CÁLCULO CON SCILAB. Jorge Antonio Polanía Puentes

Documentos relacionados
PROFESOR: JORGE A. POLANÍA P.

Cálculo Integral Agosto 2015

Cálculo Integral Enero 2015

COLEGIO DE BACHILLERES PLANTEL 14 MILPA ALTA FIDENCIO VILLANUEVA ROJAS. Matemáticas V. Clave 504. Nombre del alumno: Matrícula

Universidad Icesi Departamento de Matemáticas y Estadística

DERIVADA DE UNA FUNCIÓN

Chapter 3. Derivatives. Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

DERIVADAS. Problemas con Solución.

FUNCIONES DE UNA VARIABLE

Capítulo 4: Derivada de una función

El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe

Cálculo Integral Enero 2016

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL. 1. (5 puntos) Bosquejar la región en el primer cuadrante que está

Cálculo Integral Agosto 2016

DERIV. DE UNA FUNC. EN UN PUNTO

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II

Derivadas e integrales

CALCULO 11-M. Primera Parte. Duración 1h 40m. 2y =2x = x 4 2x f 0 (x) =4x 3 2=0. x =2 1/3.

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

ALGUNOS EJERCICIOS DE C. DIF.

2. Continuidad y derivabilidad. Aplicaciones

Derivadas e integrales

APLICACIONES DE LA INTEGRAL DEFINIDA

Cociente incremental. Mide la variación media de f(x) en (x 0, x 0 + x)

INTEGRACIÓN POR CAMBIO DE VARIABLE

TEORIA. Indique si es Falso/verdadero

Teoría Tema 3 Derivabilidad - Aplicación a funciones

que determina la tangente con ese mismo eje, en el triángulo rectángulo de vértices (x0,f(x0 )), (x0 + h,f(x0 + h)) y (x0 + h,f(x0 )), se verifica:

Capítulo 3: Cálculo integral

Cuarto examen parcial Ejercicios resueltos

Integrales indenidas

Primer Parcial MA1210 Cálculo I ExMa

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013

IES RAFAEL PUGA RAMÓN DERIVADA Y APLICACIONES Calcula el valor de a para que la gráfica de la función y= x a cumpla que la recta

S O L U C I Ó N y R Ú B R I C A

Análisis Matemático I

DERIVADAS Definición y Propiedades

INDICE. Presentación 4. Tema No.1. Límite de una función. 6. Tema No. 2. Límites trigonométricos.. 8. Tema No. 3. Continuidad de una función 10

1 El número x = 0, es irracional. Encontrar una sucesión de números racionales x n cuyo límite sea x.

Antidiferenciación. Métodos de integración.

El proceso de calcular la derivada se denomina derivación. Se dice que es derivable en c si existe, es decir, existe

Derivada de una función

CBC. Matemática (51) universoexacto.com 1

Funciones de una variable

Colegio San Agustín (Santander) Página 1

T2. Teorema fundamental del cálculo Parte II. Regla de Barrow. Enunciar y demostrar.

Unidad 1 Integrales Indefinidas 1.1 Diferenciales Aproximaciones Anti derivada

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

Derivadas Matemáticas Aplicadas a las Ciencias Sociales II 1 DERIVADAS.

f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:

MA1111 sept.-dic. de 2012 UNIVERSIDAD SIMON BOLIVAR Parcial 3 tipo único [40%] Departamento de Matemáticas 30 de noviembre de 2012

PARTE ELECTIVA. Solo 4 preguntas de la parte electiva. tan(xy) = x y sec2 (xy)(y + xy ) = y xy y 2

UNELLEZ Ejercicios de Cálculo Diferencial para estudiantes de Ingeniería Petróleo

Si la variable independiente x con un valor inicial a que le da un valor final b a la diferencia b-a se le llama incremento de la variable y se

