Teorema de Gauss y campos conservativos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Teorema de Gauss y campos conservativos"

Transcripción

1 Universidad Simón Bolívar. Matemáticas VI (MA-2113). Preparaduría n 4. christianlaya@hotmail.com Teorema de Gauss y campos conservativos Teorema de Gauss: sea V un dominio delimitado por la superficie S cerrada, orientada (siempre para el exterior), es decir, apuntando siempre para el exterior. Sea F un campo vectorial de. Se cumple que: 1. Halle el flujo del vector, a través de la superficie total del cono tal que y a través de la superficie lateral de este mismo cono. Notemos que el cono está completamente abierto en su base. Para utilizar el teorema de Gauss debemos cerrar la superficie. Para ello, procedemos a tapar el cono con un disco que sea lo suficientemente grande como para cubrir la totalidad de la base del cono. Procedemos a hallar la intersección del cono con el plano : Lo cual representa un disco cerrado, el cual, utilizaremos para tapar el cono: Nuestra superficie será: Donde es el cono (sin tapa), D es el disco y es el cono tapado. El flujo será: Integral 1: Como es una superficie cerrada y F es un campo de clase procedemos a utilizar el teorema de Gauss:

2 Buscamos: Entonces: Viendo V el cono macizo definido por: Tomando coordenadas cilíndricas: Donde: Integral 3: Parametrizamos el plano: Con z-componente positiva. Se verifica que dicho vector y la normal tienen igual orientación. Finalmente:

3 2. Sea, de clase, tal que. Sea la superficie definida por: Orientada con la normal que apunta hacia la región definida por. Calcule: Basándonos en el hecho de que Gauss una vez que cerremos la superficie. podemos resolver el problema mediante el método de Procedemos a taparla mediante la utilización de un disco definido por: La semiesfera con tapa será: Teniendo así: La superficie S tiene normal apuntando hacia la semiesfera negativa, es decir, este vector va desde el borde de la semiesfera hasta su centro (lo que nos hace pensar que ésta se mueve en sentido antihorario). La superficie debe mantener la orientación, por ende, vemos que la tapa tiene orientación contraria, pues si S tiene sentido antihorario entonces la tapa (vista desde el origen) debe tener sentido horario. Procedemos entonces a calcular las integrales por separado. Primera integral: la resolvemos mediante el uso del teorema de Gauss, ya que S es una superficie cerrada.

4 Segunda integral: se tiene que: Siendo: Con orientación positiva vista desde el origen de coordenadas. Notemos que ésta es contraria a la del vector normal, pues como el disco tiene orientación horaria su normal es negativa. Tomando coordenadas polares se tiene que: Finalmente: 3. Sea F un campo vectorial definido por y sea S la superficie orientada con la normal que tiene z-componente negativa, definida por: Calcule el flujo de F a través de S. El flujo de F a través de S vendrá dado por:

5 Procedemos a tapar el cono con un disco de radio 1, definido por: Así: Y se tendrá que: Procedemos a calcular las integrales por separado. Integral 1: notemos que es una superficie cerrada, el campo es de clase y por ende podemos utilizar el teorema de Gauss: Siendo: Así pues: Integral 2: procedemos a parametrizar el disco: Siendo: Con orientación positiva vista desde el origen de coordenadas. Notemos que ésta es contraria a la del vector normal, pues como el disco tiene orientación horaria su normal es negativa.

6 Finalmente: 4. Sea F el campo vectorial definido por y sea S la superficie orientada con la normal en la dirección definida por: Calcule el flujo de F a través de S. Notemos que la superficie es un paraboloide invertido y trasladado. Procedemos a tapar el paraboloide con un disco: Así: Tal que: Entonces, utilizando el teorema de Gauss: Básicamente se tiene que: Entonces: Sin embargo:

7 Entonces: Finalmente: Campos conservativos Un campo vectorial de clase se llama conservativo si el vector es gradiente de cierta función escalar. Es decir,. A esta función f se le denomina función potencial de. Si es un campo conservativo se cumple que: (Condiciones necesarias mas no suficientes) Si es un campo conservativo entonces se cumple que: Siendo una curva cerrada, simple y orientable definida en el intervalo 5. Determine si el campo es conservativo: Notemos que el campo no es de clase notemos que: pues en (0,0) las derivadas parciales no son continuas. Sin embargo,

