$$$%%&%%$$$!!!""#""!!!

Tamaño: px
Comenzar la demostración a partir de la página:

Download "$$$%%&%%$$$!!!""#""!!!"

Transcripción

1 .! 1 Resuelve tú ( Pág ""#) Halla k sabiendo que 5 k-4 =15 Como 15 = 5, queda 5 k-4 = 5 k 4 = k = 7 k = 7/ Resuelve tú ( Pág ""') Un país tiene una población de 110 millones de habitantes y se espera que se duplique en 5 años. Halla la población que predice ese modelo para dentro de 60 años. # D = Tiempo que tarda en duplicarse = 5 años. # P 0 = Población inicial = 110 millones de habitantes. # t = 60 años. Aplicando la fórmula : P = P 0 t/d = /5 = = milloonneess. Un isótopo radiactivo del galio, utilizado en el diagnóstico de tumores malignos, tiene una semivida de 47 horas. Cuántos miligramos quedarán, de una cantidad inicial de 50 miligramos, al cabo de 7 días? $ M 0 = Masa inicial = 50 mg. $ S = Semivida = 47 horas. $ t = Tiempo = 7 días = 7 días 4 horas = 168 horas. Aplicamos la fórmula : M = M 0 (0 5) t/s = 50 (0 5) 168/47 = mgg. Resuelve tú ( Pág ""() Estima la semivida de un material radiactivo que se desintegra siguiendo la ley Q = Q 0 e t, con t medido en años

2 .! La semivida es el tiempo que ha de transcurrir para que la masa del material se reduzca a la mitad, es decir Q = 0 5 Q o, luego 0 5Q 0 = Q 0 e t, e t = 0 5. Para resolver esta ecuación el libro dice por tanteos sucesivos, nosotros aplicaremos logaritmos neperianos a ambos miembros : lne 0'0015t = ln0'5 0'0015t = ln0'5 t = ln0'5 0'0015 = 0' = 46'098 años = 0'0015 Resuelve tú ( Pág ")*) = 4466 aaññooss 11 meess 55 ddí íaass 77 hhoorraass 4455 minn 66 sseegg. Calcula qué población predice para Méico en el año 080 el modelo que acabamos de obtener. Comprobarás que la predicción no es razonable. La función obtenida en el libro es P = 67 8 e t, en donde t = 100 años que hay desde el inicio (1980) hasta el 080, luego eso daría una población: P = 67 8 e = 67 8 e 565 = milloness de habitantes, que no cabrían físicamente en Méico. En un resto fósil vegetal se detectan 44,5 miligramos de carbono 14, mientras que por comparación con un análogo vivo se calcula que en vida contenía unos 500 miligramos de ese elemento radiactivo. Qué podemos concluir acerca de la antigüedad de ese fósil? % Q 0 = Masa del isótopo de C-14 en vida = 500 mg. % Q = Masa de C 14 detectada en el fósil = Para hallar el tiempo aplicamos la fórmula : Q = Q 0 e t, 44 5 = 500 e t y despejamos el tiempo : e 0'00011t = 44'5 500 lne 0'00011t = ln 0'089 0'00011t = ' t = ' '00011 = 1999 años Resuelve tú ( Pág ")") Halla la función inversa de y = +. Dibuja una gráfica aproimada de ambas con ayuda de la calculadora.

3 .! y = +, despejamos : = y = y intercambiando variables : Las representaciones : y 1 = Resuelve tú ( Pág ")#) Halla el valor k que cumple la ecuación 67 8 e 5 k = 76 60, que aparecía en el Ejercicio de aplicación 5. 67'8e 5k = 76'60 e 5k = 76'60 67'8 lne 5k = ln1'1684 5k = 0'18 k = 0'18 5 = 0' Resuelve tú ( Pág ")+) Calcula el nivel en decibelios de una conversación normal cuya intensidad es de 10 6 vatios/m. I = 10-6 vatios/m. I 0 = 10-1 vatios/m. I D = 10log I 0 10 = 10log = 10log10 6 = 10(log + 6) = 10(0'48 + 6) = 64 8 deci ibelioss.