LENGUAJE DE PROGRAMACIÓN SCILAB

Matemáticas II. Segundo de Bachillerato. Curso Exámenes

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

MATEMÁTICA - 6 A C y D - Prof. Sandra M. Corti

Calculo.I Tema 2 Derivadas

Pauta Auxiliar N 10 Aplicaciones de la Integral I Viernes 1 de Junio de 2012

Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta

Funciones Trigonométricas

Matemáticas 3 Enero 2016

CONCEPTOS QUE DEBES DOMINAR

CÁLCULO DE PRIMITIVAS

Cálculo Integral Área de una superficie de revolución. Universidad Nacional de Colombia

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1)

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

RESUMEN DE DERIVADAS. TVM = f(x) = lim 1+2h+h 2-1. = lim 1+h) lim. = 0 = lim h2+h)

Cálculo I Derivadas de Funciones Trascendentes. Julio C. Carrillo E. * 1. Introducción Derivadas de funciones trigonométricas inversas 7

1. Función de primer grado. La recta.

Universidad de Costa Rica. Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO

Reconoce el cambio instantáneo como la derivada de la función

PRUEBA DE ACCESO A LA UNIVERSIDAD

RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Tema I : Funciones reales de variable real. Límites y continuidad

La pendiente de una línea recta es la variación de y que corresponde a una unidad de variación de x

Curso Propedéutico de Cálculo Sesión 3: Derivadas

Guía de Estudio para la Sección de Matemáticas del Examen de Admisión

3. Funciones de varias variables

Capítulo 2: Cálculo diferencial de una y varias variables

2.1.5 Teoremas sobre derivadas

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Análisis Matemático I

PLANTEL 15 CONTRERAS GUÍA PARA EL EXAMEN EXTRAORDINARIO DE MATEMÁTICAS V (504) QUINTO SEMESTRE CICLO LECTIVO: 2016-B

Factorización. 1) Al factorizar 6x 2 x 2 uno de los factores es. A) 2x + 2. B) 3x + 2. C) 2x 2. D) 3x 2

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

Julio Deride Silva. 6 de agosto de 2010

Coordinación Matemática básica Taller

Departamento de Matemáticas

CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Transcripción:

CÁLCULO CON SCILAB INTRODUCCIÓN.... LÍMITES.... LÍMITE DE UNA CONSTANTE.... LÍMITE DE UNA FUNCIÓN.... DERIVADAS... 4. DERIVADA DE UNA CONSTANTE... 4. DERIVADA DE UNA POTENCIA... 5.3 DERIVADA DE UN PRODUCTO... 6.4 DERIVADA DE UN COCIENTE... 6.5 DERIVACIÓN EN CADENA... 8.6 PENDIENTE DE UNA FUNCIÓN... 9.7 DERIVACIÓN IMPLÍCITA....8 PUNTOS CRÍTICOS DE UNA FUNCIÓN....9 MÁXIMO, MÍNIMO E INFLEXIÓN....0 FUNCIONES LOGARÍTMICAS Y EXPONENCIALES... 4. FUNCIÓN EXPONENCIAL... 6 3. INTEGRALES... 8 3. INTEGRAL DEFINIDA... 9 3. INTEGRAL DE UNA CONSTANTE... 9 3.3 INTEGRAL DE UNA POTENCIA... 0 4. INTEGRAL INDEFINIDA... 4. FUNCIONES LOGARITMICAS... 4. FUNCIONES TRIGONOMÉTRICAS... 3 5. APLICACIONES DE LA INTEGRAL... 4 5. ÁREA ENTRE DOS CURVAS... 4

5. SÓLIDOS DE REVOLUCIÓN... 7 5.3 LONGITUD DE ARCO... 8 5.4 SUPERFICIE DE REVOLUCIÓN... 30 INTRODUCCIÓN Este curso de cálculo contiene las unidades referentes a límites, derivadas, integrales y sus aplicaciones. Los ejemplos tratados se han realizado teóricamente pero también se han desarrollado o simulado con el programa SCILAB que es un software libre que los interesados pueden descargarlo de www.scilab.com/download.. LÍMITES El límite de una función f(x) cuando x tiende a a es L, quiere decir que cuando x se acerca suficientemente a a, f(x) se acerca arbitrariamente a L. Se escribe de la forma:. LÍMITE DE UNA CONSTANTE lim f x = L x a El límite de una constante es igual a la constante, lim 8 = 8 x 3 lim c = c x a. LÍMITE DE UNA FUNCIÓN Si f(x) es un polinomio y a es un número real, entonces,