8 Como el campo no es de clase podemos afirmar (directamente) que éste no es conservativo. Sin embargo, si quisiéramos demostrar la afirmación procedemos a hacer lo siguiente: Sabemos que un campo es conservativo si para una cierta curva cerrada C se cumple que a lo largo de ésta la integral de línea de F es nula. Consideremos una curva circunferencia unitaria como curva C contenida en el plano parametrización de ésta viene dada por:. Una Así: Calculemos: Con lo que se demuestra que el campo no es conservativo. 6. Halle los valores de las constantes para que el campo sea conservativo: Tenemos que F es un campo de clase, pues es función de polinomios y de funciones trigonométricas. Para que F sea conservativo se debe cumplir que: 7. Sea c la curva simple que va desde (1,1,1) hasta (1,2,4). Calcule:

9 Tenemos que la función, es: La cual es de clase por ser composición de polinomios. Como se garantiza que el campo es conservativo y que existe una función potencial f tal que. Hallemos la función potencial f: Teniendo así tres ecuaciones con tres incógnitas: Derivamos la ecuación (1) con respecto a y: Derivamos la ecuación (1) con respecto a z:

10 Teniendo así dos ecuaciones con dos incógnitas. Derivamos (4) con respecto a z: Así: Finalmente, la ecuación potencial f, es: Por teorema del campo conservativo se tiene: 8. Conociendo que, desde (1,1,0) hasta (0,3,3) calcule: Y la función es de clase por estar compuesta de polinomios. Como el campo es conservativo se cumple que existe una función potencial f tal que. Entonces:

11 Obteniendo así tres ecuaciones con tres incógnitas: Integramos: Derivamos la ecuación (1) con respecto a z: Derivamos la ecuación (1) con respecto a y: Derivamos la ecuación (4) con respecto a y: Finalmente, la función potencial f, es: Por teorema de campo conservativo, se tiene que:

12 9. Sea definida por y sea. Calcule: Veamos si el campo es conservativo: Como F es un campo vectorial continuo (polinomios), es de clase y el campo es conservativo existe una función f tal que por ser función compuesta de polinomios. Entonces: Tenemos tres ecuaciones con tres incógnitas. Derivamos la ecuación (3) con respecto a x:

13 Derivamos la ecuación (3) con respecto a y: Derivamos la ecuación (4) con respecto a y: Finalmente, la ecuación potencial f, es: Por teorema de campo conservativo se tiene que: 10. Sea F el campo vectorial definido por: Es F conservativo? Halle la integral de F sobre ABC, donde AB es el trozo de curva que va desde (0,0,0) hasta el punto (1,1,0) y BC es el arco definido por: Como F es un campo vectorial continuo (polinomios), es de clase y el campo es conservativo existe una función f tal que por ser función compuesta de polinomios. Entonces:

14 Tenemos tres ecuaciones con tres incógnitas. Derivamos la ecuación (3) con respecto a x: Derivamos la ecuación (3) con respecto a y: Derivamos la ecuación (4) con respecto a y: Finalmente, la ecuación potencial f, es: Recordemos que la integral de línea es independiente de la trayectoria tomada. Si se quiere la integral de F sobre ABC pues sólo nos interesan los puntos inicial (A) y final (C).

15 El punto A es conocido (0,0,0), sin embargo, el punto C debemos calcularlo. Tenemos que el arco BC está parametrizado, por ende, éste será el valor de la parametrización cuando. Entonces, el punto C será. Por el teorema de campos conservativos se tiene que: Se agradece la notificación de errores Christian Laya

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Series y sucesiones de números complejos

Series y sucesiones de números complejos 1 Universidad Simón Bolívar. Preparaduría nº 8. christianlaya@hotmail.com ; @ChristianLaya. Series y sucesiones de números complejos Definición: una sucesión de números complejos tiene un límite si para

Más detalles

Extremos relativos y multiplicadores de LaGrange

Extremos relativos y multiplicadores de LaGrange 1 Universidad Simón Bolívar.. Preparaduría nº 5. christianlaya@hotmail.com ; @ChristianLaya Extremos relativos y multiplicadores de LaGrange Punto Máximo relativo o local Definición Se dice que la función

Más detalles

Capítulo 5. Integrales sobre curvas y superficies

Capítulo 5. Integrales sobre curvas y superficies Capítulo 5. Integrales sobre curvas y superficies 5.1. Integrales de funciones escalares sobre curvas 5.2. Integrales de campos vectoriales sobre curvas 5.3. Teorema de Green 5.4. Integrales sobre superficies

Más detalles

Práctica 4. Teorema de la divergencia, Teorema de Stoke y Campos conservativos.

