3. ANÁLISIS DE DATOS DE PRECIPITACIÓN.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3. ANÁLISIS DE DATOS DE PRECIPITACIÓN."

Transcripción

1 3. ANÁLISIS DE DATOS DE PRECIPITACIÓN. Teniendo en cuenta que la mayoría de procesos estadísticos se comportan de forma totalmente aleatoria, es decir, un evento dado no está influenciado por los demás, se puede hacer uso de la estadística como herramienta de análisis de los mismos. Sin embargo, en este documento no se hará una presentación exhaustiva de fundamentos estadísticos, por lo que se sugiere al lector, recordar estos conceptos vistos en los cursos de Probabilidad y estadística. Análisis de frecuencias y determinación del periodo de retorno. Es necesario presentar inicialmente el concepto de periodo de retorno, el cual se define como el número de años que deben transcurrir para que un evento de una magnitud dada sea igualado o superado. Como se trata de igualar o exceder un evento, el periodo de retorno está vinculado a la probabilidad de excedencia, es decir la probabilidad que tiene un evento dado de exceder un valor determinado, de la siguiente forma. T x) () Donde T, es el periodo de retorno [años]; x), es la probabilidad de excedencia. De acuerdo a la teoría de probabilidad tenemos que: P ( x) x) (2) Con lo que la Ecuación queda: T x) (3) Los valores de una serie de datos cuando tienen que ver con mediciones hidrológicas, se denominan series hidrológicas. Para su estudio estadístico, las series hidrológicas se pueden ajustar a una distribución de probabilidad. Una distribución de probabilidad se puede expresar como la probabilidad de ocurrencia de una variable aleatoria, Las distribuciones de probabilidad más comúnmente usadas son la Normal, la Lognormal, la Exponencial, la Gamma y la de Pearson. Para una discusión más profunda acerca de estas, le solicitamos al lector remitirse al módulo de probabilidad y estadística. Las series hidrológicas estudiadas pueden ser de tres tipos: Series completas. Es una serie compuesta por toda la información disponible. Estas generalmente tienen datos de mediciones diarias durante al menos 5 años.

2 Series parciales. Estas series se componen por aquellos datos que exceden un valor determinado, definido por el investigador. Estas series permiten analizar eventos especiales, por ejemplo, analizar el comportamiento de las lluvias con una intensidad mayor a 50 mm/h. Series extremas. Este tipo de series está compuesta por los valores máximos o mínimos de la serie, durante el periodo de muestreo, siendo este tomado normalmente igual a año. Para la evaluación de las series hidrológicas se utilizan básicamente dos formas: Análisis directo. Este análisis implica el contar con todos los datos para ser analizados en conjunto. Si se posee una gran cantidad de datos, estos se agrupan en intervalos de clase. Si se poseen pocos datos, estos se analizan ordenándolos, generalmente de mayor a menor (en esta forma se determina probabilidad de excedencia). La Probabilidad de excedencia se puede calcular cuando se tienen series de datos usando la Frecuencia relativa, la cual representa el número de éxitos dentro de la población. Cuando se cuenta con un gran número de datos y estos agrupados en intervalos de clase, la Frecuencia de excedencia se calcula como la diferencia entre la Frecuencia de excedencia y la frecuencia relativa. En este caso la primer Frecuencia de excedencia toma el valor de y los demás valores se calculan mediante la diferencia comentada. Ejemplo. Calcular la Frecuencia relativa, la frecuencia de excedencia y el periodo de retorno en años para los datos de lluvias del mes de Junio, agrupados en los siguientes intervalos de clase. ORDEN INTERVALO FRECUENCIA SUMA 672 2

3 La frecuencia relativa se calcula dividiendo el valor de la frecuencia entre el número total de datos. El periodo de retorno se calcula de acuerdo con la Ecuación. Lo que debe tenerse en cuenta, es que como los datos son del mes de Junio, para calcular el periodo de retorno en años se divide el valor por 30 días, dado que el año tiene 30 días (cada año tiene 30 días de junio). Los datos se presentan en la siguiente tabla. ORDEN INTERVALO FRECUENCIA FRECUENCIA RELATIVA FRECUENCIA DE ECEDENCIA PERIODO DE RETORNO (AÑOS) ,4375 0, ,3899 0,5625 0, ,0938 0,726 0, ,047 0,0789 0, ,079 0,0372 0, ,0089 0,093, ,0045 0,004 3, ,0030 0,0060 5, ,005 0,0030, ,005 0,005 22,4000 SUMA 672,0000 Cuando no se cuenta con la serie completa, la probabilidad se puede calcular usando la Frecuencia de excedencia, esta se calcula por medios matemáticos de acuerdo a una distribución que asigna la probabilidad de acuerdo al número de datos y al orden en que se encuentra, estos valores de frecuencia se asignan sobre todo cuando los datos van a ser graficados y por tanto importa su ubicación dentro de la serie de datos. En este caso podemos decir en términos generales que el valor de N, corresponde al número total de datos en la serie. El valor de r, representa el orden que ocupa el valor dentro de la serie, es decir, su posición relativa dentro de la misma. Ver Tabla (Chow, 994). Tabla. Ecuaciones para calcular la probabilidad de excedencia. NOMBRE AÑO ECUACIÓN California 923 N Hazen 930 2r 2N Weibull 939 r N Chegodayev 955 r 0.3 N 0.4 3

