni utilir l rgl d Srrus, los siguints dtrminnts, indicndo n cd pso qué propidd d los dtrminnts
34 EJERCICIOS de LOGARITMOS
EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL
EJERCICIOS RESUELTOS DE FUNCIONES REALES DE VARIABLE REAL. Calcular los dominios d dfinición d las siguints funcions: a) f( ) 6 b) f( ) c) f( ) ln d) f( ) arctg 3 4 ) f( ) f) f( ) 5 g) f( ) sn 9 h) 4 4
Ejercicios de optimización
Ejercicios de optimizción 1. Entre todos los triángulos isósceles de perímetro 0, cuál es el de áre máxim? Función mximizr: A yh Relcionr vribles: Estudimos l función: h h y x h x y x y 0 x 0y 0 y 0 0y
4 3x 2x 3 6x x x x dt d x x dy p dx y
EJERCICIOS UNIDAD IV.- LA DERIVADA.- Comprub cd un d ls siguints drivds. d ) 8 d t 5 5 bt 5 t 5 bt dt d 6.-Rliz ls siguints drivds ) d.-comprobr cd un d ls siguints drivds. ) d d r d dr d d ( ) p b b b
PROGRESIONES ARITMETICAS
PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00
# - + # x # - integrales definidas. 017 resuelve estas integrales definidas. b) 2 = b) = - = calcula las integrales definidas.
intgrls dfinids 7 rsulv sts intgrls dfinids. ) + ( ) d b) d + ) + + ( ) d b) d + ln ln + ln + + 8 clcul ls intgrls dfinids. π ) ( sn ) d b) d ) ( sn ) d cos ( ) ( ) b) d ln + ln + ln 9 clcul, utilizndo
MatemáticasI. 1. Basta con mover el cuadrado para ver que el área de la región limitada es la cuarta parte del cuadrado.
MtmáticsI UNIDAD : Límits d fucios. Cotiuidd ACTIVIDADES-PÁG. 76. Podmos dcir lo siguit: ) Pr l gráfic dl prtdo I): f ) tid cudo tid f ) tid + cudo tid por l izquird f ) tid - cudo tid por l drch f ) tid
Tarea 11. Integral Impropia
Tr Intgrl Imroi Ers con l límit corrsondint cd un d ls siguints intgrls Mustr un dibujo qu indiqu l ár qu s clculrí (si ist) con l intgrl rsctiv, no clculs l intgrl d ; b) d ; c) d ; d) / cot( ) d En los
FUNCIONES DERIVABLES EN UN INTERVALO
DERIVADAS.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pá. FUNCIONES DERIVABLES EN UN INTERVALO Ls unions qu son ontinus n un intrvlo rrdo [, ] y drivls n un intrvlo irto, tinn propidds importnts. Torm d Roll.
UNIDAD 8 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Pdr Povd (Gudi Mtmátics Aplicds ls CCSS I UNIDAD 8 LÍMITES DE FUNCIONES CONTINUIDAD CONCEPTOS PREVIOS: Dcimos qu: y s l tind, si tom vlors cd vz más próimos Ejmplo: L scunci d númros ; ; ; 9; 8; ;
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Pdr Povd (Gudi Mtmátics I UNIDAD 9 LÍMITES DE FUNCIONES CONTINUIDAD Límit d un unción n un punto Límits ltrls Límit d un unción n un punto Límits n l ininito Comportminto d un unción cundo Comportminto
PROBLEMAS DE LÍMITES DE FUNCIONES (Por métodos algebraicos) Observación: Algunos de estos problemas provienen de las pruebas de Selectividad.
Funcions Límits y continuidad PROBLEMAS DE LÍMITES DE FUNCIONES Por métodos algbraicos Obsrvación: Algunos d stos problmas provinn d las prubas d Slctividad Si ist l it d una función f cuando a, y si f
lm í d x = lm í ln x + x 1 H = lm í x + e x 2
Autovaluación Página 8 Calcula los siguints límits: a) lm í c m b) lm í ccotg m c) lm í sn d) lm í ( ) / 8 ln 8 8 ln ( cos ) 8 a) lm í 8 c ln ln H ( / ) lm í ( )ln 8 ln m lm í 8 H lm í / 8 b) lm í 8 dcotg
31 EJERCICIOS de LOGARITMOS
EJERCICIOS d LOGARITMOS Función ponncil y rítmic:. Pr cd un d ls funcions qu figurn continución, s pid: i) Tbl d vlors y rprsntción gráfic. ii) Signo d f(). iii) Corts con los js. iv) Intrvlos d crciminto.