Práctica 4. Teorema de la divergencia, Teorema de Stoke y Campos conservativos. Práctica 4 Teorema de la divergencia, Teorema de Stoke y Campos conservativos. 1 Teorema de la divergencia Sea suave y una región tipo IV acotada por la cual es una superficie cerrada y orientada. Entonces

Más detalles

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera:

PROBLEMA 1 *( ) + SOLUCIÓN: Sea la superficie de la parte esférica superior, parametrizada con coordenadas cilíndricas de la siguiente manera: PROBLEMA 1 A una esfera maciza de radio unidad se le hace una perforación cilíndrica siguiendo un eje diametral de la esfera. Suponiendo que el cilindro es circular de radio, con y que el eje que se usa

Más detalles

CAPÍTULO 10. Teoremas Integrales.

CAPÍTULO 10. Teoremas Integrales. CAPÍTULO 10 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8

ANALISIS MATEMATICO II (Ciencias- 2011) Trabajo Práctico 8 ANALISIS MATEMATIO II (iencias- 2011) Integrales sobre curvas (o de línea) Trabajo Práctico 8 1. Evaluar las siguientes integrales curvilíneas γ f ds. (a) f(x, y, z) = x + y + z ; r(t) = (sen t, cos t,

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS VI (MA-2113) PREPARADURÍA N 2

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS VI (MA-2113) PREPARADURÍA N 2 Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS VI (MA-113) PREPARADURÍA N Integrales de funciones vectoriales

Más detalles

gradiente de una función? Para esos valores, calcule la función potencial.

gradiente de una función? Para esos valores, calcule la función potencial. CAMPOS CONSERVATIVOS. FUNCIÓN POTENCIAL 1. Sea F = 4xy 3x ( z (, 2x (, 2x, z. Demuestre que Fdl trayectoria C. es independiente de la 2. Dado el campo vectorial F = 3x ( + 2y y ( e 3, 2x 2ye 3. Es posible

Más detalles

CAPÍTULO 11. Teoremas Integrales.

CAPÍTULO 11. Teoremas Integrales. CAPÍTULO 11 Teoremas Integrales. Este capítulo final contiene los teoremas integrales del análisis vectorial, de amplia aplicación a la física y a la ingeniería. Los anteriores capítulos han preparado

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Práctica 9 Campos conservativos - Teorema de Green ANÁLISIS MATEMÁTIO II - Grupo iencias 018 Práctica 9 ampos conservativos - Teorema de Green A. ampos conservativos 1. Mostrar que F x, y) = y cos x) i + x sen y) j no es un campo vectorial gradiente..

Más detalles

Lista de Ejercicios Complementarios

Lista de Ejercicios Complementarios Lista de Ejercicios omplementarios Matemáticas VI (MA-3) Verano. ean α >, β > y a, b R constantes. ea la superficie que es la porción del cono de ecuación z = α x + y que resulta de su intersección con

Más detalles

Matemáticas III Tema 6 Integrales de superficie

Matemáticas III Tema 6 Integrales de superficie Matemáticas III Tema 6 Integrales de superficie Rodríguez ánchez, F.J. Muñoz Ruiz, M.L. Merino Córdoba,. 214. OCW-Universidad de Málaga, http://ocw.uma.es. Bajo licencia Creative Commons Attribution- NonComercial-hareAlike

Más detalles

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10

ANÁLISIS MATEMÁTICO II - Grupo Ciencias 2018 Comentarios y ejemplos - Práctica 10 ANÁLII MATEMÁTICO II - Grupo Ciencias 218 Comentarios y ejemplos - Práctica 1 A. Parametrizaciones de superficies El concepto de parametrización de una superficie es análogo al de parametrización de una

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Integrales de lı nea y de superficie

Integrales de lı nea y de superficie EJERIIO DE A LULO II PARA GRADO DE INGENIERI A Elaborados por Domingo Pestana y Jose Manuel Rodrı guez, con Arturo de Pablo y Elena Romera 4 4.1 Integrales de lı nea y de superficie Integrales sobre curvas

Más detalles

MATE1207 Preparación Examen Final MATE MATE1207 Cálculo Vectorial

MATE1207 Preparación Examen Final MATE MATE1207 Cálculo Vectorial MATE07 Preparación Eamen Final MATE-07 Universidad de los Andes Departamento de Matemáticas MATE07 álculo Vectorial Eamen Final: Martes de Mao 0 7:00 9:00 a.m. Sección Profesor Salón 0 José Ricardo Arteaga