4 Blom 958 Tukey 962 Gringorten r 8 N 4 3r 3N r 0.44 N 0.2 Fuente: Chow (994 : ) Ejemplo. Calcular la Frecuencia de excedencia y el periodo de retorno en años para los datos de lluvias del mes de Junio, Que se presentan en la siguiente Tabla. Utilizar la ecuación de Weibull para calcular la Frecuencia. Tabla 6. Datos para el cálculo de Frecuencias. ORDEN INTENSIDAD Lo primero que hacemos es ordenar los datos de mayor a menor, esto nos permite calcular la frecuencia de excedencia. Luego usamos la Ecuación de Weibull, para el cálculo de la frecuencia de excedencia y obtenemos el periodo de retorno de acuerdo a la Ecuación. 4

5 ORDEN INTENSIDAD FRECUENCIA DE ECEDENCIA PERIODO DE RETORNO (AÑOS) 25 0,0625 6, ,250 8, ,875 5, ,2500 4, ,325 3, ,3750 2, ,4375 2, ,5000 2, ,5625, ,6250, ,6875, ,7500, ,825, ,8750, ,9375,07 Análisis indirecto. Este análisis implica el ajustar los datos a una distribución de probabilidad. En Colombia para el análisis de series hidrológicas se utiliza la distribución de Gumbel, también llamada distribución de valores extremos. Se llama distribución de valores extremos, porque generalmente se analizan los valores máximos o mínimos de la serie, por ejemplo cuando se analizan datos de precipitación o caudales de una fuente hídrica, puede ser interesante tomar los valores máximos de varios años, o por el contrario los mínimos, este análisis es muy común en aplicaciones de Ingeniería donde se deben tener en cuenta las condiciones extremas a la hora de realizar diseños. La distribución de valores extremos presenta tres variaciones, siendo la de tipo I, la más utilizada. Esta fue definida por Gumbel en 94 y define la probabilidad que presenta un dato en particular de no exceder un valor determinado. Esta distribución presenta la siguiente forma: x x x) e e (5) Donde a, es el parámetro de escalamiento y m, el parámetro de localización. Ambos parámetros de la distribución deben ser estimados usando métodos analíticos o bien métodos gráficos. Método gráfico. Para la determinación de los parámetros por el método gráfico, se sigue la siguiente metodología: 5

6 . Obtener la muestra. 2. Ordenar los datos de menor a mayor, para obtener probabilidades de no excedencia. 3. Asignar probabilidad a cada uno de los valores. Para esto, se utiliza la Ecuación de Gringorten, que es la que más se adapta para la distribución de Gumbel. 4. Estimar el valor de la variable estandarizada de Gumbel. 5. Graficar lo datos de la variable estandarizada de Gumbel en el eje y los de la muestra en el eje. 6. Obtener del gráfico los valores de los parámetros. Para estimar el valor de la variable estandarizada de Gumbel se procede de la siguiente manera: x) e x x e Si tomamos x x Podemos definir que: x) e x e x Para definir la función de distribución de probabilidad derivamos la Ecuación anterior, lo que nos da: F( ) e e x Aplicando logaritmo natural a ambos lados tenemos: ln( F( )) e ln( F( )) e x x Aplicando logaritmo natural nuevamente tenemos: ln( ln( F( ))) x x ln( ln( F( ))) x ln( ln( x))) (6) Recordar que en una ecuación de la forma =m+b; m, representa la pendiente de la recta y b, representa el punto de intersección con el eje. Remitirse al Módulo de Algebra, Geometría y Trigonometría para una discusión más profunda al respecto. 6

7 De acuerdo a la Ecuación 4 tenemos que: T T F( ) x) Despejando F(), tenemos que: T F( ) T Reemplazando este valor en la Ecuación 6 tenemos: T x ln( ln (7) T Ejemplo 5. Obtener los parámetros de la distribución de Gumbel por el método gráfico, usando los datos del Ejemplo 4 y la Ecuación 7. Tabla 8. Cálculo parámetros distribución de Gumbel. ORDEN INTENSIDAD <x) 2 0,037 -, ,03-0, ,69-0, ,235-0, ,302-0, ,368 0, ,434 0, ,500 0, ,566 0, ,632 0, ,698, ,765, ,83, ,897 2, ,963 3,277 Los valores de <x), se calcularon utilizando la Ecuación de Gringorten y los valores de y la Ecuación 7. Graficamos estos valores tomando los valores de y para el eje y los valores de precipitación para el eje. Como solo se colocan los puntos, después se debe ajustar una recta a la nube de puntos para que sea más fácil determinar los valores de los parámetros. El programa Microsoft Excel permite ajustar una línea de tendencia a la nube de puntos, tal como se muestra a continuación. y 7