Ejemplos: lim f x = f a x a 3x 3 + x 3x + 5 lim = 3(3 ) + ( ) 3() + 5 = 3 8 + 4 6 + 5 = 3 x x 3 3 4 3 x /3 + 5 x lim x 5 x = 5/3 + 5 5.9 +. 5 = = 0.6 3 TEOREMA El límite de una función cuya variable tiende al infinito se calcula dividiendo cada uno de los términos por el elemento de mayor exponente. Recordar que: = 0, n =, n =, a 0 = lim x x3 + x 3 = 3 + ( ) 3 = x 3 lim x x + = lim x x x 3 x x x + = x 3 x x + = x 3 + = 0 0 + 0 = 0 = x 3 lim x x 3 + = lim x x 3 lim x x + = lim x x x 3 3 x 3 x 3 x 3 + x 3 = x x 3 x x x + x = x 3 x 3 + = x 3 3 + 3 + = 0 + 0 = = = 0 0 + 0 = 0 = 0 3

. DERIVADAS La derivada de una función y=f(x) con respecto a x, es igual a la variación infinitesimal de la función con respecto a x. Si y=f(x), entonces, dy dx = Δy f x = lim x 0 Δx = lim f x + x f(x) x 0 x Calcular la derivada de la función y=f(x)=x dy dx = Δy f x = lim x 0 Δx = lim x 0 x + x x x = x + x x + x x x x x + x = x + x = x + 0 = x x. DERIVADA DE UNA CONSTANTE La derivada de una constante es cero. f(x)=c, entonces f (x)=0 Hallar la derivada de y=f(x)=5 Si f(x) es una constante entonces, f(x+ x)=f(x) = 5, por tanto f(x+ x)-f(x)=0 dy dx = f x = 0 4

. DERIVADA DE UNA POTENCIA La derivada de una potencia f(x)=x n es igual a f (x)=nx n- Hallar la derivada de y=f(x)=x 5 f (x)=5x 5- = 5x 4 Hallar la derivada de f(x)=3x 4 f (x)=3(4x 4- )=3(4x 3 )=x 3 Hallar la derivada de y =f(x)=x - f (x)=(-x -- )=(-x -3 )= -4x -3 = -4/x 3 Hallar la derivada de y = f x = 3 x 3 f x = 3 x 3 = 3x 3 dy dx = f x = 3 3x 3 = 9x 4 = -9/x 4 Hallar la derivada de y=f(x)=3x 4 +5x 3 -x -6x+ f( (x)=3(4x 3 )+5(3x )-(x)-6+0 = x 3 +5x -4x-6 5

.3 DERIVADA DE UN PRODUCTO La derivada de un producto de funciones f(x)*g(x)es igual a la derivada del primero f (x) por el segundo g(x) más el primero f(x) por la derivada del segundo g (x) d dx f x g x = f x g x + f x g (x) y=(x -3x)(x 3 -x +3) f(x)=x -3x, entonces, f (x)=4x-3 g(x)=x 3 -x +3, entonces, g (x)=3x -4x+0=3x -4x y = (4x-3)( x 3 -x +3)+( x -3x)( 3x -4x) simplificando: y =0x 4-8x 3 +8x +x-9.4 DERIVADA DE UN COCIENTE La derivada de un cociente f(x)/g(x) es igual a: d dx f(x) g(x) = f x g x f x g (x) g(x) y = x3 + x 3x f(x)=x 3 +x, entonces, f (x)=6x + 6