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral de junio de 11 (Soluciones) Cuestiones C 1 La respuesta es que la función es integrable, como consecuencia del Teorema 1.1 de los apuntes, o el Teorema del Capítulo 5 del

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 10

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 10 Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 1 Cambios de Variable (fin) y

Más detalles

Funciones continuas, derivables y diferenciables en un punto

Funciones continuas, derivables y diferenciables en un punto 1 Universidad Simón Bolívar.. Preparaduría nº 2. christianlaya@hotmail.com ; @ChristianLaya Funciones continuas, derivables y diferenciables en un punto Función continua: una función es continua en un

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003

CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de 2003 CÁLCULO Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 11 de Junio de Ejercicio 1. Calcular el volumen del elipsoide x a + y b + z c 1. Probar que el elipsoide de volumen máximo,

Más detalles

La puntuación depende del modo de resolución.

La puntuación depende del modo de resolución. Grupo B 16/17 Ampliación de Cálculo En todos los casos, se pide contestar razonadamente La puntuación depende del modo de resolución Ejercicio 1 (15 puntos por apartado) Una semiesfera sólida de densidad

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2

a) Analice la continuidad en (1,0). E1) Dada F : IR 2 π g : D IR 2 I R 2 2 2 Ejemplos de parcial de Análisis Matemático II Los ítems E1, E, E3 E4 corresponden a la parte práctica Los ítems T1 T son teóricos (sólo para promoción) T1) Sea F : IR IR diferenciable tal que F(,) 00 =

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere del de Análisis Matemático I, porque allí diferenciable

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013

Análisis II - Análisis matemático II - Matemática 3 2do. cuatrimestre de 2013 Análisis II - Análisis matemático II - Matemática 3 do. cuatrimestre de 3 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones.. Verificar el teorema de Stokes para el hemisferio

Más detalles

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ,

Segundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de x = r cos θ, y = r sen θ, z = θ, egundo Examen Parcial Tema A Cálculo Vectorial Noviembre 5 de 216 Este es un examen individual, no se permite el uso de libros, apuntes, calculadoras o cualquier otro medio electrónico. ecuerde apagar

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 10 Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Asignatura: álculo II PRUEBAS DE EVALUAIÓN NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. URSO 010 011 JUNIO URSO 10

Más detalles

ANALISIS II 12/2/08 COLOQUIO TEMA 1

ANALISIS II 12/2/08 COLOQUIO TEMA 1 ANALISIS II //08 COLOQUIO TEMA Sea f : R R un campo vectorial C y C la curva parametrizada por: γ(t) = (cost, 0, sent) con t ɛ [0, π] Sabiendo que C f ds = 6 y que rot( f( ) = (z, ), calcular la integral

Más detalles

Funciones Diferenciables. Superficies.

Funciones Diferenciables. Superficies. CAPÍTULO 3 Funciones Diferenciables. Superficies. En este importante capítulo presentamos el concepto de diferenciabilidad. Este concepto difiere sustancialmente del de Análisis Matemático I. Estudiamos

Más detalles

SERIE # 4 CÁLCULO VECTORIAL

SERIE # 4 CÁLCULO VECTORIAL SERIE # 4 CÁLCULO VECTORIAL Página 1 1) Calcular 1 x y dy dx. 0 0 1 ) Evaluar la integral doble circunferencia x y 9. x 9 x da R, donde R es la región circular limitada por la 648 15 x y ) Calcular el

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. er. cuatrimestre de 8 Práctica 4 - Teoremas de Stokes y de Gauss. Campos conservativos. Aplicaciones. Ejercicio. Verificar el teorema de Stokes para el

Más detalles

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1

MATEMÁTICA AGRONOMÍA RESPUESTAS AL SEGUNDO PARCIAL Primer Cuatrimestre Tema 1 Ejercicio Considerando la recta R que pasa por los puntos A = (; 0; ) y B = (2; ; 5) y el punto P = (2; ; ), hallar la ecuación implícita del plano π que es perpendicular a la recta R y contiene al punto

Más detalles

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x

sea a lo largo de la curva solución de la ecuación diferencial xy, = 5x 1. Hallar κ de manera que el flujo saliente del campo f ( x, = (x + y + z, 6y a través de la frontera del cuerpo x + y + z 16 x + y κ, 0 < k < 4 f : R R un campo vectorial definido por:. Sea γ ( t ) =

Más detalles

Lección 3. Cálculo vectorial. 5. El teorema de Stokes.