8 Figura 22. Método gráfico para la determinación de los parámetros de la Ecuación de Gumbel ,000 -,000 0,000,000 2,000 3,000 4,000 La Ecuación de la recta ajustada a la nube de puntos es de la siguiente forma: Con base en el gráfico observamos que el valor de, es aproximadamente 7. Para calcular el valor de la pendiente () tomamos dos puntos y usamos la siguiente ecuación: 2 (8) 2 Tomando los en el Eje los valores de.000 y 0.000, observamos que los respectivos valores de, definidos por la línea de tendencia son: 25 y 7, respectivamente, aplicando la Ecuación (8), tenemos: Luego la ecuación de la recta ajustada es:

9 Por ejemplo para encontrar la precipitación para una lluvia con un periodo de retorno de 5 años, calculamos primero el valor de x usando la Ecuación 7: T x ln( ln T 5 x ln( ln 5 4 x ln( ln 5 x.4999 Reemplazando este valor en la Ecuación de la recta tenemos: (.4999) 7 52mm/ día Método analítico. Para esto se aplica el método de los momentos que permite ajustar los datos a una distribución de Gumbel. Del proceso obtenemos los valores de y, en este apartado no se presentará el procedimiento para obtener estos valores, pero se recomienda al lector recordar estos conceptos en el Módulo de Probabilidad y estadística. Los valores de y son (Aparicio, 2004): * S (9) Donde, representa el valor promedio de los datos y S, la desviación estándar. Recordar que el valor promedio de una serie de datos se calcula mediante la siguiente expresión: n i n x i (20) El valor de la desviación estándar se calcula mediante la expresión: S n i x i n 2 (2) 9

10 Ejemplo 6. Obtener los parámetros de la distribución de Gumbel por el método analítico, usando los datos del Ejemplo 4. Tabla 9. Datos para el cálculo de parámetros por el método analítico. Los parámetros son: * S INTENSIDAD ORDEN Media 0,933 Desv. Est. 68, * * Luego la Ecuación de la recta ajustada es: 0

11 Para calcular la precipitación de una lluvia con un periodo de retorno dado se procede de forma análoga a lo descrito en el método gráfico. Por ejemplo para encontrar la precipitación para una lluvia con un periodo de retorno de 5 años tenemos: T x ln( ln T 5 x ln( ln 5 4 x ln( ln 5 x.4999 Reemplazando este valor en la Ecuación de la recta tenemos: (.4999) mm/ día Se observa que independientemente del método escogido el valor de la precipitación es muy similar. Este procedimiento se aplica de igual forma si lo que se está evaluando son los caudales de una fuente o la precipitación en un intervalo de tiempo.

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

ANÁLISIS DE FRECUENCIAS

ANÁLISIS DE FRECUENCIAS ANÁLISIS DE FRECUENCIAS EXPRESIONES PARA EL CÁLCULO DE LOS EVENTOS PARA EL PERÍODO DE RETORNO T Y DE LOS RESPECTIVOS ERRORES ESTÁNDAR DE ESTIMACIÓN REQUERIDOS PARA LA DETERMINACIÓN DE LOS INTERVALOS DE

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ

ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ ANALISIS DE FRECUENCIA EN HIDROLOGIA JULIAN DAVID ROJO HERNANDEZ Probabilidad - Período de retorno y riesgo La probabilidad de ocurrencia de un fenómeno en hidrología puede citarse de varias Formas: El

Más detalles

Distribución Exponencial

Distribución Exponencial Distribución Exponencial Hay dos casos especiales importantes de la distribución gamma, que resultan de restricciones particulares sobre los parámetros α y β. El primero es cuando se tiene α = 1, entonces

Más detalles

ANÁLISIS DE FRECUENCIA (CURVAS INTENSIDAD DURACIÓN - FRECUENCIA) Y RIESGO HIDROLÓGICO

ANÁLISIS DE FRECUENCIA (CURVAS INTENSIDAD DURACIÓN - FRECUENCIA) Y RIESGO HIDROLÓGICO Facultad de Ingeniería Escuela de Civil Hidrología ANÁLISIS DE FRECUENCIA (CURVAS INTENSIDAD DURACIÓN - FRECUENCIA) Y RIESGO HIDROLÓGICO Prof. Ada Moreno ANÁLISIS DE FRECUENCIA Es un procedimiento para

Más detalles

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL

CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL Universidad Nacional Agraria La Molina IA-406 Hidrología Aplicada CLASE X ANÁLISIS PROBABILISTICO DE LAS VARIABLES PRECIPITACIÓN TOTAL ANUAL Y CAUDAL MEDIO ANUAL 1. Longitud necesaria de registro Diversos

Más detalles

TEMA 7 CÁLCULO DE PERIODO DE RETORNO

TEMA 7 CÁLCULO DE PERIODO DE RETORNO Lourdes Bello Mendoza Sara Jane Velázquez Juárez TEMA 7 CÁLCULO DE PERIODO DE RETORNO Introducción La precipitación es la cantidad de agua que llega al suelo ya sea de manera líquida o sólida en forma

Más detalles

Hietograma en Santiago (10-11 Abril 1980)

Hietograma en Santiago (10-11 Abril 1980) Hietograma en Santiago (10-11 Abril 1980) hietograma de lluvia 4 3.5 3 Lluvia (mm) 2.5 2 1.5 1 0.5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Tiempo (hrs) Intensidades de Lluvia Intensidades se acostumbran