4 .! 4 PROBLEMAS PROPUESTOS 1 Para cada una de estas curvas escribe una función de la forma Ab X y otra de la forma Ce KX que la tengan por gráfica. ((a)) & f() = A b Como f(-) = 1 y f(1 6) = 6 05, disponemos de dos ecuaciones para hallar las dos incógnitas A y b : 1 = A b - y 6 05 = A b 1 6, dividimos una por otra : '05 1 A b = A b 1'6 6'05 = b hallar b : 6'05 = b b = 6'05 = 6'05 = 1' 649, o bien aplicando logaritmos : 1'6 + = b '6 y, para log6'05 log6'05 = '6logb logb = = 0'17154 b = 10 '6 Para calcular A, sustituimos b en cualesquiera de las dos originales : 0' '649 1= A 1'649 A = 1'649 = '7 Luego f() ) == & g() = C e k Como antes, sustituimos los dos puntos conocidos y resolvemos el sistema eponencial formado : 1 = C e k y 6 05 = C e 1 6k C e '6k, dividimos una entre otra : 6 '05 = = e y, para despejar k k C e '6k ln6'05 1'8 1 aplicamos logaritmos neperianos : ln6'05 = lne = '6k k = = '6 '6 Conocido k = ½, hallamos C sustituyendo su valor en la primera : 1= C e 1 = C e 1 C = e 1'6k y la función buscada es : gg( () ) == ee ee / / 1 == ee ++ / /.

5 .! 5 ((b)) & f() = A b Como f(0) = 5 y f(1 1) = 0 554, disponemos de dos ecuaciones para hallar las dos incógnitas A y b : 5 = A b 0 y = A b 1 1, dividimos una por otra : ' '1 A b 1'1 = 0'1108 = b y, para hallar b : 0 A b 0'1108 = b b = 0'1108 = 0'1108 = 0'15, o bien aplicando logaritmos : log0'1108 log0'1108 = 1'1logb logb = = 0'8686 b = 10 1'1 Para calcular A, sustituimos b en cualesquiera de las dos originales : 0'8686 0'15 5 = A 0'15 0 A = 5 Luego f() ) == & g() = C e k Como antes, sustituimos los dos puntos conocidos y resolvemos el sistema eponencial formado : 5 = C e 0 y = C e 1 1k 0'554 C e 1'1k, dividimos una entre otra : = = e y, para despejar k 0 5 C e 1'1k ln0'1108 ' aplicamos logaritmos neperianos : ln0'1108 = lne = 1'1k k = = 1'1 1'1 Conocido k = -, hallamos C sustituyendo su valor en la primera : 0 5 = C e C = 5 y la función buscada es : gg( () ) == 55 ee - Halla en cada una de estas ecuaciones: 1'1k - -. (a) 5 5 = (b) 9 = - (c) = (aa) ( ) = 5,como las bases son iguales, igualamos los eponentes y resolvemos la ecuación de º grado resultante :

6 .! 6 ± + = 0 = 9 8 ± 1 = = 1 (bb) ( ) 9 = ( ) = = = = (cc) ( ) = (10 ) = (10 ) 10 = 10 6 = 6 6 = = = Un capital de 1 millón, invertido al k % de interés simple, se convierte en t años en Dibuja en una gráfica la evolución de ese millón según se invierta: k 1 + millones. 100 t (aa) ( ) C(t) = (1+0 06) t ; C( (t)) == t (bb) ( ) C(t) = (1+0 0) t ; C( (t)) == t (cc) ( ) C(t) = (1+0 01) t ; C( (t)) == t (a) al 6 % (b) al % (c) al 1% t t t t t t 4 Si un capital inicial de 1 millón de pesetas se ve sometido a una inflación del k % anual, el poder adquisitivo de ese millón desciende. A los t años viene dado por adquisitivo según que la inflación sea: (a) 6 % (b) % (c) 1% t k 1. Dibuja en una gráfica ese poder 100

7 .! 7 (aa) ( ) C(t) = (1-0 06) t ; C( (t)) == t (bb) ( ) C(t) = (1-0 0) t ; C( (t)) == t (cc) ( ) C(t) = (1-0 01) t ; C( (t)) == t t t t t t t 5 Ensayando con paciencia en la calculadora, encuentra con dos cifras decimales un valor aproimado del punto en el que = (Fig. 1.4.a). Para acotar soluciones ponemos la ecuación = 0, para = 1, 1 = 1 > 0, para =, 4 8 = - 4 < 0, luego una solución está entre 1 y, procedemos por aproimaciones sucesivas en una hoja de cálculo que es más rápido, hallando los valores medios de los intervalos en que cambia de signo : El valor buscado se halla entre 1 7 y 1 74, como se nos pide con dos cifras decimales = 1 7. Como para = 9, 9-9 = -17, y para = 10, = 4, otro de los valores estará comprendido entre 9 y 10, con la hoja de cálculo, procedemos por aproimaciones sucesivas :

8 .! 8 Otro de los valores, con dos cifras decimales que cumple la ecuación es = 9 9 Lo podemos ver representando ambas funciones y observando los puntos de corte : 6 Dibuja la gráfica de y = 8 e -/. Tiene asíntotas?