Lección 3. Cálculo vectorial. 5. El teorema de Stokes. GRADO DE INGENIERÍA AEROESPAIAL. URSO. 5. El teorema de Stokes. En esta sección estudiaremos otro de los teoremas clásicos del análisis vectorial: el teorema de Stokes. Esencialmente se trata de una generalización

Más detalles

Integrales de Superficie.

Integrales de Superficie. CAPÍTULO 9. Integrales de Superficie. Este capítulo cierra los tipos de integrales que estudiamos en el curso. Se practica el concepto de integral de superficie y se dan aplicaciones geométricas y físicas.

Más detalles

1 Terminar los ejercicios de la práctica realizada el día de hoy

1 Terminar los ejercicios de la práctica realizada el día de hoy Este documento contiene las actividades no presenciales propuestas al terminar la clase del día que se indica. e sobreentiende que también se debe realizar el estudio de lo explicado en clase aunque no

Más detalles

PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones. f(x) = x4 x 2 + 4x 4 2x 3 2x 2

PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones. f(x) = x4 x 2 + 4x 4 2x 3 2x 2 UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-) Elaborado por Miguel Labrador 2-0423 Ing. Electrónica PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones.

Más detalles

Unidad 1: Integrales Múltiples

Unidad 1: Integrales Múltiples Unidad 1: Integrales Múltiples 1.1 Integrales dobles y triples. (1) Definir qué es una función integrable Riemann. (2) Decidir cuándo una función es integrable Riemann. (3) Enunciar y aplicar las propiedades

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA Laboratorios virtuales: Electricidad y Magnetismo I Uso de Mathematica: Campos Vectoriales y Sistemas de Coordenadas ELABORADO

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 8

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 8 Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-11) PREPARADURÍA N 8 Campos conservativos. Integrales

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral Examen final de Cálculo Integral 8 de junio de (Soluciones) Cuestiones C Sí se puede asegurar que es integrable, como consecuencia del teorema 4. de los apuntes: Llamamos W y f : W R a la esfera y a la

Más detalles

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen

Coordinación de Matemática IV Guía-Apunte de Preparación del CAR. 2 do Semestre Contenidos del Certamen Universidad Técnica Federico anta aría Coordinación de atemática IV Guía-Apunte de Preparación del CAR 2 do emestre 2011 Información Contenidos del Certamen Teorema de Green, Teorema de Green para Regiones

Más detalles

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del

GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE. 2) Para cada una de las superficies dadas determine un vector normal y la ecuación del GUIA DE ESTUDIO PARA EL TEMA 2: INTEGRALES DE SUPERFICIE PLANO TANGENTE Y VECTOR NORMAL. AREA DE UNA SUPERFICIE 1) En cada uno de los siguientes ejercicios se presenta una S dada en forma paramétrica,

Más detalles

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x).

MA2112 Departamento de Matemáticas. f.ds = γ. ABC, con A(1, 0, 2), B(1, 3, 0), C(0, 1, -1) y f = (P, Q, R) = ( z, x+y, x). VRANO D 24 UNIVRSIDAD SIMON BOLIVAR P2A.- un segundo examen parcial de alguna fecha anterior. 1.- Calcule la integral : γ f.ds = γ Pdx+Qdy+Rdz, siendo γ la poligonal ABC, con A(1,, 2), B(1, 3, ), C(, 1,

Más detalles

Matemáticas 5. Segundo Parcial 1-2. = +, inferiormente por el plano = y esta contenida en el cilindro ++ =.

Matemáticas 5. Segundo Parcial 1-2. = +, inferiormente por el plano = y esta contenida en el cilindro ++ =. Matemáticas 5. Segundo Parcial -.- Calcule, donde T es el sólido limitado superiormente por la supericie de ecuación = +, ineriormente por el plano = y esta contenida en el cilindro ++ =. Solución. Graicamos

Más detalles

Problemas resueltos del Boletín 1

Problemas resueltos del Boletín 1 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín Problema. Dada la curva r (t) = t [0, π], parametrizarla naturalmente. ( (cos t + t sen t), (sen t t cos t), t ), con En primer

Más detalles

Integrales de Superficie

Integrales de Superficie Capítulo 12 Integrales de uperficie 12.1. Definiciones Básicas Nuestro porpóstito en esta sección es el definir el concepto de integral de una función f : M R sobre una superficie M en el espacio. Para

Más detalles

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles.

PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES. Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. PRÁCTICA TEMA 2 INTEGRALES MÚLTIPLES Ejercicio 1. Escriba la expresión que permite calcular por integrales dobles. a. El área de una región plana R. b. El volumen de un sólido V, de altura z = f(x,y).

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

Solución y Pautas de Corrección

Solución y Pautas de Corrección Universidad de los Andes Departamento de Matemáticas MATE127 Cálculo Vectorial Examen Final (1/12/29) 1 Prob. 1 2 3 4 5 Valor 1 1 1 1 1 5 Puntos Nombre: Código: Sección: Escriba todo su análisis si desea

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Subspacios Vectoriales

Subspacios Vectoriales Subspacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Subspacios Vectoriales 1 / 25 Objetivos Al finalizar este tema tendrás que: Saber si un subconjunto es

Más detalles

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas,

con tiene recta tangente de ecuación y 4 x 2. Análisis Matemático II ( ) Final del 14/07/ dz planteada en coordenadas cilíndricas, Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 05 Son 0 (die fechas de final, desde el 6/05/5 al 9/0/6 inclusive Análisis Matemático II (95-0703) Final del 6/05/05 Condición

Más detalles

MATE1207 Cálculo Vectorial Solución Examen Final (04/12/2007) 1. Prob Total Valor Puntos. Nombre: Código: Sección:

MATE1207 Cálculo Vectorial Solución Examen Final (04/12/2007) 1. Prob Total Valor Puntos. Nombre: Código: Sección: Universidad de los Andes Departamento de Matemáticas MATE7 álculo Vectorial olución Eamen Final (//7) Prob. 3 Total Valor Puntos Nombre: ódigo: ección: NO PUEDE UAR ALULADORA. onsidere la función z = f(,

Más detalles

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II.

Grado en Ingeniería de Tecnologías de Telecomunicación. Universidad de Sevilla. Matemáticas I. Departamento de Matemática Aplicada II. Grado en Ingeniería de Tecnologías de Telecomunicación Universidad de Sevilla Matemáticas I. Departamento de Matemática Aplicada II. Tema 1. Curvas Paramétricas. Nota Informativa: Para explicar en clase

Más detalles

Ejercicios Tema 4: INTEGRAL DE SUPERFICIE (incluye ejercicios exámenes cursos anteriores)

Ejercicios Tema 4: INTEGRAL DE SUPERFICIE (incluye ejercicios exámenes cursos anteriores) Ejercicios Tema 4: INTEGRAL DE UPERFICIE (incluye ejercicios exámenes cursos anteriores) 1. Hallar el flujo del campo vectorial F x, y, z a través de la superficie total del cilindro x 2 y 2 R 2, 0 z h.

Más detalles

de C sobre el plano xy tiene ecuación

de C sobre el plano xy tiene ecuación Análisis Matemático II (95-0703) Finales tomados durante el Ciclo lectivo 017 Son 10 (die fechas de final, desde el 4/05/17 al 7/0/18 inclusive Análisis Matemático II (95-0703) Final del 4/05/17 Condición

Más detalles

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000

Primer curso de Ingeniero de Telecomunicación Segundo Examen Parcial. 14 de Junio de 2000 ÁLULO Primer curso de ngeniero de elecomunicación egundo Examen Parcial. de Junio de Ejercicio. Hallar los extremos absolutos de la función f (x, y, z) =x + y + z, en el conjunto A = (x, y, z) R 3 : x

Más detalles

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH

EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

6. El teorema de la divergencia.

6. El teorema de la divergencia. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. Lección. Cálculo vectorial. 6. El teorema de la divergencia. Ya vimos una versión del teorema de Green en el plano que expresa la igualdad entre la integral doble

Más detalles

MA2112 Departamento de Matemáticas. En Ma1116 Ud. estudió representaciones paramétricas de recta en el espacio en forma escalar

MA2112 Departamento de Matemáticas. En Ma1116 Ud. estudió representaciones paramétricas de recta en el espacio en forma escalar VERANO DE 4 UNIVERSIDAD SIMON BOLIVAR Parametrización de curvas e integrales de linea. En Ma1116 Ud. estudió representaciones paramétricas de recta en el espacio en forma escalar x= x +lt y=y +mt z= z

Más detalles

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto.

