Funciones continuas, derivables y diferenciables en un punto

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Funciones continuas, derivables y diferenciables en un punto"

Transcripción

1 1 Universidad Simón Bolívar.. Preparaduría nº 2. Funciones continuas, derivables y diferenciables en un punto Función continua: una función es continua en un punto, si: La función f está definida en. Una función f es continua en un conjunto abierto, si y sólo si es continua en todo punto interior a S. Derivada parcial en un punto: La derivada parcial de f con respecto a x en el punto, si el límite existe, se denota por: Análogamente la derivada con respecto a y es: Relación entre la derivabilidad y continuidad: una función real de dos variables reales puede ser continua en un punto y sin embargo no ser derivable en dicho punto; y a diferencia de las funciones reales de una variable real, puede ocurrir que una función tenga derivadas parciales en un punto, a pesar de que la función no sea continua en ese punto. Derivadas parciales de orden superior: una derivada parcial de orden superior se obtiene derivando varias veces una función con respecto a la misma variable o a otra(s) variable(s). Hay cuatro formas de hallar una derivada parcial de segundo orden: Derivar la función dos veces con respecto a x: Derivar la función dos veces con respecto a y: Derivar la función primero con respecto a x y luego con respecto a y:

2 2 Derivar la función primero con respecto a y luego con respecto a x: En general, para denotar la derivada de la función f, veces respecto a la variable y luego veces respecto a, escribiremos: Cuando se deriva primero respecto a una variable y luego con respecto a la otra, las derivadas parciales se denominan cruzadas o mixtas (no tienen que ser iguales, en general, importa el orden de derivación). Teorema de Schwartz: si f es una función de x e y tal que, una región que contiene al punto y todas ellas son continuas en, entonces:, están definidas en Función diferenciable en un punto: sea. Diremos que f es diferenciable en si se satisface lo siguiente: Existen las derivadas parciales: El siguiente límite vale cero. Esto es: La expresión: Puede ser escrita en forma matricial: Luego, nos va a quedar:

3 3 Relación entre diferenciabilidad y continuidad: Sea f una función de, si f es diferenciable en, f es continua en. Sin embargo, el hecho de que f sea continua en, no implica que sea diferenciable en. 1. Dada la función definida, por: Es f diferenciable en el origen? Es f continua en el origen? Solución: Vemos que la función está definida en el origen, es decir. Ahora bien: Tomamos trayectorias genéricas que pasen por el (0,0): Verificamos mediante la definición: Ahora, sabemos que:

4 4 Ahora bien: Adicionalmente: Entonces: Si tomamos el límite existe, vale cero y la función es continua en el origen. Diferenciabilidad en (0,0): Verifiquemos que el siguiente límite es nulo: Tomamos rectas genéricas que pasen por el punto: El límite depende de la trayectoria y por ende no existe. La función no es diferenciable en el origen.

5 5 2. Sean los puntos A(1,2) y B(1,-1) y dada la función definida, por: Es f continua en A y B? Es f diferenciable en A y B? Solución: Graficamos la región: En la región roja y sobre la gráfica de se define la función y en la región verde se define la función. Notamos que el punto A está claramente definido en la región roja pero el punto B está definido sobre la región verde y sobre la función. Estudiemos ahora los distintos casos pedidos: Continuidad en A: Es un valor probable, debemos verificar que está acotado. Adicionalmente, sabemos que:

6 6 Ahora bien: Hemos hallado un que depende de un y con lo que se garantiza que el límite existe y vale 1. Continuidad en B: El punto B está definido sobre la función, por ende, debemos evaluar los límites laterales: Probamos ambos límites: Primero: Adicionalmente, sabemos que: Ahora bien: Hemos encontrado un delta que depende de un épsilon y, por ende, el límite existe y vale dos. Segundo:

7 7 Adicionalmente, sabemos que: Ahora bien: Hemos encontrado un delta que depende de un épsilon y por ende, el límite existe y vale dos. Concluimos que: Y que la función es continua en B. Diferenciabilidad en A: Hallemos las derivadas parciales: Ahora:

8 8 Nos aproximamos al (1,2) mediante rectas del tipo Probamos mediante la definición: Adicionalmente, sabemos que: Ahora bien: Hemos probado la existencia del límite y que éste valga cero. Así pues, la función es diferenciable en A. Diferenciabilidad en B: Vemos que en el punto B hay un cambio de definición de la función. Al observar la región vemos que si nos acercamos al punto B (a lo largo del eje x) por la izquierda, la función se define como, análogamente si nos acercamos por la derecha vemos que la función se define como. Es necesario tomar límites laterales: Los límites laterales son distintos, por ende, la derivada parcial de f con respecto a x en B no existe y la función no es diferenciable en B.

9 9 3. Sea una función definida como sigue: Es continua en? Es diferenciable en? Solución: Hay varias formas de resolver el ejercicio: Primera: Definimos dos funciones nuevas: Es lógico ver que. Si g y h son funciones continuas y diferenciables en el origen entonces f también lo será debido a que es una resta de dos funciones que lo son de por sí. Sabemos que h cumple con esta condición debido a que es una función constante, la cual, es continua y derivable en todos los números reales. Estudiemos la continuidad de g: La función g es continua en (0,0) y la función h también lo es, por ende, f es continua en (0,0) por ser resta de dos funciones continuas en dicho punto. Veamos si la función g es diferenciable en el origen. Determinemos el límite:

10 10 Para que la función sea diferenciable se debe cumplir que dicho límite sea nulo. Supongamos que lo sea y tratemos de probarlo: Si encontramos un número delta que dependa de un número épsilon tal que ambos sean positivos y no importe cuán pequeños sean entonces la función es diferenciable. Ahora, sabemos que: Cuando x e y se aproximan al cero (son valores muy pequeños), se cumple que: Entonces: Ahora bien: Entonces:

11 11 No podemos encontrar un delta que dependa de un épsilon, por ende, el límite no vale cero (bien puede ser distinto de cero o no existir) y la función no es diferenciable en (0,0). Segunda: Continuidad en (0,0): Vemos que la función está definida en el origen, es decir. Veamos ahora: Es un valor probable, debemos verificar mediante la definición: Ahora, sabemos que: Cuando x e y se aproximan al cero (son valores muy pequeños), se cumple que: Seguidamente: Entonces: Si tomamos garantizamos que el límite exista, valga cero y la función sea continua en el origen.

12 12 Diferenciabilidad en (0,0): Hay dos formas de determinar si la función es diferenciable en (0,0): Primer método: determinemos las derivadas parciales en el (0,0): Determinamos el límite: Tomamos laterales: Resolvemos: El límite depende del ángulo y, por ende, no existe. Como no existe uno de los laterales entonces el límite original no existe y por ende la función no es diferenciable en (0,0). Segundo método: hallamos las derivadas parciales sin evaluar en el punto: El dominio de continuidad de ambas derivadas parciales, es son continuas en (0,0) entonces f no es diferenciable en (0,0).. Como las derivadas parciales no

13 13 4. Sea la función definida, por: Es f continua en todo? Es f diferenciable en todo? Solución: El ejercicio puede ser resuelto de dos maneras distintas. Primera: definimos dos funciones nuevas: Se ve fácilmente que: Sabemos que la función es derivable en todo y que la función también lo es puesto que es continua en : Y, adicionalmente, el límite existe: Como sabemos que la suma de dos funciones derivables es una función diferenciable, entonces, se garantiza que f es continua y diferenciable en todo. Segunda: Nos piden determinar si la función es continua y diferenciable en todo, básicamente lo que debemos hacer es verificar si dichas condiciones se cumplen en los puntos que no pertenecen al dominio de la función. Vemos que f tiene problemas para todos los puntos de la forma ) (también se puede verificar si f es continua y diferenciable en un punto genérico de como lo sería )). Continuidad en : Vemos que la función está definida en el punto, es decir. Es un valor probable, verificamos mediante la definición:

14 14 Ahora, sabemos que: Entonces: Finalmente: Encontramos un que depende de un y por ende el límite existe y la función es continua en todo. Diferenciabilidad en : Hallamos las parciales: Sabemos que: Entonces:

15 15 Hallamos el límite: Nos aproximamos al punto mediante rectas genéricas de la forma : Es un valor probable. Verificamos mediante la definición: Ahora, sabemos que: Entonces:

16 16 Encontramos un delta que depende de un épsilon y por ende el límite existe y vale cero. La función es diferenciable en todo. 5. Dada la función definida, por: Ejercicios propuestos Diga si f es continua en (0,0). Halle las primeras derivadas parciales de f en (0,0). Diga si f es diferenciable en (0,0). Solución: Continuidad en (0,0): La función está bien definida en el (0,0), es decir. Es un valor probable. Verificamos mediante la definición: Sabemos que la función real está definida mediante entonces, la expresión Adicionalmente: puede ser escrita como.

17 17 Entonces: Si tomamos garantizamos que el límite exista, valga cero y que la función sea continua en el origen. Primeras derivadas parciales: Diferenciabilidad en (0,0): Tomamos trayectorias genéricas que pasen por el punto: El límite depende de la pendiente y, por ende, no existe. Así, la función no es diferenciable en (0,0).

18 18 6. Dada la función definida, por: Es f continua en (0,0)? Es f diferenciable en (0,0)? Solución: Graficamos la región: Continuidad en (0,0): Vemos que la función está definida en (0,0): Es un valor probable. Verificamos mediante la definición: Ahora, sabemos que:

19 19 Adicionalmente: Entonces: Así, si tomamos garantizamos que el límite exista, valga cero y la función sea continua en el origen. Diferenciabilidad en (0,0): Debemos hallar las derivadas parciales en (0,0): Vemos que en el punto (0,0) la función tiene un cambio de definición. Si nos acercamos al origen por la derecha (h mayor que cero) la función se define como, análogamente, si nos acercamos por la izquierda (h menor que cero) la función se define como. Veamos los límites laterales: Los límites laterales son distintos y, por ende, la función no es diferenciable en (0,0). Se agradece la notificación de errores Christian Laya

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Extremos relativos y multiplicadores de LaGrange

Extremos relativos y multiplicadores de LaGrange 1 Universidad Simón Bolívar.. Preparaduría nº 5. christianlaya@hotmail.com ; @ChristianLaya Extremos relativos y multiplicadores de LaGrange Punto Máximo relativo o local Definición Se dice que la función

Más detalles

Superficies parametrizadas

Superficies parametrizadas 1 Universidad Simón Bolívar.. Preparaduría nº 1. christianlaya@hotmail.com ; @ChristianLaya Superficies parametrizadas Superficies parametrizadas: Una superficie parametrizada es una función donde D es

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Series y sucesiones de números complejos

Series y sucesiones de números complejos 1 Universidad Simón Bolívar. Preparaduría nº 8. christianlaya@hotmail.com ; @ChristianLaya. Series y sucesiones de números complejos Definición: una sucesión de números complejos tiene un límite si para

Más detalles

Teorema de Gauss y campos conservativos

Teorema de Gauss y campos conservativos Universidad Simón Bolívar. Matemáticas VI (MA-2113). Preparaduría n 4. christianlaya@hotmail.com ; @ChristianLaya Teorema de Gauss y campos conservativos Teorema de Gauss: sea V un dominio delimitado por

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

3.5 Continuidad y Derivabilidad (Teoremas)

3.5 Continuidad y Derivabilidad (Teoremas) 3.5. CONTINUIDAD Y DERIVABILIDAD TEOREMAS) 167 3. Sea fx) = 3x x 1 en el dominio D =1, 1), calcular f 1 x) fx) = 3x x 1 x 1)fx) =3x xfx) fx) =3x xfx) 3x = fx) xfx) 3) = fx) x = fx) fx) 3 En conclusión

Más detalles

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más

CÁLCULO DIFERENCIAL. b) Al darle a x valores suficientemente grandes, los valores de f(x) crecen cada vez más 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO: CÁLCULO DIFERENCIAL Una función f(x) tiene por límite L en el número real x = c, si para toda sucesión de valores x n c del dominio que tenga por límite c, la sucesión

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS EJERCICIOS RESUELTOS 3 si Si la función f está definida mediante f (), calcula a y b para que sea a b si > continua. La función es continua en (, ) (, ), pues en

Más detalles

Cálculo diferencial. Se dice que una función es diferenciable o derivable cuando es posible hallar su derivada.