9 .! 9 Sí, una asíntota horizontal y = 8 7 En el problema resuelto 4, cuál será la población de bacterias tras 0 horas? Es realista el resultado que se obtiene? P 0 = población inicial = 500 bacterias. D = tiempo de duplicación = 0 minutos. t = 0 horas = 0 60 = 1 00 min. Aplicamos la fórmula de crecimiento eponencial : P = P 0 t/d = /0 = = bacterias. No puedo imaginarme ese número y no sé si tendrían forma de sobrevivir tal cantidad de bacterias. 8 Representa la función y = 1 - e -/. 9 Con los mismos datos del Ejercicio de aplicación 5, es correcto el modelo P = 67,8(1,01) t? Y el modelo P = 67,8(1,04) t? Consideramos un modelo correcto si se ajusta a los datos eperimentales, es decir si al aplicarlo obtenemos los datos obtenidos por la eperiencia. Vamos a comprobarlo disponiendo los datos en forma de tabla :

10 .! 10 Aññoo PPoobbl laacci ióónn t ( ( ) ) t t ( ( ) ) t t (EE ( a) a ) 1 == PP- - PP (EE ( a) a ) == PP- - PP (EE ( rr) r ) 1== ( (EE a) a ) 1/ 1 /PP 00 % % % % % % (EE ( rr) r ) 1== ( (EE a) a ) 1/ 1 /PP 00 % % % % % P 1 (0) = 67 8 (1 01) 0 = P (0) = 67 8 (1 04) 0 = P 1 (1) = 67 8 (1 01) 1 = P (1) = 67 8 (1 04) 1 = P 1 () = 67 8 (1 01) = P () = 67 8 (1 04) = P 1 () = 67 8 (1 01) = P () = 67 8 (1 04) = P 1 (4) = 67 8 (1 01) 4 = P (4) = 67 8 (1 04) 4 = P 1 (5) = 67 8 (1 01) 5 = P (5) = 67 8 (1 04) 5 = El aceptarlo o no depende del error que estemos dispuestos a soportar, en las cuatro últimas filas se han tabulado los errores absolutos y relativos ( los signos significan por eceso( -) y por defecto (+)); vemos que a medida que transcurren los años los modelos teóricos se diferencian más de los datos reales ( debido a su carácter eponencial ) luego, yo rechazaría ambos modelos, el primero por defecto y el segundo por eceso. 10 Toda función eponencial b se puede escribir en base e. Por qué? Eplica cómo se hace para 10. Sea b = M, aplicando la definición de logaritmo log b M =, si ahora realizamos un cambio de base a base e : log b Log b M = log b e lnm =, y tomando los dos últimos miembros : e lnm = lnm = log b Definición de logaritmo M = e e Si hacemos b = 10, queda : 10 = e e... loge 0' Cuáles de estas propiedades son válidas para las gráficas de y = log b? log e b = b ( ya que b = M)

11 .! 11 (a) Son cóncavas hacia abajo (b) Pasan todas por el punto (1, 0) (c) No tienen máimos ni mínimos relativos. : En la gráfica siguiente se ha representado la función logarítmica en seis bases diferentes y = log y = log 5. y = log. y = ln y = log 1/ y = log 1/5 ((a)) No, son cóncavas hacia abajo las de base mayor que uno y cóncavas hacia arriba las de base comprendida entre cero y uno. ((b)) Todas pasan por el punto (1,0) ya que log b 1 =0 para cualquier b. ((c)) No tienen máimos ni mínimos relativos pues son o bien siempre crecientes (b >1) o decrecientes (b <1). 1 Escribe en forma de logaritmos las eponenciales: (a) 81 = 4 (b) = 8 1/