x 2 + ln(x + z) y = 0 yz + e xz 1 = 0 define una curva C regular en un entorno de (1, 1, 0) y halle el plano normal a C en dicho punto. 1 Sea f : R R una función C 3 que satisface f(1, ) = (0, 0), y cuya matriz ( Hessiana ) en (1, ) es: 1 0 H = 0 Hallar todos los b ɛ R de manera que la función: g( = f( + 1 b b (y ) ) tenga extremo en (1,

Más detalles

Ayudantía 1. Recordando Cálculo Vectorial 06 de Marzo de 2018 Ayudante: Matías Henríquez -

Ayudantía 1. Recordando Cálculo Vectorial 06 de Marzo de 2018 Ayudante: Matías Henríquez - Pontificia Universidad Católica de Chile Facultad de Física FIS1533 - Electricidad y Magnetismo // 1-218 Profesor: Giuseppe De Nittis - gidenittis@uc.cl Ayudantía 1 Recordando Cálculo Vectorial 6 de Marzo

Más detalles

TEMA 11: INTEGRAL DE LINEA.

TEMA 11: INTEGRAL DE LINEA. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 015-016 TEMA 11:

Más detalles

GUÍA DE EJERCICIOS. TEMA 1. Integrales de trayectoria, integrales de línea y longitud de arco.

GUÍA DE EJERCICIOS. TEMA 1. Integrales de trayectoria, integrales de línea y longitud de arco. Elaborado por: Br. Saúl Utrera Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-) GUÍA DE EJERCICIOS Segundo parcial de

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Unidad 11 Geometría analítica

Unidad 11 Geometría analítica Unidad 11 Geometría analítica PÁGINA 190 SOLUCIONES Representa gráficamente puntos en el plano. Calcular razones trigonométricas. Calcula las siguientes razones trigonométricas utilizando la calculadora.

Más detalles

FUNCIONES VECTORIALES DE VARIABLE ESCALAR

FUNCIONES VECTORIALES DE VARIABLE ESCALAR CAPITULO II CALCULO II 2.1 CONCEPTOS BÁSICOS FUNCIONES VECTORIALES DE VARIABLE ESCALAR Una función vectorial (o a valores vectoriales) de una variable real (escalar), es una función del en la cual, a cada

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

Capítulo 3. Funciones con valores vectoriales

Capítulo 3. Funciones con valores vectoriales Capítulo 3. Funciones con valores vectoriales 3.1. Curvas: recta tangente y longitud de arco 3.2. Superficies parametrizadas 3.3. Campos vectoriales, campos conservativos Capítulo 3. Funciones con valores

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. 1 Análisis II Análisis matemático II Matemática 3. 1er. cuatrimestre de 2008 Práctica 1 - urvas, integral de longitud de arco e integrales curvilíneas. urvas Definición 1. Una curva R 3 es un conjunto

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.

2.1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados. Tema : TRIGONOMETRÍA PLANA..1 Razones trigonométricas del ángulo suma y del ángulo diferencia de otros dos ángulos dados.. Razones trigonométricas del ángulo doble y del ángulo mitad..3 Teoremas del coseno

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS III CÓDIGO CB314 ÁREA:

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS III CÓDIGO CB314 ÁREA: UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE CIENCIAS BÁSICAS DEPARTAMENTO DE MATEMÁTICAS 1. IDENTIFICACIÓN DE LA ASIGNATURA NOMBRE: MATEMÁTICAS III CÓDIGO CB314 ÁREA: FUNDAMENTACIÓN CIENTÍFICA PROGRAMA

Más detalles

AMPLIACIÓN DE CÁLCULO

AMPLIACIÓN DE CÁLCULO AMPLIACIÓN DE CÁLCULO Problemas propuestos Departamento de Matemáticas del Área Industrial Programa de Ampliación de Cálculo. Curso 2014/15 1. Cálculo de integrales múltiples Integrales dobles en rectángulos;

Más detalles

ϕ(u, v) = (u, v, f (u, v)), pidiendo adicionalmente que D sea una región (plana) a la que podemos

ϕ(u, v) = (u, v, f (u, v)), pidiendo adicionalmente que D sea una región (plana) a la que podemos El Teorema de tokes 1 El Teorema de tokes El Teorema de tokes es una generalización del Teorema de Green (Teoremas 5., 5.4 y 5.7) al espacio 3, aplicándose a superficies orientadas que son encerradas (acotadas)

Más detalles

Análisis Matemático II Curso 2018 Práctica introductoria

Análisis Matemático II Curso 2018 Práctica introductoria Análisis Matemático II Curso 018 Práctica introductoria Cónicas - Sus ecuaciones y gráficas 1. Encontrar la forma estándar de cada cónica y graficar. a) x + y 6y = 0 b) x + y 1 = 0 c) x(x + 1) y = 4 d)

Más detalles

Asignaturas antecedentes y subsecuentes Álgebra Lineal I y Cálculo Integral.