Más detalles

1. ANTECEDENTES TEÓRICOS

1. ANTECEDENTES TEÓRICOS 1. Antecedentes Teóricos 1. ANTECEDENTES TEÓRICOS La planeación y el diseño de obras hidráulicas están relacionados con eventos hidrológicos futuros, cuyo tiempo de ocurrencia o magnitud no pueden predecirse,

Más detalles

= f ( intensidad de lluvia, área de aportación)

= f ( intensidad de lluvia, área de aportación) Redes de saneamiento (III): Estadística hidrológica 1 Cuánta agua entra a través de este imbornal en la alcantarilla? = f ( intensidad de lluvia, área de aportación) 2 Mapas de isoyetas Mapa de isoyetas

Más detalles

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS

GRAFICAS LINEALES REGLAS GENERALES PARA LA CONSTRUCCIÓN DE GRÁFICAS GRAFICAS LINEALES OBJETIVOS 1. Realizar linealización de gráficos por el método de cambios de variables. 2. Obtener experimentalmente la relación matemática, más adecuada, entre dos cantidades o magnitudes

Más detalles

MANTENIMIENTO CENTRADO EN CONFIABILIDAD (MCC) DR. JORGE ACUÑA 1

MANTENIMIENTO CENTRADO EN CONFIABILIDAD (MCC) DR. JORGE ACUÑA 1 MANTENIMIENTO CENTRADO EN CONFIABILIDAD (MCC) 1 ADMINISTRACION DEL news MANTENIMIENTO ( QUE ES? Mantenimiento: operación mediante la cual los sistemas están sometidos a rutinas de revisión, reparación

Más detalles

ANALISIS DE FRECUENCIA

ANALISIS DE FRECUENCIA ANALISIS DE FRECUENCIA HIDROLOGÍA Determinística: enfoque en el cual los parámetros se calculan en base a relaciones físicas para procesos dinámicos del ciclo hidrológico. Estocástico: Enfoque en el cual

Más detalles

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación.

Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación. Matemáticas Distribución de ítems para la prueba nacional Modalidad Académica (Diurnos Nocturnos) Convocatorias 016 ESTIMADO DOCENTE: En la modalidad de colegios académico, la Prueba de Bachillerato 016

Más detalles

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS

GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS GENERACION DE NUMEROS ALEATORIOS Y VARIABLES ALEATORIAS La simulación de eventos se basa en la ocurrencia aleatoria de los mismos, por ello los números aleatorios y las variables aleatorias son de especial

Más detalles

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS

CALCULO DE INCERTIDUMBRE DE LAS MEDICIONES DE ENSAYOS Gestor de Calidad Página: 1 de 5 1. Propósito Establecer una guía para el cálculo de la incertidumbre asociada a las mediciones de los ensayos que se realizan en el. Este procedimiento ha sido preparado

Más detalles

Estadística de dos variables

Estadística de dos variables Versión: Estadística de dos variables 19 de septiembre de 013 1 Introducción En el Tema 1 se consideran las variables estadísticas unidimensionales, es decir, cada individuo de la muestra se describe de

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Representaciones gráficas: Método del Paralelogramo

Representaciones gráficas: Método del Paralelogramo Representaciones gráficas: Método del Paralelogramo La relación funcional más simple entre dos variables es la línea recta. Sea entonces la variable independiente x y la variable dependiente y que se relacionan

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS

INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA 1.2: PRESENTACIÓN GRÁFICA DE DATOS ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: Agosto de 2016

Más detalles

Gráficos de probabilidad

Gráficos de probabilidad Gráficos de probabilidad Muchas veces en gráficosque representan precipitaciones o caudales en función de su probabilidad, los valores de ésta (0,1; 0,2; 0,3; etc.) aparecen extrañamente distribuidos de

Más detalles

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico

Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se

Más detalles

Cuáles son las características aleatorias de la nueva variable?

Cuáles son las características aleatorias de la nueva variable? Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que

Más detalles

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón.

DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2. El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. DISTRIBUCIÓN SEGÚN HABILIDADES GENERALES Y ESPECÍFICAS Prueba 2 El desarrollo de estos temas los puede encontrar oprimiendo el siguiente botón. http://www.costarica.elmaestroencasa.com/e-books/elmec/bach-a-tu-medida-2/matematica-a-tu-medida-02-2017.pdf

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

La línea recta: Serie1

La línea recta: Serie1 La línea recta: En una línea recta tenemos una relación entre dos variables, la independiente (x) y la dependiente (y). La forma en que se relacionan dependerá de la función que describa dicha relación.

Más detalles

Análisis de extremos

Análisis de extremos Análisis de extremos Referencias Wilks (sección 4.4.5): dice mucho, explica poco Coles (2001) An Introduction to Statistical Modeling of Extreme Values Introducción Objetivo del análisis de extremos: cuantificar

Más detalles

Soluciones a los ejercicios propuestos del Tema 2

Soluciones a los ejercicios propuestos del Tema 2 Soluciones a los ejercicios propuestos del Tema 2 1 Soluciones a los ejercicios propuestos del Tema 2 2.1. Sea X es la variable número de crías vivas de una hembra de esta especie. X es una variable discreta

Más detalles

Este proceso equivale a obtener fórmulas o procedimientos factibles de aplicarse a una región hidrológica.