12 .! 1 ((a)) 81 = 4 log 81 = 4 ((b)) = 8 1/ log 8 = 1/ 1 Cuál de estas igualdades es correcta? (a) log 5 = 1/ (b) 10 logπ = lnπ e ((a)) log5 = ½. Es falsa. ((b)) 10 logπ = π = e lnπ. Es correcta. 14 Resuelve las ecuaciones: (a) 5 = 14,5 (b) e = 10 - (c) 100 = 10 + ((a)) 5 = 14 5, aplicando logaritmos a ambos miembros : log 5 = log 14 5, log 5 = log 14 5, y despejando : log14'5 '49775 = = = '5779 log5 0'69897 ((b)) e = 10 -, aplicando logaritmos neperianos ln(e ) = ln(10 - ), = ( ) ln10, ecuación de primer grado en donde despejamos : ln10 4' ln10 = ln10 ( ln10) = ln10 = = = 15'194 ln10 0'0585 ((c)) 100 = 10 + (10 ) = = 10 + = + = - = Resuelve las ecuaciones: (a) + - = (b) log ( + 8) - log ( - 1) = 1 (c) In ( ) = 7,5. ((a)) + - =, hacemos el cambio de variable = y :

13 .! = y + = y y + 1= y y y + 1= 0 (y 1) = 0 y = 1= = 0 = ((b)) log(+8) log( 1) = 1 log = 1 10 = = = 18 = = 18 9 ((c)) ln( ) = 7 5, ln = 7 5 ln = 5 = e 5 = e 5/ = 5 e =

1 En la Figura se han representado las funciones exponenciales (0,5) X, (0,7) X, (1,3) X y (1,6) X. Identifícalas.

1 En la Figura se han representado las funciones exponenciales (0,5) X, (0,7) X, (1,3) X y (1,6) X. Identifícalas. Unidad 1 Funcioness yy ffenómenoss eponencialess..! 14 AUTOEVALUACCIIÓN 1 En la Figura 1.1 se han representado las funciones eponenciales (0,5) X, (0,7) X, (1,3) X y (1,6) X. Identifícalas. Las que tienen

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado.

SISTEMAS DE ECUACIONES. Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 1. SISTEMAS NO LINEALES Un sistema de ecuaciones no lineal es aquel en el que al menos una de las dos ecuaciones no es de primer grado. 3 + = 5 = 3 = + 1 = 3 = 1 + = 5 Resolución: Para resolver un sistema

Más detalles

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES EXPONENCIALES Y LOGARÍTMICAS www.matesronda.net José A. Jiménez Nieto FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. FUNCIONES EXPONENCIALES. Una función se llama eponencial si es de la forma y = a, donde la base a es un número real cualquiera

Más detalles

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver

Más detalles

Ofimega - Logaritmos 1

Ofimega - Logaritmos 1 Ofimega - Logaritmos Logaritmos Definición: Si: Importante aprender (abre el grifo desde la base El logaritmo se convierte en una función eponencial. Ejemplo de multiplicación en forma eponencial: a b

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Proyecto Guao Sistema de Ecuaciones Logarítmicas

Proyecto Guao Sistema de Ecuaciones Logarítmicas Sistema de Ecuaciones Logarítmicas Marco Teórico: Para resolver sistemas de ecuaciones logarítmicas tomaremos en cuenta la definición y las propiedades de los logaritmos. Para la resolución del sistema

Más detalles

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES

ECUACIONES LOGARÍTMICAS Y EXPONENCIALES www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES 1. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver

Más detalles

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA PLAN DE ASIGNATURA GUÍA DIDÁCTICA PÁGINA: 1 de 7 Nombres y Apellidos del Estudiante: Grado:9º Periodo: 3º Docente: Esp. Blanca Rozo Duración: 10 HORAS GUIA Área: Matemáticas Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación,

Más detalles

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio

Más detalles

k. 100 y la ecuación que se tiene que resolver ahora es: t

k. 100 y la ecuación que se tiene que resolver ahora es: t Ejemplo 1) Un esqueleto contiene la centésima parte de su cantidad original de carbono 14 ( 4 C). Calcula la antigüedad del esqueleto, con precisión de1000años. (La vida media del 14 C es de aproximadamente

Más detalles

Resuelve tú ( Pág "#$) %%%&&'&&%%% Hacemos la división por Ruffini : El cociente C(x) = 5x 3 27x x 227 y el resto r = 681.