g(x)=3x -, entonces, g (x)= 6x y = 6x + 3x x 3 + x (6x) 3x Simplificando: y = 6x4 8x 4 9x 4 x + 4 Aplicando Scilab: //variable simbólica x x=poly(0,'x') // ejemplo y=x^5; derivat(y) //y'=5x^4 // ejemplo y=3*x^4 derivat(y) //y'=x^3 // ejemplo y=*x^-; D=derivat(y) simp(d) //D=-4/x^3 // ejemplo 7

y=3/x^3; D=derivat(y) simp(d) //D=-9/x^4 // ejemplo y=3*x^4+5*x^3-*x^-6*x+; D=derivat(y) simp(d) //y'=-6-4x+5x^+x^3 // ejemplo y=(*x^-3*x)*(x^3-*x^+3); D=derivat(y) simp(d) //y'=-9+x+8x^-8x^3+0x^4 // ejemplo y=(*x^3+*x)/(3*x^-); D=derivat(y) simp(d) //y =(-4-8x^+6x^4) / (4-x^+9x^4).5 DERIVACIÓN EN CADENA Derivación en cadena. Si y=f(u), u=g(x), entonces, la derivada de y con respecto a x es igual a: 8

dy dx = dy du. du dx Si y = (x 3 x 4) 4 hallar su derivada y=f(u)=u 4, donde u=x 3 -x -4 du dx = 3x 4x, dy du = 4u3, dy dx = dy du du dx = 4 x3 x 4 3 (3x 4x) Aplicando Scilab, x=poly(0,'x') y=(x^3-*x^-4)^4; D=derivat(y) simp(d).6 PENDIENTE DE UNA FUNCIÓN La pendiente de una función en un punto es la derivada en ese punto. Hallar la pendiente de la función y=x en el punto x=3. Hacer las gráficas. Para x=3, entonces, y=(3) = 8 el punto es P(3,8) La pendiente es m=y =4x = 4(3)= Gráficamente la pendiente es la tangente de la recta que pasa por ese punto, su función se obtiene de: y-y=m(x-x), donde x=3, y=8 y-8=(x-3), entonces, y=x-36+8, y=x-8 9

Por Scilab, // cálculo de la pendiente en x=3 function y=f(x) y=*x^; endfunction x=3; derivative(f,x) //Respuesta: m= // gráfica de la parábola y=x y de la recta y=x-8 x=[-5:0.:5]; y=*x^; y=*x-8; plotd(x,[y' y'],[,3],leg="y=x-8@y=x^",rect=[-5 0 5 50]) xgrid xstring(3,8,["p(3,8)"]) 0

.7 DERIVACIÓN IMPLÍCITA Una función es implícita cuando para encontrar su y=f(x) se tiene que despejar de la ecuación, por ejemplo: x - 3y = 4 es una función implícita. Su valor es igual a x -4 = 3y, o sea, y=f(x)=(/3)(x -4) Para la siguiente ecuación: y 3 y + 4x = x, hallar la derivada y = f (x) Derivando la expresión, se tiene, 3y y 4y y + 4 = x 0, factorizando y

y (3y 4y) = x 4, despejando y = x 4 3y 4y.8 PUNTOS CRÍTICOS DE UNA FUNCIÓN Para encontrar los puntos críticos de una función f(x) se realiza su correspondiente derivación f (x) y se iguala a cero. Los valores de x que cumplen con esta solución son los puntos críticos. Sea f(x) = - x 4 +x +, su derivada es, f (x) = - 4x 3 + 4x, igualando a cero, - 4x 3 + 4x = 0, factorizando, -4x(x ) = 0, los valores para los cuales se cumple, son x = 0, x =, x = - Estos son los puntos críticos, que tienen su derivada igual a cero, o sea, su pendiente = 0 (recta horizontal en el punto).9 MÁXIMO, MÍNIMO E INFLEXIÓN Un punto crítico puede ser un valor máximo de la función, un valor mínimo o ni lo uno ni lo otro que se conoce como punto de inflexión. Resolver este problema implica calcular la segunda derivada de la función, esto es, la derivada de la primera derivada y considerar lo siguiente: Si f (x) > 0 estamos en un punto mínimo Si f (x) < 0 estamos en un punto máximo y Si f (x) = 0 es un punto de inflexión Continuando con el ejemplo anterior,