Este proceso equivale a obtener fórmulas o procedimientos factibles de aplicarse a una región hidrológica. 1.4. Tormentas regionales Las tormentas de tipo regional se determinan a través de un proceso que involucra un conjunto de aspectos relacionados con la geografía, el tipo de lluvia que ocurre y algunos

Más detalles

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA PROLEMS RESUELTOS DE L ECUCIÓN DE L RECT 1) Hallar la pendiente el ángulo de inclinación de la recta que pasa por los puntos (-, ) (7, -) 1 m 1 m 7 1 comom tan entonces 1 1 tan 1,4 ) Los segmentos que

Más detalles

CARACTERIZACIÓN ENERGÉTICA DEL VIENTO: POTENCIAL EÓLICO. Prof. Msc. José Garcia

CARACTERIZACIÓN ENERGÉTICA DEL VIENTO: POTENCIAL EÓLICO. Prof. Msc. José Garcia CARACTERIZACIÓN ENERGÉTICA DEL VIENTO: POTENCIAL EÓLICO INTRODUCCIÓN En esta parte se trata la caracterización energética del viento y sobre la evaluación del potencial eólico que presenta un determinado

Más detalles

CORRELACION Y REGRESIÓN LINEAL

CORRELACION Y REGRESIÓN LINEAL LECCION Nº 5 CORRELACION Y REGRESIÓN LINEAL OBJETIVOS ESPECIFICOS Diferenciar los conceptos de correlación lineal, y regresión lineal. Determinar el índice o coeficiente de correlación en una distribución

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Gráficos de Probabilidad

Gráficos de Probabilidad Gráficos de Probabilidad Resumen El procedimiento Gráficos de Probabilidad grafica los datos de una sola columna numérica en gráficas con una escala específica tal que, si los datos provienen de una distribución

Más detalles

UNIDAD Nº4. Ejemplo.- Dados los Gastos de publicidad en los meses enero a julio, los cuales generan los sgts. Ingresos:

UNIDAD Nº4. Ejemplo.- Dados los Gastos de publicidad en los meses enero a julio, los cuales generan los sgts. Ingresos: UNIDAD Nº4 TEORÍA DE REGRESIÓN Y CORRELACIÓN 1.- Teoría de Regresión.- En términos de estadística los conceptos de regresión y ajuste con líneas paralelas son sinónimos lo cual resulta estimar los valores

Más detalles

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C)

PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) PROGRAMACIÓN DE LOS CONTENIDOS DE MATEMÁTICAS EN LA PREPARACIÓN DE LA PARTE COMÚN DE LA PRUEBA DE ACCESO A LOS C.F.G.S. (Opción C) I.E.S. Universidad Laboral de Málaga Curso 2015/2016 PROGRAMACIÓN DE LA

Más detalles

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS

Gobierno de La Rioja MATEMÁTICAS CONTENIDOS CONTENIDOS MATEMÁTICAS 1.- Números reales Distintas ampliaciones de los conjuntos numéricos: números enteros, números racionales y números reales. Representaciones de los números racionales. Forma fraccionaria.

Más detalles

PROBABILIDAD Y ESTADÍSTICA

PROBABILIDAD Y ESTADÍSTICA PROBABILIDAD Y ESTADÍSTICA 4 horas a la semana 8 créditos Semestre variable según la carrera Objetivo del curso: Analizar y resolver problemas de naturaleza aleatoria en la ingeniería, aplicando conceptos

Más detalles

Teoría de errores -Hitogramas

Teoría de errores -Hitogramas FÍSICA I Teoría de errores -Hitogramas Autores: Pablo Iván ikel - e-mail: pinikel@hotmail.com Ma. Florencia Kronberg - e-mail:sil_simba@hotmail.com Silvina Poncelas - e-mail:flo_kron@hotmail.com Introducción:

Más detalles

Transformaciones de Potencia

Transformaciones de Potencia Transformaciones de Potencia Resumen El procedimiento Transformaciones de Potencia está diseñado para definir una transformación normalizadora para una columna de observaciones numéricas que no provienen

Más detalles

Erika Riveros Morán. Funciones Exponenciales y Logarítmicas. Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función

Erika Riveros Morán. Funciones Exponenciales y Logarítmicas. Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función Definición: Funciones Exponenciales y Logarítmicas Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función Su gráfica queda determinada por los valores de la base a Por ejemplo: Si ( ) 1 Del gráfico

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 01 Lic. Manuel

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Resumen Introducción Antecedentes bibliográficos... 5

Resumen Introducción Antecedentes bibliográficos... 5 2 Contenido Resumen... 3 1. Introducción... 4 2. Antecedentes bibliográficos... 5 2.1. Curvas de Intensidad Frecuencia... 5 2.2. Uso práctico de las CIDF... 5 2.3. Aplicación de las CIDF... 8 3. Metodología

Más detalles

MANTENIMIENTO INDUSTRIAL.