Resuelve tú ( Pág #$) %%%&&'&&%%% Hacemos la división por Ruffini : El cociente C(x) = 5x 3 27x x 227 y el resto r = 681. Unidad nº 10 FFUNCI IONEES POLLI INÓMICAS YY RACIONALLEES! 1 Resuelve tú ( Pág "#$) Halla el cociente del polinomio 5 4 1 3 6 por + 3. Verifica el resultado. Hacemos la división por Ruffini : El cociente

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES LOGARÍTMICAS Página 0 PARA EMPEZAR, REFLEIONA RESUELVE Problema Modificando la escala, representa la función: : tiempo transcurrido y: distancia al suelo correspondiente

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la

Más detalles

Actividades compensatorias 5ºA. = + d) = + h) = + l)

Actividades compensatorias 5ºA. = + d) = + h) = + l) Actividades compensatorias 5ºA ) A partir de los puntos característicos de la función cuadrática graficar las siguientes funciones: a) f() b) f() + + c)f() 9 + 9 d) f() 4 + 4 e) f() ( + ) f)f() ( ) g)

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) Calculamos previamente los vectores directores de

Más detalles

TEMA 9: DERIVADAS 1. TASA DE VARIACIÓN MEDIA

TEMA 9: DERIVADAS 1. TASA DE VARIACIÓN MEDIA TEMA 9:. TASA DE VARIACIÓN MEDIA La siguiente gráfica representa la temperatura en el interior de la Tierra en función de la profundidad. Vemos que la gráfica es siempre creciente, es decir, a medida que

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN El dominio de la función f(x) x / x es: a) + b) c) [0, ) 9 El período de la función f(x) cos (x + π) es: a) π b) π c) π/ Una sustancia radiactiva

Más detalles

Tabla III ln

Tabla III ln Crecimiento y decrecimiento exponencial Existe una gran variedad de problemas de aplicación relacionados con las funciones exponenciales y logarítmicas. ntes de tomar en consideración estas aplicaciones,

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log

Propiedades más importantes de los logaritmos: El logaritmo de una multiplicación es igual el logaritmo de la suma. log =log +log Para empezar a tratar el tema de los logaritmos tenemos que tener en muy en cuenta, la definición de logaritmo, así como las tres propiedades más importantes de los logaritmos. Definición de logaritmo:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

y x, se llama función potencial, y cuando además el exponente es un y 5.

y x, se llama función potencial, y cuando además el exponente es un y 5. 7 CAPÍTULO : FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS.. FUNCIONES EXPONENCIALES.. Función eponencial Ha dos tipos de funciones cua epresión analítica o fórmula es una potencia: Si la variable

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD 5 Pág. Página 5 PRACTICA Funciones cuadráticas Representa las siguientes funciones haciendo, en cada caso, una tabla de valores como esta, y di cuál es el vértice de cada parábola: y a) y = + b) y = c)

Más detalles

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos)

PROPUESTA A., se pide: a) Calcula las asíntotas verticales y oblicuas de f(x). (1,25 puntos) PROPUEST. Dada la función f ( ), se pide: a) Calcula las asíntotas verticales y oblicuas de f(). (, puntos) b) Coordenadas de los máimos y mínimos relativos de f(). (, puntos). Calcula las siguientes integrales:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES

5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad

Más detalles

Tema 12. Funciones (II). Recta, parábola, hipérbola, exponenciales y logaritmos.

Tema 12. Funciones (II). Recta, parábola, hipérbola, exponenciales y logaritmos. Tema. Funciones (II). Recta, parábola, hipérbola, eponenciales logaritmos. Tabla de contenido. Traslados de las gráficas horizontales verticales.... Funciones lineales. La recta.... Función parabólica...

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

matemáticas 4º ESO exponenciales y logaritmos

matemáticas 4º ESO exponenciales y logaritmos coleio martín códa departamento de matemáticas matemáticas º ESO eponenciales logaritmos eponenciales una eponencial es cualquier epresión de la forma: a donde a (que se denomina base) es un número distinto

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro)

UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) UNIDAD 7.- FUNCIONES ELEMENTALES (tema 10 del libro) 1. FUNCIONES AFINES Y LINEALES Son funciones cuya gráfica es una recta (como ya vimos en geometría). De manera general son de la forma f ( ) = m + n

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 2 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 2 Matemática Aplicada - Licenciatura de Farmacia - Curso 5/6 - HOJA SOLUCIONES DE LOS EJERCICIOS DE LA HOJA Para ver que las ecuaciones dadas poseen una única raíz real, intentaremos aplicar el teorema de

Más detalles

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje

FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Ecuaciones de primer grado y de segundo grado

Ecuaciones de primer grado y de segundo grado Ecuaciones de primer grado y de segundo grado La forma reducida de una ecuación de primer grado con una incógnita es una igualdad del tipo a b 0, donde a y b son números reales con a 0. Para resolverla

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta.