Cálculo diferencial. Se dice que una función es diferenciable o derivable cuando es posible hallar su derivada. Cálculo diferencial I n t r o d u c c i ó n Cuando surgen cuestiones concernientes a la razón entre dos cantidades variables, entramos en los dominios del Cálculo Diferencial. Son por tanto objeto de estudio

Más detalles

CAPÍTULO. Continuidad

CAPÍTULO. Continuidad CAPÍTULO 4 Continuidad. Comprender el concepto de continuidad de una función en un punto.. Determinar clasificar las discontinuidades de una función.. Bosquejar la gráfica de funciones continuas discontinuas.

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE

Más detalles

2.1 Derivadas Tipo Función Simple Función Compuesta

2.1 Derivadas Tipo Función Simple Función Compuesta Tema 2: Derivadas, Rectas tangentes y Derivabilidad de funciones. 2.1 Derivadas Tipo Función Simple Función Compuesta Constante Identidad Potencial Irracional Exponencial Logarítmica Suma Resta Producto

Más detalles

La pendiente de una línea recta es la variación de y que corresponde a una unidad de variación de x

La pendiente de una línea recta es la variación de y que corresponde a una unidad de variación de x MEDICINA 2013 -- teórico práctico 04 -- Derivadas Pendiente de una recta-repaso Ya sabemos que las gráficas de las funciones que llamamos tipo ax+b a las que algunos libros llaman lineales son siempre

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD ) Conderar la función f : (, ) R definida por: a 6 f() 5 a) Determinar el valor de a sabiendo que f es continua (y que a > ). Vamos a comprobar que el

Más detalles

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.

Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función. 1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad

Más detalles

PREPA N o 6. Continuidad, Teorema de Valor Intermedio y Recta Tangente.

PREPA N o 6. Continuidad, Teorema de Valor Intermedio y Recta Tangente. UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-1111) Elaborado por Miguel Labrador 1-1043 Ing. Electrónica PREPA N o 6. Continuidad, Teorema de Valor Intermedio y Recta Tangente. Continuidad de funciones,

Más detalles

1. Considera la función definida por f(x) =. a. Descompón la función en fracciones simples. Recuerda que las posibles raíces enteras de un polinomio son los divisores del término independiente. b. Calcula

Más detalles

Sección 2.3. # 27. Evalúa el límite, si es que existe. lim

Sección 2.3. # 27. Evalúa el límite, si es que existe. lim Sección. Universidad de Puerto Rico. Recinto Universitario de Mayagüez Departamento de Matemáticas. Preparado por Dr. Eliseo Cruz Medina Mate 01. Ejercicios resueltos correspondientes al primer eamen parcial.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones. f(x) = x4 x 2 + 4x 4 2x 3 2x 2

PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones. f(x) = x4 x 2 + 4x 4 2x 3 2x 2 UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-) Elaborado por Miguel Labrador 2-0423 Ing. Electrónica PREPA N o 9. Gráficas de Funciones. Máximos y mínimos, monotonía, concavidad y graficación de funciones.

Más detalles

PREPA N o 7. Derivadas. Derivadas de funciones por definición, Regla de la Cadena y derivabilidad de funciones.