MANTENIMIENTO INDUSTRIAL. REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS

Más detalles

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos.

Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. MATEMÁTICAS I Contenidos. Aritmética y álgebra: Números reales. Valor absoluto. Desigualdades. Distancias entre la recta real. Intervalos y entornos. Resolución e interpretación gráfica de ecuaciones e

Más detalles

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría.

CALCULO DIFERENCIAL Escuela Colombiana de Ingeniería. Geometría Analítica = Unión de Álgebra con la Geometría. PRELIMINARES. COORDENADAS EN UN PLANO Cuando se trabaja un sistema de coordenadas Geometría Analítica = Unión de Álgebra con la Geometría. La geometría Analítica se origina al asignar coordenadas numéricas

Más detalles

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA

CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA CI 41C HIDROLOGÍA HIDROLOGÍA PROBABILÍSTICA alcantarilla Puente? Badén http://www.disasternews.net/multimedia/files/drought5_9412.jpg Fenómenos en Ingeniería (según certeza de ocurrencia) determinísticos

Más detalles

Módulo 2 - Diapositiva (Quiz 2) Ecuación de la recta. Universidad de Antioquia

Módulo 2 - Diapositiva (Quiz 2) Ecuación de la recta. Universidad de Antioquia Módulo 2 - Diapositiva (Quiz 2) Ecuación de la recta Facultad de Ciencias Exactas y Naturales Temas Rectas Ecuación de la Recta Fórmulas de Rectas Línea recta La gráfica de una función lineal f(x) = mx

Más detalles

4º E.S.O. Matemáticas A

4º E.S.O. Matemáticas A 4º E.S.O. Matemáticas A Objetivos 1. Incorporar, al lenguaje y formas habituales de argumentación, las distintas formas de expresión matemática (numérica, algebraica, de funciones, geométrica...), con

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos

13. Utilizar la fórmula del término general y de la suma de n términos consecutivos Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π

DISTRIBUCIÓN NORMAL. Modelo matemático: f ( x ) = σ 2 π DISTRIBUCIÓN NORMAL. Es la más importante de las distribuciones teóricas, es también conocida con los nombres de curva normal y curva de Gauss. De Moivre publico en 1773 su trabajo sobre la curva normal

Más detalles

1 - TEORIA DE ERRORES : distribución de frecuencias

1 - TEORIA DE ERRORES : distribución de frecuencias - TEORIA DE ERRORES : distribución de frecuencias CONTENIDOS Distribución de Frecuencias. Histograma. Errores de Apreciación. Propagación de errores. OBJETIVOS Representar una serie de datos mediante un

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Anexo Superficies en 3D 01 Anexo de la Unidad : Superficies en 3D Anexo 1: valor absoluto o módulo El valor absoluto o módulo de un número a, que se anota a, es la

Más detalles

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES

1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los

Más detalles

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD:

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD: . Resolver la inecuación: Solución: empleando la siguiente propiedad de valor absoluto a a a, tenemos lo siguiente: Resolviendo por el método de puntos críticos, para cada caso tenemos: 0 0 0 Entonces

Más detalles

Distribución Chi (o Ji) cuadrada (χ( 2 )

Distribución Chi (o Ji) cuadrada (χ( 2 ) Distribución Chi (o Ji) cuadrada (χ( 2 ) PEARSON, KARL. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it Can Reasonably

Más detalles

RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS

RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS RELACIONES DE PROPORCIONALIDAD Y GRÁFICOS CONTENIDOS: Introducción. 3.1 Interpretación y representación gráfica entre magnitudes físicas. 3.2 Proporcionalidad directa entre una variable y otra elevada

Más detalles

Incertidumbres y Métodos Gráficos *

Incertidumbres y Métodos Gráficos * UNIVERSIDAD NACIONAL DE COLOMBIA Departamento de Física Fundamentos de Electricidad y Magnetismo Guía de laboratorio 02 Objetivos Incertidumbres y Métodos Gráficos * 1. Aprender a expresar y operar correctamente

Más detalles

El Movimiento Browniano en la modelización del par EUR/USD

El Movimiento Browniano en la modelización del par EUR/USD MÁSTER UNIVERSITARIO EN DIRECCIÓN FINANCIERA Y FISCAL TESINA FIN DE MÁSTER El Movimiento Browniano en la modelización del par EUR/USD Autor: José Vicente González Cervera Directores: Dr. Juan Carlos Cortés

Más detalles

INECUACIONES LINEALES

INECUACIONES LINEALES INECUACIONES POLINÓMICAS EN UNA VARIABLE Las inecuaciones en general, son desigualdades entre epresiones algebraicas en las que intervienen una o más variables. Cuando las epresiones algebraicas de cada

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: SEPTIEMBRE DE 2016 UNIDAD DE APRENDIZAJE

Más detalles

Unidad III: Estadística descriptiva

Unidad III: Estadística descriptiva Unidad III: Estadística descriptiva 3.1 Conceptos básicos de estadística: Definición, Teoría de decisión, Población, Muestra aleatoria, Parámetros aleatorios TEORÍA DE DECISIÓN Estudio formal sobre la