Asignaturas antecedentes y subsecuentes Álgebra Lineal I y Cálculo Integral. PROGRAMA DE ESTUDIOS CALCULO VECTORIAL II Área a la que pertenece: ÁREA SUSTANTIVA PROFESIONAL Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0036 Asignaturas antecedentes y subsecuentes Álgebra

Más detalles

4 3 Ahora la distancia desde un punto cualquiera de r, por ejemplo A, hasta r o r debe ser 3.

4 3 Ahora la distancia desde un punto cualquiera de r, por ejemplo A, hasta r o r debe ser 3. Examen de Geometría analítica del plano Curso 015/16 Ejercicio 1. Dados los puntos A ( 1,0) y B ( 5,3), se pide lo siguiente: Ecuaciones paramétricas de la recta r que pasa por A y B. Encontrar la ecuación

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático Resolución del coloquio de fecha 4/07/18 tema I con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad

Más detalles

Nombre de la Asignatura Matemáticas III( ) INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos

Nombre de la Asignatura Matemáticas III( ) INFORMACIÓN GENERAL Escuela. Departamento Unidad de Estudios Básicos Código 008-2814 UNIVERSIDAD DE ORIENTE INFORMACIÓN GENERAL Escuela Departamento Unidad de Estudios Básicos Ciencias Horas Semanales 06 Horas Teóricas 03 Pre-requisitos 008-1824 Total Horas Semestre 96

Más detalles

Integración sobre curvas

Integración sobre curvas Problemas propuestos con solución Integración sobre curvas ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Integral de línea de campos escalares 1

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B =

Apellidos: Nombre: Curso: 2º Grupo: A Día: 28 - IV 14 CURSO Opción A 1.- Sean las matrices A = , B = S Instrucciones: EXAMEN DE MATEMATICAS II 3ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 8 - IV 4 CURSO 03-4 a) Duración: HORA y 30 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro

Más detalles

Teorema de la Divergencia (o de Gauss) y la Ecuación de

Teorema de la Divergencia (o de Gauss) y la Ecuación de E.E.I. CÁLCULO II Y ECUACIONE IFEENCIALE Curso 2016-17 Lección 13 (Lunes 13 mar 2017) Teorema de la ivergencia (o de Gauss) y la Ecuación de ifusión. 1. Teorema de la ivergencia (o Teorema de Gauss). 2.

Más detalles

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química

UAM CSIC Grupo 911 Febrero Ejercicios Resueltos del Tema Asignatura de Matemáticas Grado en Química UAM I Grupo 911 Febrero 213 Ejercicios Resueltos del Tema 2.2.6 Asignatura de Matemáticas Grado en Química Lista de ejercicios en estas páginas: 1 7 y 9 12. Nota: Los ejercicios pueden contener errores,

Más detalles

PROGRAMA. Asignatura MAT 215 CALCULO EN VARIAS VARIABLES"

PROGRAMA. Asignatura MAT 215 CALCULO EN VARIAS VARIABLES Facultad de Ciencias Instituto de Matemática http://ima.ucv.cl Blanco Viel 596, Cerro Barón, Valparaíso Casilla 4059, Valparaíso Chile Tel: (56-32) 2274001 Fax:(56-32) 2274041 CARLOS MARTINEZ YAÑEZ, Secretario

Más detalles

Álgebra lineal. Noviembre 2018

Álgebra lineal. Noviembre 2018 Álgebra lineal. Noviembre 08 Opción A Ejercicio. (Puntuación máxima:,5 puntos) Sea el siguiente sistema de ecuaciones lineales: 4ax + 4ay + z = a ax + y az = a, se pide: 4ax + 4ay + az = 4 (,5 puntos)

Más detalles

Asignaturas antecedentes y subsecuentes Álgebra Lineal y Cálculo Integral

Asignaturas antecedentes y subsecuentes Álgebra Lineal y Cálculo Integral PROGRAMA DE ESTUDIOS CALCULO VECTORIAL II Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 4 Horas prácticas: 2 Créditos: 10 Clave: F0036 Asignaturas antecedentes y subsecuentes Álgebra

Más detalles