1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)
Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv
Opción A Ejercicio 1 opción A, modelo Septiembre 2011
IES Fco Ayala d Granada Sptimbr d 0 (Modlo ) Grmán-Jsús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 0-0 MATEMÁTICAS II Opción A Ejrcicio opción A, modlo Sptimbr 0 k si
(a+1)x+ay=3 (a+1)x+(a+1)y+(a+2)z=1 (a 2 +a)x+(a 2-1)y+(a 2-2a-8)z=2a+5. a 1. a+1. a+2 a 2-2a a+5 ~1 0. a=-1
EXTRAORDINARIO DE 4. PROBLEMA A. Estudi l siguint sistm d uions linls dpndint dl prámtro rl y rsuélvlo n los sos n qu s omptil: Aplimos l método d Guss: ~ + + + + + - 3 + --6 - -+3 (+)+y3 (+)+(+)y+(+)z
Proyecciones ortogonales (diédricas y triédricas)
Proyccions ortogonls (diédrics y triédrics) Pro. Rúl F. ongiorno S dnominn proyccions ortogonls l sistm d rprsntción qu nos prmit diujr n dirnts plnos un ojto situdo n l spcio. undo hlmos d sistms d rprsntción
IV. POSICIONES GEODESICAS
IV. OICIOE GEODEIC Un d ls finlidds principls d l godsi s l cálculo d ls coordnds godésics d puntos sobr l lipsoid. Ests coordnds s dnoinn Ltitud y Longitud y stán sipr rfrids un sist godésico pr-dtrindo.
Solución: Para que sea continua deben coincidir los límites laterales con su valor de definición en dicho punto x = 2. b 1 + b
Matmáticas Emprsarials I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES Drivabilidad ( ) b si S09. La función f ( ) s continua y drivabl n = : a( ) si a) Si a = y b = b) Si a = y b = 5 c) Nunca pud sr
a > 0 y a 1. Si la base es e se llama exponencial natural tiene la forma
INTRODUCCIÓN A LAS MATEMATICAS SUPERIORES TEMA 6 FUNCIONES LOGARÍTMICAS Un función ponncil d s tin l form f ( pr tod R > 0 y. Si l s s s llm ponncil nturl tin l form dond f (. L.- Con l informción qu cunt
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
III. FUNCIONES EXPONENCIALES Y LOGARÍTMICAS.. FUNCIÓN EXPONENCIAL n Hmos stado manjando n st trabajo prsions dl tipo n dond s una variabl llamada bas n una constant llamada ponnt, si intrcambiamos d lugar
Integrales impropias.
IX / 8 UNIVERSIDAD SIMON BOLIVAR MA nro-mrzo d 4 Dprtmnto d Mtmátics Purs y Aplicds. Intgrls impropis. Ejrcicios sugridos pr : los tms d ls clss dl 4 y 9 d mrzo d 4. Tms : Otrs forms indtrminds. Intgrls
CINEMÁTICA (TRAYECTORIA CONOCIDA)
1º Bachillrato: Cinmática (trayctoria conocida CINEMÁTICA (TRAYECTORIA CONOCIDA (Todos los datos y cuacions, n unidads dl S.I. 1. Un objto tin un moviminto uniform d rapidz 4 m/s. En l instant t=0 s ncuntra
Tema 13. Aplicaciones de las derivadas
Tma 3. Aplicacions d las drivadas. Monotonía. Crciminto y dcrciminto d una función.... Etrmos rlativos... 3 3. Optimización... 6. Curvatura... 7 5. Puntos d Inflión... 8 6. Propidads d las funcions drivabls,
SOLUCIONES DE LIMITES
SOLUCIONES DE LIMITES.. Ln Sustituyndo por obtnmos: INDETERMINADO Ln Como s trt d un indtrminción d tipo L Hopitl, plicmos dich rgl: Ln Ln Rsolvmos prt l it Ln INDETERMINACIÓN d tipo L Hopitl otr vz: 6Ln
Matemáticas II (Bachillerato de Ciencias). Soluciones de los problemas propuestos. Tema 8
Matmáticas II (Bacillrato d Cincias) Solucions d los problmas propustos Tma 8 7 TEMA 8 Drivadas Tormas Rgla d L Hôpital Problmas Rsultos Drivada d una función n un punto Utilizando la dfinición, calcula
EJERCICIOS DE REFUERZO DE ECUACIONES 4º ESO A
Dprtmnto Cinis Mtmátis ºA Euions, sistms inuions Colio Con Espin Prosor Ánl Fuiio Mrtínz EJERCICIOS DE REFUERZO DE ECUACIONES º ESO A Rsolvr ls siuints uions: - = - = + + = = + = + = - = - -=- - = - -
Ejercicios resueltos Distribuciones discretas y continuas
ROBABILIDAD ESADÍSICA (Espcialidads: Civil-Eléctrica-Mcánica-Química) Ejrcicios rsultos Distribucions discrtas y continuas ) La rsistncia a la comprsión d una mustra d cmnto s una variabl alatoria qu s
SOLUCIONARIO. UNIDAD 13: Introducción a las derivadas ACTIVIDADES-PÁG Las soluciones aparecen en la tabla.