PREPA N o 7. Derivadas. Derivadas de funciones por definición, Regla de la Cadena y derivabilidad de funciones. UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-1111 Elaborado por Miguel Labrador 1-1043 Ing. Electrónica PREPA N o 7. Derivadas. Derivadas de funciones por definición, Regla de la Cadena y derivabilidad

Más detalles

FUNCIONES REALES DE UNA VARIABLE. Límites de funciones

FUNCIONES REALES DE UNA VARIABLE. Límites de funciones Límites de funciones Índice Presentación... 3 Concepto intuitivo de límite... 4 Concepto de límite a través de la gráfica de una función... 5 Límites laterales... 6 Ejemplo práctico... 7 Propiedades de

Más detalles

Tema 7: Derivada de una función

Tema 7: Derivada de una función Tema 7: Derivada de una función Antes de dar la definición de derivada de una función en un punto, vamos a introducir dos ejemplos o motivaciones iniciales que nos van a dar la medida de la importancia

Más detalles

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a)

entonces las derivadas laterales existen y son iguales. y vale lo mismo. Si existen las derivadas laterales y son iguales, entonces existe f (a) DERIVADAS. TEMA 2. BLOQUE 1 1.- DERIVADA DE UNA FUNCIÓN EN UN PUNTO Se llama derivada de la función y = f ( en el punto de abscisa x = a al límite f ( f ( a f ( a = lím x a x a Si existe f (a entonces

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.

Más detalles

TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos.

TEMA 2: DERIVADAS. 3. Conocer las derivadas de las funciones elementales: potencias, raíces, exponenciales y logaritmos. TEMA 2: DERIVADAS 1. Conocer el concepto de tasa de variación media de una función y llegar al concepto de derivada como límite de la tasa de variación media. 2. Conocer, sin demostración, las reglas dederivación

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

RESUMEN DE DERIVADAS. TVM = f(x) = lim 1+2h+h 2-1. = lim 1+h) lim. = 0 = lim h2+h)

RESUMEN DE DERIVADAS. TVM = f(x) = lim 1+2h+h 2-1. = lim 1+h) lim. = 0 = lim h2+h) RESUMEN DE DERIVADAS Tasa de variación Media. Definición: se llama tasa de variación media (TVM) de una función f(x) entre los valores x 1 y x 2 al cociente entre el incremento que experimenta la variable

Más detalles

(tres ejemplos) 1. Sea f : R 2 R dada por f (x, y) = x 4 + y 4 2(x y) 2.

(tres ejemplos) 1. Sea f : R 2 R dada por f (x, y) = x 4 + y 4 2(x y) 2. EXTREMOS LIBRES: LOCALES Y ABSOLUTOS (tres ejemplos) 1. Sea f : R 2 R dada por f (x, y) = x 4 + y 4 2(x y) 2. a) Probar que (0, 0) es un punto crítico pero no extremo b) Probar que ± 2(1, 1) son mínimos

Más detalles

Unidad 4. Aplicaciones de la Derivada.

Unidad 4. Aplicaciones de la Derivada. Aplicaciones de la Derivada. 4.1. Función continua creciente y decreciente 4.. Extremos relativos 4.3. Máximos y Mínimos 4.4. Trazo de gráficas y criterio de la primera derivada. 4.5. Trazo de gráficas

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)=

1) (1,6p) Estudia y clasifica las discontinuidades de la función: x+4-3 x-5. f(x)= 2 de diciembre de 2008. ) (,6p) Estudia y clasifica las discontinuidades de la función: f()= +4-3 -5 2) (,6p) Halla las ecuaciones de las asíntotas de la siguiente función y estudia la posición relativa:

Más detalles

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo

Derivadas laterales. Derivabilidad y continuidad en un punto. Derivabilidad y continuidad en un intervalo Derivadas laterales Se define la derivada por la izquierda de f(x) en el punto x = a : Se define la derivada por la derecha de f(x) en el punto x = a : A ambas derivadas se les llama derivadas laterales.

Más detalles

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Variable Compleja I. Maite Fernández Unzieta Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Variable Compleja I Maite Fernández Unzieta Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía Complex Analysis 3rd ed. Ahlfors Basic Complex Analysis Functions of one

Más detalles

CLAVES DE CORRECCIÓN PRIMER EXAMEN PARCIAL DE MATEMÁTICA PARA AGRONOMÍA Y CIENCIAS AMBIENTALES 07/05/2018 TEMA 1

CLAVES DE CORRECCIÓN PRIMER EXAMEN PARCIAL DE MATEMÁTICA PARA AGRONOMÍA Y CIENCIAS AMBIENTALES 07/05/2018 TEMA 1 TEMA 1 Ejercicio 1 (2 puntos) Sea la función lineal cua gráfica pasa por los puntos. Hallar analíticamente los valores de siendo Para empezar, comenzamos determinando la expresión analítica de la función