Más detalles

Práctica No 1. Análisis estadísticos de los datos termodinámicos

Práctica No 1. Análisis estadísticos de los datos termodinámicos Práctica No 1 Análisis estadísticos de los datos termodinámicos 1. Objetivo general: Aplicación correcta de las herramientas estadísticas en el manejo de propiedades, tales como: presión, temperatura y

Más detalles

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena

Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena 1 Universidad Simón Bolívar. Preparaduría nº 3. christianlaya@hotmail.com ; @ChristianLaya Plano tangente a una superficie y a una superficie de nivel, derivada direccional y regla de la cadena Derivada

Más detalles

Syllabus. Curso:SEXTO. Materia:ESTUDIOS MATEMÁTICOS

Syllabus. Curso:SEXTO. Materia:ESTUDIOS MATEMÁTICOS Syllabus Curso:SEXTO Materia:ESTUDIOS MATEMÁTICOS Descripción del curso: Esta asignatura está destinada a estudiantes con distintas capacidades y niveles de conocimiento, con el objeto de infundir seguridad

Más detalles

ANÁLISIS CUANTITATIVO POR WDFRX

ANÁLISIS CUANTITATIVO POR WDFRX ANÁLISIS CUANTITATIVO POR WDFRX El análisis cuantitativo se obtiene mediante la medida de las intensidades de las energías emitidas por la muestra. Siendo la intensidad de la emisión (número de fotones)

Más detalles

Coordinación de Matemática I (MAT021) Taller 10

Coordinación de Matemática I (MAT021) Taller 10 Coordinación de Matemática I MAT01 Taller 10 Primer semestre de 01 Semana 11: Lunes 0 viernes 08 de junio Ejercicios Ejercicio 1 Calcular las derivadas de las siguientes funciones: 1. cos x ln x. x + x

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Medidas de Tendencia Central En cualquier análisis o interpretación, se pueden usar muchas medidas descriptivas que representan las propiedades de tendencia central, variación y forma para resumir las

Más detalles

Backtesting. Modelos de Capital y Reservas

Backtesting. Modelos de Capital y Reservas Backtesting Modelos de Capital y Reservas Mayo 2009 Contenido 1. Antecedentes 2. Backtesting 3. Perspectivas Backtesting de los Modelos de Reservas y Capital Antecedentes Nuevos esquemas regulatorios a

Más detalles

USOS DEL PROGRAMA MINIMAT

USOS DEL PROGRAMA MINIMAT USOS DEL PROGRAMA MINIMAT ( GUÍA N 0 003 ) Solución aproximada de ecuaciones y desigualdades de una variable Se trata de obtener la solución aproximada de una ecuación o de una desigualdad utilizando el

Más detalles

Capítulo 5 Determinación de caudales en los puntos de análisis

Capítulo 5 Determinación de caudales en los puntos de análisis Capítulo 5 Determinación de caudales en los puntos de análisis Al no existir información sobre los caudales en los puntos que definen las subcuencas en estudio (Vilcazán, Sta. Rosa, San Lázaro, Chulucanitas

Más detalles

EJES TEMÁTICOS DE LA PRUEBA DE MATEMÁTICA

EJES TEMÁTICOS DE LA PRUEBA DE MATEMÁTICA UNIVERSIDAD DE CHILE ADMISIÓN 2018 SISTEMA ESPECIAL DE ADMISIÓN EJES TEMÁTICOS DE LA PRUEBA DE MATEMÁTICA I. Números II. III. IV. Álgebra Geometría Datos y Azar CARACTERÍSTICAS Prueba de carácter obligatoria

Más detalles

Distribución Gaussiana o normal

Distribución Gaussiana o normal FLUCTUACIONES ESTADÍSTICAS Los postulados fundamentales de la teoría estadística de errores establecen que, dado un conjunto de medidas, todas efectuadas en idénticas condiciones, suficientemente grande

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Universidad Tecnológica Nacional Facultad Regional San Francisco. Licenciatura en Administración Rural. Estadística

Universidad Tecnológica Nacional Facultad Regional San Francisco. Licenciatura en Administración Rural. Estadística Universidad Tecnológica Nacional Facultad Regional San Francisco Licenciatura en Administración Rural Estadística PLANIFICACIÓN CICLO LECTIVO 2008 ÍNDICE ÍNDICE... 2 PROFESIONAL DOCENTE A CARGO... 3 UBICACIÓN...

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Cronograma de guías y contenidos

Cronograma de guías y contenidos Liceo Juan Antonio Nivel: PRIMER AÑO MEDIO aplicación del lenguaje algebraico 09 Septiembre 23 Septiembre Guía N 1 Guía N 2 Unidad : Lenguaje Algebraico Transformar expresiones algebraicas no fraccionarias

Más detalles

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática

MINISTERIO DE EDUCACIÓN. Dirección de Educación Técnica y Profesional. Familia de especialidades:servicios. Programa: Estadística Matemática MINISTERIO DE EDUCACIÓN Dirección de Educación Técnica y Profesional Familia de especialidades:servicios Programa: Estadística Matemática Nivel: Técnico Medio en Contabilidad. Escolaridad inicial: 9no.