Las soluciones son los valores que deben tomar las letras para que la igualdad sea cierta. TEMA ECUACIONES, INECUACIONES Y SISTEMAS- 1. ECUACIONES Una ecuación es una igualdad matemática entre dos epresiones algebraicas, denominadas miembros, en las que aparecen valores conocidos o datos, desconocidos

Más detalles

a) b) Funciones Funciones

a) b) Funciones Funciones CAPÍTULO : Funciones eponenciales, logarítmicas trigonométricas. Matemáticas ºB ESO. FUNCIONES EXPONENCIALES.. Función eponencial Ha dos tipos de funciones cua epresión analítica o fórmula es una potencia:

Más detalles

Tema 6.. Funciones (II). Recta, parábola, hipérbola, exponenciales y logaritmos.

Tema 6.. Funciones (II). Recta, parábola, hipérbola, exponenciales y logaritmos. Tema 6.. Funciones (II). Recta, parábola, hipérbola, eponenciales logaritmos.. Traslados de las gráficas horizontales verticales.... Funciones lineales. La recta... 3 3. Función parabólica... 5 3.. Introducción.

Más detalles

ECUACIONES EXPONENCIALES

ECUACIONES EXPONENCIALES ECUACIONES EXPONENCIALES Recuerda que las ecuaciones exponenciales son aquellas en las que la incógnita aparece en algún exponente. Vamos a estudiar tres casos distintos. En cada uno de ellos hay ejemplos

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente: INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I

Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Matemáticas Nivel Medio Matemáticas Ap.CC.SS.I Martes, 7 de febrero de 01 1 hora y 15 minutos. NOMBRE Y APELLIDOS CALIFICACIÓN 1. Resuelve algebraicamente las siguientes ecuaciones polinómicas, (1 + 1

Más detalles

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo:

Estudio de una función. Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Estudio de una función Un resumen de los contenidos que aplicamos en el estudio de una función, que se encuentran en el módulo: Una función f () tiene asíntota vertical en asi f () a Una función f () tiene

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Teóricas de Análisis Matemático (8) Práctica 0 Ecuaciones Diferenciales Práctica 0 Parte Ecuaciones Diferenciales Si un fenómeno está representado por una función f, la derivada de f representa la variación

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Ejercicios de integración

Ejercicios de integración 1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)

Más detalles

14 Funciones exponenciales y logarítmicas

14 Funciones exponenciales y logarítmicas ACTIVIDADES DE AMPLIACIÓN Funciones eponenciales y logarítmicas. Se considera la función eponencial f() k ; k 0. Averigua, en cada uno de los siguientes casos, cómo es la base de la función con respecto

Más detalles

CONCEPTO DE DERIVADA

CONCEPTO DE DERIVADA TASA DE VARIACIÓN MEDIA CONCEPTO DE DERIVADA ACTIVIDADES ) Halla la tasa de variación media de la función f siguientes intervalos: en cada uno de los a), b), c) 0, d), 3 ) Halla la T.V.M. de esta función

Más detalles

Unidad 4 Ecuaciones 1

Unidad 4 Ecuaciones 1 Unidad 4 Ecuaciones 1 PÁGINA 67 ACTIVIDADES INICIALES 1 Indica cuáles de las siguientes igualdades son ecuaciones y cuáles identidades. aa) ) x (x - 3) x - 6x bb) ) 3 (x - 4) 6 cc) ) (x - 3) 4x - 9 La

Más detalles

Ejercicios resueltos de Álgebra

Ejercicios resueltos de Álgebra Ejercicios resueltos de Álgebra. Factorización de polinomios 5 a) P 6 6 Div6,,, 8, 6 6 6 6 6 8 6 8 8 5 6 6 P Q 6 Div 6 Q. Fracciones algebraicas a) Cipri Matemáticas I Numerador: Denominador: Epresión:

Más detalles

Unidad 4 Ecuaciones 16

Unidad 4 Ecuaciones 16 Unidad 4 Ecuaciones 6 PÁGINA 80 ACTIVIDADES DE ENSEÑANZA APRENDIZAJE Clasifica las siguientes igualdades en identidades o ecuaciones: aa) ) + 9 7 bb) ) + ( - ) + 8 cc) ) ( + ) - 4 4 + dd) ) ( - ) + 4 ee)

Más detalles

Las únicas funciones cuyas gráficas son rectas son las siguientes:

Las únicas funciones cuyas gráficas son rectas son las siguientes: Funciones, 3º ESO () RECTAS Las únicas funciones cuyas gráficas son rectas son las siguientes: - Lineales, de fórmula y mx. Las gráficas de estas funciones pasan por el origen de coordenadas. m es la pendiente

Más detalles

Funciones exponencial y logarítmica

Funciones exponencial y logarítmica Objetivo: Usar las propiedades de la función exponencial y logarítmica en la solución de situaciones reales. Saber: Identificar y utilizar adecuadamente las funciones, sus operaciones y propiedades básicas

Más detalles

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde: Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA.

SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. DP. - AS - 9 Matemáticas ISSN: 988-79X SÓLO ENUNCIADOS. LA FUNCIÓN LOGARÍTMICA. PROPIEDADES INMEDIATAS 00 log a a 00 log a 00 log a a 00 a a log Calcula algebraicamente el valor de las epresiones o el

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema 5 Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA 5 FUNCIONES ELEMENTALES II Rectas EJERCICIO.Hallalapendiente,laordenadaenelorigenylospuntosdecorteconlosejesde coordenadasdelarecta

Más detalles

Funciones elementales.

Funciones elementales. Funciones elementales. Ejercicio nº.- Halla el dominio de definición de las siguientes funciones: a) b) a) 0 Dominio R b) 0 Dominio, Ejercicio nº.- A partir de la gráfica de estas funciones, indica cuál

Más detalles

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS

FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES LOGARÍTMICAS Página 9 REFLEIONA RESUELVE A vueltas con la noria Modificando la escala, representa la función: : tiempo transcurrido y: distancia al suelo correspondiente

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

Tema 1: Números reales.

Tema 1: Números reales. Tema 1: Números reales. Ejercicio 1. Hallar el valor absoluto de: a) 7,4 b) 0 c) -5,87 d) raíces cuadradas de 9 e) 1 3 Solución: a) 7,4 7, 4 1. Hacemos clic en la pestaña operaciones y seleccionamos el

Más detalles

7. EXPONENCIALES Y LOGARITMOS

7. EXPONENCIALES Y LOGARITMOS 7. EXPONENCIALES Y LOGARITMOS En esta Unidad estudiaremos y analizaremos las funciones y ecuaciones eponenciales y logarítmicas. Comenzaremos con las funciones eponenciales para luego continuar con ecuaciones

Más detalles

Tema 5 Inecuaciones y sistemas de inecuaciones

Tema 5 Inecuaciones y sistemas de inecuaciones Tema Inecuaciones y sistemas de inecuaciones. Inecuaciones lineales PÁGINA 9 EJERCICIOS. Comprueba en cada caso si el valor indicado forma parte de la solución de la inecuación. b de la inecuación Sustituimos

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+

Más detalles

DERIVADAS. es: = + = es: = +

DERIVADAS. es: = + = es: = + DERIVADAS. La derivada de la función f ( ) es: A) f ( ) f ( ) + B) f ( ) D) f ( ) ( ) f ( ). La derivada de la función f ( ) e es: A) f ( ) e f ( ) e B) f ( ) ( ) e D) f ( ) + e ( ) f e + e e e e ( ).

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS Resuelve cada una de las preguntas siguiente y elige la respuesta correcta 1.-El punto común a todas las funciones eponenciales de la forma

Más detalles

lím 3) (1,6p) Deriva la siguiente función y simplifica el resultado: 1 1+ x

lím 3) (1,6p) Deriva la siguiente función y simplifica el resultado: 1 1+ x CURSO 278 7 de marzo de 28. ) (,6p) Halla k para que se verifique: - ( 2 +k+)=4 2) (,8p) Dada la ecuación 2-=ln : a) Prueba que tiene solución. b) Prueba que tiene solo una solución. c) Hállala con un

Más detalles

Tema 8: Aplicaciones de la derivada

Tema 8: Aplicaciones de la derivada Tema 8: Aplicaciones de la derivada 1. Introducción En la unidad anterior hemos establecido el concepto de derivada de una función en un punto de su dominio y la hemos interpretado geométricamente como

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

x + y + bz = a x + y + az = b bx + ay + 4z = 1

x + y + bz = a x + y + az = b bx + ay + 4z = 1 UC3M Matemáticas para la Economía Eamen Final, 3 de junio de 017 RESUELTO 1 Dados los parámetros a y b, se considera el sistema de ecuaciones lineales + y + bz = a + y + az = b b + ay + 4z = 1 (a) (5 puntos)

Más detalles

Nombre:...Curso: 4ºD

Nombre:...Curso: 4ºD Actividades de Recuperación de la ª Evaluación - Soluciones Actividades de recuperación de la ª Evaluación Nombre:...Curso: ºD. a) Eplica en qué se diferencian los números racionales de los irracionales.