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Estudia la continuidad derivabilidad de las funciones f() g() si f() si < Estudiamos la continuidad en. f() ( ) - - f() ( ) + + La función f() es continua

Más detalles

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO

Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe

PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe PUNTOS CRÍTICOS: Se llaman así a aquellos puntos en que la derivada es cero o no está definida. En símbolos escribimos: f (x)=0 ó f (x) no existe Así encontramos (las abscisas de) los puntos críticos.

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 5

UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 5 Saúl I. Utrera B. Ingeniería de Materiales UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE MATEMÁTICAS PURAS Y APLICADAS PREPARADURÍAS DE MATEMÁTICAS V (MA-2112) PREPARADURÍA N 5 Derivación implícita y polinomio

Más detalles

Unidad 3. Funciones.Derivabilidad 3 FUNCIONES TEMA ERIVABILIDAD. José L. Lorente Aragón

Unidad 3. Funciones.Derivabilidad 3 FUNCIONES TEMA ERIVABILIDAD. José L. Lorente Aragón Unidad. Funciones.Derivabilidad TEMA FUNCIONES UNCIONES.DERIVABILIDAD ERIVABILIDAD.. Tasa de variación media. Derivada en un punto. Interpretación.. Tasa de variación media.. Deinición de derivada en un

Más detalles

Continuidad de las funciones. Derivadas

Continuidad de las funciones. Derivadas Matemáticas II. Curso 008/009 Continuidad de las funciones. Derivadas 1. Estudiar en x = 0 y x = la continuidad y derivabilidad de la función cos x si x 0 x f (x) = si 0 < x < sen x si x (Junio 1997) f

Más detalles

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 02 - Todos resueltos

Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 02 - Todos resueltos página 1/11 Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 02 - Todos resueltos Hoja 2. Problema 1 Resuelto por Sara Aparicio (noviembre 2014) 1. Estudiar la continuidad y derivabilidad

Más detalles

Tema 12. Derivabilidad de funciones.

Tema 12. Derivabilidad de funciones. Tema. Derivabilidad de funciones.. Tasa de Variación media. Derivada en un punto. Interpretación.... Tasa de variación Media.... Definición de derivada de una función en un punto.... Interpretación geométrica

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Examen de Cálculo infinitesimal PROBLEMAS. 1 + a + a a n a n+1

Examen de Cálculo infinitesimal PROBLEMAS. 1 + a + a a n a n+1 Examen de Cálculo infinitesimal. 4-2-203. PROBLEMAS. Calcular el límite de la sucesión definida por donde a >. + a + a 2 + + a n a n+ Solución. Sea x n = + a + a 2 + + a n, y n = a n+. Es claro que y n

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Septiembre 01 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger

Más detalles

Selectividad Junio 2007 JUNIO 2007

Selectividad Junio 2007 JUNIO 2007 Selectividad Junio 7 JUNIO 7 PRUEBA A PROBLEMAS 1.- Sea el plano π + y z 5 = y la recta r = y = z. Se pide: a) Calcular la distancia de la recta al plano. b) Hallar un plano que contenga a r y sea perpendicular

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica.

Problemas resueltos del libro de texto. Tema 8. Geometría Analítica. Problemas resueltos del libro de texto Tema 8 Geometría Analítica Combinación lineal de vectores 9- Es evidente que sí es combinación lineal de estos dos vectores, ya que -4 y permiten escribir z como

Más detalles

Ejercicios de Funciones: derivadas y derivabilidad

Ejercicios de Funciones: derivadas y derivabilidad Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.

Más detalles

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:

4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente: U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento

Más detalles

lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones:

lim x sen(x) Apellidos: Nombre: Curso: 2º Grupo: A Día: 23-II-2015 CURSO Instrucciones: EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: II5 CURSO 5 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

PREPA N o 2. Rectas, circunferencias, distancia entre dos puntos y punto medio.