Más detalles

Practica I - Parte 3. Índice. 1. Introducción. Método de Ajuste por Mínimos Cuadrados. Introducción a las Ciencias de la Tierra y el Espacio I

Practica I - Parte 3. Índice. 1. Introducción. Método de Ajuste por Mínimos Cuadrados. Introducción a las Ciencias de la Tierra y el Espacio I Practica I - Parte 3 Método de Ajuste por Mínimos Cuadrados Introducción a las Ciencias de la Tierra y el Espacio I - 20 Índice. Introducción.. Fuerza de un Resorte Ley de Hooke)..............................2.

Más detalles

Modelo Probabilístico de la Curva de Duración de Caudales para el Diseño de una Central Hidroeléctrica

Modelo Probabilístico de la Curva de Duración de Caudales para el Diseño de una Central Hidroeléctrica Modelo Probabilístico de la Curva de Duración de Caudales para el Diseño de una Central Hidroeléctrica Edwin Ney Ayros Chumpitazi Departamento de Centrales Hidroeléctricas Fichtner GmbH, Stuttgart Alemania

Más detalles

Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal.

Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Excel: Regresión Lineal Como usar Excel para resolver una regresión lineal usando la función predefinida estimacion.lineal. Como hacer la gráfica. Ejemplo Los datos de la tabla adjunta, x e y exacto, cumplen

Más detalles

Tema 13: Contrastes No Paramétricos

Tema 13: Contrastes No Paramétricos Tema 13: Contrastes No Paramétricos Presentación y Objetivos. La validez de los métodos paramétricos depende de la validez de las suposiciones que se hacen sobre la naturaleza de los datos recogidos. La

Más detalles

Universidad de Salamanca - Escuela de Educación y Turismo

Universidad de Salamanca - Escuela de Educación y Turismo Universidad de Salamanca - Escuela de Educación y Turismo ! " # $ % $ & ' ( ) * ( +(, + ' -. '. ' - % $ / %.! '. " # $ % & & $ % # # $( #. 0 # (/ $. # % 0 1 # % ( # 0 # 0 1 # 0. (, (! " # # #. $ ($ ' 0

Más detalles

Práctica 2: Regresión lineal

Práctica 2: Regresión lineal Prácticas de estadística con R Ingeniería Química Universidad de Cantabria Curso 2011 2012 Práctica 2: Regresión lineal R también permite trabajar conjuntamente con más de una variable. En particular esta

Más detalles

PLANES CURRICULARES GRADO9º/ 01 PERIODO

PLANES CURRICULARES GRADO9º/ 01 PERIODO PLANES CURRICULARES GRADO9º/ 01 PERIODO Grado: 9º Periodo: 01 PRIMERO Aprobado por: G. Watson - Jefe Sección Asignatura: MATEMATICAS Profesor: Gloria rueda y Jesús Vargas ESTANDARES P.A.I. I.B. A. Conocimiento

Más detalles

Modelos Probabilísticos de Valores Máximos en Hidrología: Un Nuevo Enfoque

Modelos Probabilísticos de Valores Máximos en Hidrología: Un Nuevo Enfoque Modelos Probabilísticos de Valores Máximos en Hidrología: Un Nuevo Enfoque Agustín Felipe Breña Puyol UAM-IDepto de Ingeniería de Procesos e Hidráulica Resumen adicionalmente los modelos probabilísticos

Más detalles

La econometría : una mirada de pájaro

La econometría : una mirada de pájaro La econometría : una mirada de pájaro Contenido Objetivo Definición de Econometría Modelos determinista y estocástico Metodología de la econometría Propiedades de un modelo econométrico Supuestos de un

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Fuerte Subestimación de los Valores IDF para Concepción ( y Chile?) con Métodos Tradicionales

Fuerte Subestimación de los Valores IDF para Concepción ( y Chile?) con Métodos Tradicionales Fuerte Subestimación de los Valores IDF para Concepción ( y Chile?) con Métodos Tradicionales Claudio Meier V. Ximena Soto C. Depto. de Ingeniería Civil Universidad de Concepción Ejemplo: La lluvia sobre

Más detalles

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O.

CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. CONTENIDOS MÍNIMOS MATEMÁTICAS 2º Y 4º E.S.O. Matemáticas 2º E.S.O. a) Contenidos comunes. Utilizar estrategias y técnicas sencillas en la resolución de problemas. b) Números. Conocer los conceptos de

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Resolución Guía de Trabajo. Geometría Analítica.

Resolución Guía de Trabajo. Geometría Analítica. Universidad de la Frontera Facultad de Ingeniería TEMUCO, Agosto 8 de 01 Departamento de Matemática y Estadística Resolución Guía de Trabajo. Geometría Analítica. Fundamentos de Matemáticas. Profesores:

Más detalles

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes.

ESTADÍSTICA I. A continuación se presentan los Modelos Probabilísticos Continuos más importantes. 1 ESTADÍSTICA I Capítulo 6: MODELOS PROBABILÍSTICOS CONTINUOS. Contenido: Distribución Uniforme Continua. Distribución Triangular. Distribución Normal. Distribuciones Gamma, Exponencial, Erlang y Chi Cuadrado.

Más detalles