Primera derivada: f (x) = -4x 3 +4x Segunda derivada f (x) = -x +4 Reemplazando los valores de los puntos críticos, Para x = 0, f (0)= -(0) +4 = 4 > 0 es un punto mínimo Para x =, f ()= -() +4 = -8 < 0 es un máximo Para x = -, f (-)= -(-) +4 = -8 es un mínimo Programa en Scilab: // cálculo de máximo y mínimos // variable simbólica x x=poly(0,'x') fx=-x^4+*x^+; // primera derivada df=derivat(fx) // df=-4x^3+4x // cálculo de puntos críticos p=[-4 0 4 0]; r=roots(p) //puntos críticos=0 - //cálculo de la segunda derivada df=derivat(dy) //df=-x^+4 //cálculos de dy en los puntos críticos x=0; df0=-*x^+4 x=; 3

df=-*x^+4 x=-; dfm=-*x^+4 //df(0)=4, df()=-8, df(-)=-8 //gráfica de la función x=[-3:0.:3]; fx=-x^4+*x^+; plotd(x,fx',5,rect=[-3 0 3 0]) xgrid.0 FUNCIONES LOGARÍTMICAS Y EXPONENCIALES La derivada con respecto a x de una función logaritmo natural denotada como f(x)= ln(x), está dada por: 4

Si u=g(x), entonces, su derivada es: Dx lnx = x D x lnu = u D x(u) Sea f x = ln ( x 3 + ) Hallar su derivada Dx u = x 3 + = x 3/ +, entonces, D x u = 3 x = 3 x D x f x = x 3 + 3 x = 3 x x 3 + PROPIEDADES DE LOS LOGARITMOS a) Ln(a * b) = ln(a) + ln(b) b) Ln(a / b) = ln(a) - ln(b) c) Ln(a n ) = n * ln(a) Hallar la derivada de: f x = ln [(x + ) x + ] Aplicando regla a): f x = ln x + + ln x + = ln x + + ln (x + ) Aplicando regla c): f x = ln x + + ( ) ln (x + ) Derivando: f x = x + x + ( ) x + = x x + + x + 5

Hallar la derivada de: f x = ln 3 x x Aplicando las reglas b) y c): f x = ln x x 3 = 3 ln x ln x Derivando: f x = ( 3)[ x x x 4x ] = 3 x x x. FUNCIÓN EXPONENCIAL La función exponencial es la inversa del logaritmo natural. Se nota como exp f x = e x, donde e =.788, en Scilab se nota como %e f x = e x Si u = g x, entonces, D x e u = e u D x u, donde D x u es la derivada interna Hallar la derivada de la función para x=: f x = e x u = x = (x ) La derivada interna es: D x u = x x = f x = e u D x u = e x x x x x = xe x x 6

Para x=; f = e 4 4 = e 3 Aplicando Scilab: //definición de la función function y=f(x) y=exp(sqrt(x^-)); endfunction 3 = 6.53 //cálculo de la derivada en x= df=derivative(f,) // df = 6.57. FUNCIONES TRIGONOMÉTRICAS Las fórmulas para el cálculo de las derivadas de las funciones trigonométricas son: sen(x) cos(x) sen u cos u D x u cos(x) -sen(x) cos u -sen u D x u tan(x) sec (x) tan u sec u D x u cot(x) -csc (x) cot u -csc u D x u sec(x) sec(x)tan(x) sec u sec u tan u D x u csc(x) -csc(x)cot(x) csc u -csc u cot u D x u Hallar la derivada de la función para x=30 o y = cosx + senx Recordando la derivada de un cociente: d dx f(x) g(x) = f x g x f x g (x) g(x) 7