PREPA N o 2. Rectas, circunferencias, distancia entre dos puntos y punto medio. UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS I (MA-1111) Elaborado por Miguel Labrador 1-1043 Ing. Electrónica PREPA N o. Geometría Analítica. Rectas, circunferencias, distancia entre dos puntos y punto medio.

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U.

Coordinación de Matemáticas III (MAT 023) x a. Además, diremos que f es continua en U si f es continua en cada punto de U. Coordinación de Matemáticas III (MAT 023) 1 er Semestre de 2013 Continuidad de Funciones en Varias Variables 1. Continuidad Definición 1.1. Sean U R n abierto, a U y f : U R una función real de varias

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la

Más detalles

Análisis Matemático IV

Análisis Matemático IV Análisis Matemático IV Relación. Ejercicios resueltos Ejercicio. Probar la siguiente versión multidimensional del Teorema de Rolle: Sea f : B (, ) R una función continua que es diferenciable en B(, ).

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Polinomio de Taylor. Extremos.

Polinomio de Taylor. Extremos. CAPÍTULO 6 Polinomio de Taylor. Extremos. En este capítulo trabajamos con el polinomio de Taylor de una función de varias variables y su aplicación al estudio de los extremos de funciones de más de una

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

TEOREMAS DE FUNCIONES DERIVABLES 1. Teorema de Rolle

TEOREMAS DE FUNCIONES DERIVABLES 1. Teorema de Rolle Cálculo _Comisión Año 6 TEOREMAS DE FUNCIONES DERIVABLES Una de las propiedades que poseen las funciones derivables y continuas en intervalos cerrados, expresa que al dibujar la curva de una de ellas y

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0

CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0 CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

SEPTIEMBRE 2003 PRUEBA A

SEPTIEMBRE 2003 PRUEBA A PROBLEMAS SEPTIEMBRE 003 PRUEBA A 1.- a) Discutir en función de los valores de m: x 3y 0 x y+ z 0 x + y + mz m b) Resolver en los casos de compatibilidad el sistema anterior..- Calcular el área de la región

Más detalles

Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto:

Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: 1 LA DERIVADA EN EL TRAZADO DE CURVAS Significados de los signos de la Primera y Segunda derivada. Plantearemos a través del estudio del signo de la primera derivada, las condiciones que debe cumplir una

Más detalles

IES Francisco Ayala Examen Junio de 2009 (modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A

IES Francisco Ayala Examen Junio de 2009 (modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio 1 opción A, junio de 009 modelo 3 ['5 puntos] Calcula el siguiente límite (In denota logaritmo neperiano), lim x 1 [ 1/Ln(x) /(x 1) ] Calcula el siguiente límite (In denota logaritmo

Más detalles

Tema 7 (II). FUNCIONES DE UNA VARIABLE. DERIVADAS

Tema 7 (II). FUNCIONES DE UNA VARIABLE. DERIVADAS Tema 7 (II) FUNCIONES DE UNA VARIABLE DERIVADAS Derivada de una función en un punto La función f () es derivable en el punto a f ( a + ) f ( a) si eiste el límite: lím Este límite recibe el nombre de f

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS TEMA 5 APLICACIONES DE LAS DERIVADAS Ejercicios para Selectividad de Detalladamente resueltos Curso 2000 / 2001 José Álvarez Fajardo bajo una licencia Reconocimiento NoComercial CompartirIgual 2.5 Spain

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.4. APLICACIONES DE LA DERIVABILIDAD TEMA. FUNCIONES REALES DE VARIABLE REAL.4. APLICACIONES DE LA DERIVABILIDAD .4. APLICACIONES DE LA DERIVABILIDAD.4.1. Intervalos de crecimiento y decrecimiento.4.. Etremos locales de una función.4.3. Intervalos

Más detalles

TP Nª 4 Derivadas parciales

TP Nª 4 Derivadas parciales TP Nª 4 Derivadas parciales Universidad Tecnológica Nacional Ciclo Lectivo: 2017 Trabajo realizado por el Profesor Ing. Pablo J. Garcia y la JTP Ing. Erika A. Sacchi, bajo la supervisión del Coordinador