Más detalles

Si f es la función dada por la expresión f(x) = 3x +2, la imagen de x = 4 es f(4) = = 14

Si f es la función dada por la expresión f(x) = 3x +2, la imagen de x = 4 es f(4) = = 14 º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA.- FUNCIONES. LÍMITES CONTINUIDAD (ª PARTE).- CONCEPTO DE FUNCIÓN. CARACTERÍSTICAS Definición de función Una función real de variable real es una forma de hacerle

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

Unidad 15 Integrales definidas. Aplicaciones

Unidad 15 Integrales definidas. Aplicaciones Unidad 15 Integrales definidas. Aplicaciones PÁGINA 363 SOLUCIONES 1. La solución: Lo que nos pide el problema es hallar el área del recinto rayado. Este recinto es un trapecio y su area es:. Queda: x

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en:

log = = Las ecuaciones de cancelación cuando se aplican las funciones f x = a x y f 1 = log a x, se convierten en: Función logarítmica Función logarítmica y su representación Si a > 0 y a 0, la función exponencial f x = a x bien se incrementa o disminuye y por eso mediante la prueba de la línea horizontal es uno a

Más detalles

: x [m, M] x. b) Un número x del intervalo [m, M] siempre estará comprendido entre dos valores de A, esto es

: x [m, M] x. b) Un número x del intervalo [m, M] siempre estará comprendido entre dos valores de A, esto es MÉTODOS MATEMÁTICOS. FEBRERO DE 6. SEGUNDA SEMANA. Consideremos el conjunto A formado por los números de la forma n k, en donde n y k son enteros tales que 5 n < 6, 7 k 6. Se pide determinar razonadamente:

Más detalles

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m

Solución. Las dimensiones de la caja para un coste mínimo son x = 4 cm e y = 80/(4 2 ) = 5m Ejercicio n º 1 de la opción A de septiembre de 2004 [2'5 puntos] Se desea construir una caja de base cuadrada con una capacidad de 80 cm 3. Para la tapa y la superficie lateral se usa un material que

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 2013 Capítulo 9 Año 2008 9.1. Modelo 2008 - Opción A Problema 9.1.1 2 puntos Se considera la función

Más detalles

1ª Prueba de Evaluación Continua 6 de octubre de 2010 Tipo A1 APROXIMACIÓN LOCAL. FÓRMULA DE TAYLOR

1ª Prueba de Evaluación Continua 6 de octubre de 2010 Tipo A1 APROXIMACIÓN LOCAL. FÓRMULA DE TAYLOR ª Prueba de Evaluación Continua 6 de octubre de 00 Tipo A APROXIMACIÓN LOCAL. FÓRMULA DE TAYLOR.- La medida del radio R de una esfera ha dado 6 cm con una cota de error de 0.0cm. a) Usar diferenciales

Más detalles

a) log3 81 = b) log = c) loga 27 = 3 d) log2 P = 4 e) El logaritmo de un número en cierta base, puede ser un número negativo?

a) log3 81 = b) log = c) loga 27 = 3 d) log2 P = 4 e) El logaritmo de un número en cierta base, puede ser un número negativo? Durante el siglo XVII fue mu popular el invento del escocés John Néper (550-67) para multiplicar, conocido con el nombre de "rodillos de Néper". Pero mucho más importante para las matemáticas fue lo que

Más detalles

Número de estudiante: Instrucciones: Se permite el uso de calculadoras científicas. El examen tiene un valor total de 105 puntos.

Número de estudiante: Instrucciones: Se permite el uso de calculadoras científicas. El examen tiene un valor total de 105 puntos. Departamento de Ciencias Matemáticas Tercer Examen MATE 3171 Universidad de Puerto Rico Mayagüez 17 de noviembre de 2015 Nombre: Número de estudiante: Profesor: Sección: Instrucciones: Se permite el uso

Más detalles

Tema 9: Funciones II. Funciones Elementales.

Tema 9: Funciones II. Funciones Elementales. Tema 9: Funciones II. Funciones Elementales. Finalizamos con este tema el bloque de análisis, estudiando los principales tipos de funciones con sus respectivas características. Veremos también una ligera

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Tema 9 Funciones elementales

Tema 9 Funciones elementales Tema 9 Funciones elementales 9.1Gráfica de una función. Signo simetría. PÁGINA 175 EJERCICIOS 1. Encuentra los puntos de corte con los ejes de las siguientes funciones estudia su signo. 3 c) f 1 c.1) Cortes

Más detalles