f(x)=cosx, entonces, f (x)= -senx g(x)=+senx, entonces, g (x)= cosx reemplazando: y = senx ( + senx) cosx cosx ( + senx) = senx sen x cos x ( + senx) = senx ( + senx) Para x = 30 o : y = sen30 + sen30 = 0.67 Por Scilab: //definición de la función function y=f(x) y=cos(x)/(+sin(x)); endfunction //pasar ángulo a radianes x=30*%pi/80; //calcular la derivada dy=derivative(f,x) // dy = 0.667 3. INTEGRALES Es una de las herramientas más importantes del cálculo que permite calcular áreas bajo una curva, áreas que generan una curva en revolución y volúmenes de sólidos. 8

3. INTEGRAL DEFINIDA Se define como el área bajo la curva de una función f(x) en un intervalo entre dos límites [a, b]. Se nota de la forma: b A = f x dx = F b F a donde F es la antiderivada a y = f(x) b A = f(x)dx a x a b 3. INTEGRAL DE UNA CONSTANTE La integral de una función es la antiderivada de la función (Teorema fundamental del Cálculo). Esto quiere decir, que si y = cx, entonces, y = c, o sea que, la antiderivada de una constante c es cx. b f x = c, entonces, cdx = cx b a = c(b a) a 3 4dx = 4x 3 = 4 3 = 8 Esto lo podemos comprobar, calculando el área bajo la curva f(x)=4, entre el límite inferior igual a y el límite superior igual a 3. 9

4 f x = 4 b A = f(x)dx a x 3 Como se observa el área mostrada es un rectángulo de ancho igual a = 3- y de alto igual a 4. Su A = x4 = 8 Prueba con Scilab: //definición de la función function y=f(x) y=4 endfunction //calcular la integral entre x= y x=3 intg(,3,f) // ans = 8 3.3 INTEGRAL DE UNA POTENCIA Si f(x) = x n, entonces: b a f x = x n, entonces, x n dx = xn + n+ a b Esto es se incrementa en uno el exponente y se divide por el exponente elevado. Prueba: 0

f x = y = xn+ (n + )xn, entonces, y = n + n + = x n Hallar la integral de la función y = x 4 entre x= y x=5 f x = y = x 4, entonces, Con Scilab: //definción de la función function y=f(x) y=x^4 endfunction // calculo de la integral intg(,5,f) //ans = 68.6 5 x 4 dx = x5 5 5 = 55 5 5 = 65 6.4 = 68.6 5 Hallar la integral de la función y = x 3-3x + 5x - 3 entre x= y x=4 4 (x 3 3x x 4 + 5x 3)dx = 4 3x3 3 + 5x 3x 4 = (4)4 4 3(4)3 3 + 5(4) Programa Scilab: //definción de la función function y=f(x) y=*x^3-3*x^+5*x-3 3 4 ()4 4 3()3 3 + 5() 3 = 93

endfunction // cálculo de la integral intg(,4,f) //ans=93 4. INTEGRAL INDEFINIDA La integral indefinida se define como: f x dx = F x + C, donde F es una antiderivada de f (x 5 4x 3 + 3x 5)dx = x6 6 4x4 4 + 3x 5x + C 4. FUNCIONES LOGARITMICAS La integral de una función de la forma f(u)=/u es igual a: Hallar la integral: u du = du = ln u + C u I = x 4x + dx u = 4x +, du = 8x, entonces, du u = 8x 4x +

x 4x + dx = 4 du u = 4 ln 4x + I = 4 ln 4 + ln 4 + = 4 ln 7 ln 5 = 0.306 Cálculo por Scilab: //definir función function y=f(x) y=*x/(4*x^+); endfunction //calcular la integral I=intg(,,f) // I = 0.3059 4. FUNCIONES TRIGONOMÉTRICAS Las integrales de las funciones trigonométricas son sus correspondientes antiderivadas. sen 3x dx u = 3x, entonces, du = 3 sen 3x dx = 3 sen u du Recordando que: D u (cos u) = sen u, entonces, D u ( cos u) = sen u 3