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

Tema 4: Teorema de la función inversa e impĺıcita

Tema 4: Teorema de la función inversa e impĺıcita Tema 4: Teorema de la función inversa e impĺıcita Teorema de la función inversa para varias variables Sea A R n un conjunto abierto, f : A R n y ā A Si f es de clase C 1 en A y det(df(ā)) 0, entonces existe

Más detalles

Unidad 5. Funciones de Varias Variables

Unidad 5. Funciones de Varias Variables Preparado por: Gil Sandro Gómez Profesor de la UASD Año: 013 Contenido Introducción... 1. Función de dos variables... 3. Límites continuidad... 4 3. Derivadas parciales... 7 4. Interpretación geométrica

Más detalles

EJERCICIOS REPASO 2ª EVALUACIÓN

EJERCICIOS REPASO 2ª EVALUACIÓN MATRICES Y DETERMINANTES 1.) Sean las matrices: EJERCICIOS REPASO 2ª EVALUACIÓN a) Encuentre el valor o valores de x de forma que b) Igualmente para que c) Determine x para que 2.) Dadas las matrices:

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

2.1 Introducción. Propiedades.

2.1 Introducción. Propiedades. 19 2 MATRICES II: DETERMINANTES En este segundo capítulo de matrices, aprenderemos a utilizar una herramienta muy importante como son los determinantes Gracias a ellos, podremos calcular la inversa de

Más detalles

Cálculo I. Índice Derivada. Julio C. Carrillo E. * 1. Introducción La derivada Derivadas de orden superior

Cálculo I. Índice Derivada. Julio C. Carrillo E. * 1. Introducción La derivada Derivadas de orden superior 3.1. Derivada Julio C. Carrillo E. * Índice 1. Introducción 1 2. La derivada 3 3. Derivadas de orden superior 18 4. Conclusiones 19 * Profesor Escuela de Matemáticas, UIS. 1. Introducción El término derivabilidad

Más detalles

Ejercicios resueltos de cálculo Febrero de 2016

Ejercicios resueltos de cálculo Febrero de 2016 Ejercicios resueltos de cálculo Febrero de 016 Ejercicio 1. Calcula los siguientes ites: x 5x 1. x + x + 1 x 1 x. x x. x + x + 1 x x 4. x 0 x cos x sen x x Solución: 1. Indeterminación del tipo. Tenemos:

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Capítulo 2: Cálculo diferencial de una y varias variables

Capítulo 2: Cálculo diferencial de una y varias variables Capítulo 2: Cálculo diferencial de una y varias variables (Fundamentos Matemáticos de la Biotecnología) Departamento de Matemáticas Universidad de Murcia Contenidos Límites y continuidad Límites laterales

Más detalles

Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo:

Y resolvemos esta indeterminación por L Hôpital, derivando arriba y abajo: 1.- Considerad la función: f(x) = ln x x a) Dad el dominio de f y estudiad si tiene una asíntota horizontal. b) Calculad una primitiva de f usando el método de integración por partes. Indicación: Fijaos

Más detalles

CÁLCULO DE DERIVADAS

CÁLCULO DE DERIVADAS TEMA 4 CÁLCULO DE DERIVADAS Contenidos Criterios de Evaluación 1. Función derivada.. Derivadas sucesivas. 3. Derivadas elementales. 4. Álgebra de derivadas. 5. La Regla de la Cadena. 6. Continuidad y derivabilidad.

Más detalles

Tema 6. Cálculo diferencial de funciones de una variable

Tema 6. Cálculo diferencial de funciones de una variable Tema 6 Cálculo diferencial de funciones de una variable Índice Esquema 3 Ideas clave 4 6.1. Introducción y objetivos 4 6.2. Conceptos previos 5 6.3. Función derivada 8 6.4. Cálculo de derivadas 12 6.5.

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

10.4 Sistemas de ecuaciones lineales

10.4 Sistemas de ecuaciones lineales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 001 y MATE 02 Clase #11: martes, 14 de junio de 2016. 10.4 Sistemas de ecuaciones lineales

Más detalles