UNIA : Introducción a las drivadas ACTIVIAES-PÁG. 0. Las solucions aparcn n la tabla. [0, ] [, 6] a) f () = b) f () = + c) f () = 9 d) f () = 7, 6 8, 67. El valor d los límits s: f ( h) f () a) lím 6 h
ACTIVIDADES FINALES EJERCICIOS. trino grau fernández. x lím. lím. lím. lím. sen x 1. x 1. lím x 0 sen x x. lím. x lím. sen x. x arcsen x lím 11.
L Í M I T E S th ls ACTIVIDADES FINALES EJERCICIOS Ln tg sn sn [ ( )] 5 sn 6 cotg 7 sn sn 8 9 sn rcsn sn b sn sn cotg 5 sn cos 6 sn 7 n 8 Ln 9 Ln trino gru frnándz th ls 5 Clculr pr qu s cumpl: π Ln tg
f (x)dx = f (x) dx. Si la respuesta es afirmativa justifíquese, si es negativa,
CALCULO INTEGRAL.(97).- Sa f() una función tal qu, para cualquira qu sa > s cumpl qu = Pruébs qu, ntoncs, s vrifica qu f( ) = f(), para todo >. f f..(97).- Sa la función f() = -. S pid: a) Hacr un dibujo
TEMA 5. Límites y continuidad de funciones Problemas Resueltos
Matmáticas Aplicadas a las Cincias Socials II Solucions d los problmas propustos Tma 7 Cálculo d its TEMA Límits y continuidad d funcions Problmas Rsultos Para la función rprsntada n la figura adjunta,
= + 3x dx = x + C. Reglas de Integración elementales estándar
.. Antidrivds: UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ECONÓMICAS DET-8, MÉTODODOS CUANTITATIVOS III GUÍA DE EJERCICIOS, UNIDAD III Hst hor hmos studido lo qu s dnomin El Cálculo
Aplicación de la Mecánica Cuántica a sistemas sencillos
Aplicción de l Mecánic Cuántic sistems sencillos Antonio M. Márquez Deprtmento de Químic Físic Universidd de Sevill Curso 15- Problem 1 Clcule los vlores promedio de x y x pr un prtícul en el estdo n =
INTEGRALES IMPROPIAS
NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES
x a es una serie de la forma que el radio de convergencia de la serie geométrica es el intervalo abierto
ERIE DE POTENCIA ERIE DE POTENCIA. Diició. U sri d pocis c s u sri d l orm c c c c... c... Por jmplo. i c y l sri d pocis om l orm....... Por jmplo. i c y l sri d pocis om l orm....... TEOREMA. El cojuo
Problemas Resueltos. el radio de la órbita circular, y la energía tiene el valor GMm 2 = a GM. 0. Es decir, 2 T 4π. GMm
Problmas sultos.0 Un satélit dscrib una órbita circular n torno a la Tirra. Si s cambia d rpnt la dircción d su vlocidad, pro no su módulo, studiar l cambio n su órbita y n su príodo. Al cambiar sólo la
VELOCIDAD DE REACCION
VLOCIDAD D RACCION. Sñlr ls proposicions corrcts rfrnts l locidd d un rcción químic: ) S pud xprsr n ls unidds mol - s-. Concntrción Flso. Sus unidds son impo mol l s moll b) S pud xprsr n ls unidds mol
SOLUCIONES DE LAS ACTIVIDADES Págs. 65 a 83
TEMA. ECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 6 a 8 Página 6. a) mcm (, ) ( ) + ( ) + 7 + / mcm (6, 0) 0 ( + ) ( ) 0 + 8 0 / c) mcm (7, ) 8 ( ) 7 ( + ) 8 (9 ) 8 97 / 9 d) mcm (8, ) 8 6 (0 ) 8 Página
LÍMITE DE FUNCIONES. lim. lim. lim. LÍMITE DE UNA FUNCIÓN CUANDO x + LÍMITE FINITO. DEFINICIÓN
LÍMITE DE FUNCIONES LÍMITE DE UNA FUNCIÓN CUANDO LÍMITE FINITO. DEFINICIÓN Cuando la función pud comportars d divrsas manras: f l Al aumntar los valors d, los valors d f s aproiman a un cirto númro l.