3 sen u du = 3 ( cos u) = cos 3x + C 3 Calcular la integral definida: I =.5 0.5 csc x x Por Scilab: //definir función function y=f(x) y=csc(sqrt(x))^/sqrt(x); endfunction //calcular integral i=intg(0.5,.5,f) // i =.69 5. APLICACIONES DE LA INTEGRAL 5. ÁREA ENTRE DOS CURVAS El área entre dos curvas f(x) y g(x) acotadas en x=a, y=b, está dada por: A = a b f x g x dx 4

Calcular el área de la región limitada por las curvas f(x)=x y g(x)= x Lo primero que se tiene que encontrar son los puntos de corte de las dos gráficas, Igualando las ecuaciones: x = x Elevando al cuadrado: x 4 = x, o sea, x 4 x = 0 Factorizando: x (x 3 ) =0, la solución es : x = 0 y x = Usando Scilab vamos a graficarlas, //valores de x x=[0:0.0:.]; f=x^; g=sqrt(x); plotd(x,[f'g'],[5 4]) xset("font size",) xstring(0.8,0.5,["f=x^"]) xstring(0.6,.0,["g=sqrt(x)"]) xgrid 5

Se observa que las gráficas tienen puntos de intersección en x=0 y x= A = a b x x dx //cálculo del área entre las curvas function y=f(x) y=sqrt(x)-x^; endfunction intg(0,,f) //ans=0.33 6

5. SÓLIDOS DE REVOLUCIÓN Un sólido de revolución se genera al girar un área alrededor de un de los ejes del plano cartesiano. Para un área limitada por f(x) y el eje x entre valores de a y b, el volumen es igual a: V = b π[f x ] dx a Hallar el sólido generado al girar el área limitada por la curva f(x) = x + entre x=0 y x= f(x)=x + 0 V = π[x + ] dx = π ( x 4 + 4x + 4) dx = π 0 0 0 x 5 5 + 4x3 + 4x dx 3 V = π( 5 + 4 + 4) = 7.38 3 Por Scilab: //la función es function y=f(x) y=%pi*(x^+)^ endfunction 7

//cálculo del área intg(0,,f) //ans = 7.38 5.3 LONGITUD DE ARCO La longitud de arco de una curva dada por f(x) entre límites a y b, está dada por: L = a b + [f x ] dx Donde f (x) es la derivada de la función Hallar la longitud del arco de la curva f(x)= x entre x= y x=6 Gráfica con Scilab //valores de x x=[0:0.0:0]; y=*sqrt(x)-; plot(x,y) xgrid 8

L X=6 X= Si f x = x, o sea, f x = x f x = x = x Reemplazando en la fórmula: L = b a 6 6 + [f x ] dx = + [x ] dx = + x dx = 4.99 Usando Scilab: //la función derivada es function y=f(x) df=x^(-/); y=sqrt(+df^) endfunction //cálculo de la longitud intg(,6,f) //ans=4.99 9

5.4 SUPERFICIE DE REVOLUCIÓN La superficie de revolución generada al girar una curva f(x) alrededor del eje x entre los valores x=a y x=b, es igual a: S = b πf(x) + [f x ] dx a Hallar el área de la superficie generada al girar f(x)=x 3 - alrededor del eje x entre x=. y x=.5 Gráfica con Scilab, //valores de x x=[0:0.0:]; y=*x^3-; y=-(*x^3-); plotd(x,[y' y']) xgrid 30

f(x)=x 3 - f(x)=-(x 3 -) Si f(x)= x 3 -, entonces, f (x)= 6x b S = πf x + f x dx = π x 3 + 6x dx a.5 S = π x 3 + 36x 4 dx =..5. 64.47 Calculando por Scilab: //la función es function y=f(x) df=6*x^; y=*%pi*(*x^3-)*sqrt(+df^) endfunction //cálculo del área de revolución intg(.,.5,f) //ans=64.47 3