A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "A'' D'' C'' B'' A' C' Figura 1. Verdadera Magnitud de ángulos de rectas."

Transcripción

1 Tema 5: Ángulos entre retas y planos. Triedros Angulo de dos retas. El ángulo de dos retas es una de las magnitudes de las formas planas, y para obtener su verdadera magnitud se aplia el ambio de plano, giro o abatimiento, vistos anteriormente. En la figura se muestra la M de AC y en el aso de que las retas estén de perfil, en la proyeión sobre el 2º vertial se enuentran en M. D'' ' ' D''' ' A' C' A' H C' M ' D' Figura. erdadera Magnitud de ángulos de retas. Angulo de reta y plano. El proedimiento general se realiza, (según se india en la figura 2, en la que se muestra la propuesta de un ejeriio, en el que el plano α está dado por las retas m,n, el esquema en geometría del espaio y su resoluión diédria), trazando:. por un punto de r, reta s perpendiular al plano α. 2. se obtiene el ángulo omplementario a Θ, entre r y α trazando su M (por abatimiento, ambio de plano, ) Si se desea obtener el ángulo Θ, es preiso obtener sobre α la proyeión t de r, es deir, la interseión t de δ(r,s) on α. Para ello: 3. Se obtienen los puntos interseión: r α =2 y s α = 3; 2-3 = t. 4. t-r en verdadera magnitud es el ángulo Θ pedido.

2 Planteamiento m'' n'' ' r m' n' s 3 t 2 (m,n) Resoluión '' ' v'' h'' m'' n'' s'' o so ro v' h' m' ( m, n,h,v) (r,s) n' s' 3' 3o to t' 2' 2o Charnela (reta htal. del plano δ (r,s) ) ' Figura 2: Ángulo reta-plano. Propuesta de ejeriio, esquema en geometría del espaio y resoluión diédria. Otro proedimiento de resoluión es mediante ambios de plano. En la figura 3 se muestra su resoluión. Previamente, en el aso de que la reta esté de punta, on un ambio de plano para situarlo de perfil, se obtiene el ángulo pedido en verdadera magnitud.

3 En el aso general, es preiso haer dos ambios de plano para situar la reta de punta y otro para que el plano α quede de perfil y obtener el ángulo pedido. Angulo reta-plano, uando la reta está de punta. m'' n'' h'' ' ' m' n' Resoluión 2 h ' (m,n) m'' n'' m' n' ' m'' n'' h'' '2 h' m' n ' (m,n) Figura 3: Ángulo reta-plano. Resoluión mediante ambios de plano.

4 Angulo de una reta on los planos de proyeión. P P ' Perspetiva aballera. PH H ' r ' Plano de dibujo. H PH ' H Figura 4: Ángulo de la reta on los planos de proyeión. Se resuelve on failidad mediante ambios de plano, según muestra la figura 4. Angulo de un plano on los de proyeión. Perspetiva aballera. Plano de dibujo. P P v'' ' A' H C' PH h' ' h' Figura 5: Angulo de un plano on los de proyeión. Se ve on laridad en la figura 5, la obtenión del ángulo pedido mediante ambios de plano.

5 Angulo de dos planos. Para onoer el ángulo que forman dos planos, según los datos de partida, se aplian los siguientes proedimientos. Planteamiento Resoluión D'' D'' i'' i'' s A' ' A' ' s C' i' D' C' i' D' D'' i' ' Figura 6: Angulo de dos planos. A' En el aso del sistema diédrio tradiional, se resuelve trazando por un punto, retas perpendiulares a los dos planos dados. Así, el ángulo que forman esas dos retas es el suplementario del que forman los planos. El plano formado por ambas retas es perpendiular a los otros dos y a su interseión (Figura 6, izquierda). Si los planos están dados por medio de figuras planas y se onoe la interseión entre ellos, se resuelve on laridad por medio de dos ambios de plano, situando diha interseión de punta, según se muestra en el ejeriio de la figura 6. Estudio de triedros. - Definiión, elementos prinipales y relaiones que limitan su existenia. Un triedro es una figura onstituida por tres aras, las uales se ortan en un punto o vértie y en tres aristas (Figura 7). Se puede onsiderar omo una pirámide triangular sin su base. Las aras del triedro están definidas por el ángulo que forman sus dos aristas, α, β, γ. Las aristas a, b, son las interseiones de los planos y onvergen en el punto, vértie del triedro. Las aras, dos a dos forman los ángulos diedros A,, C. (Los lados de dihos ángulos son perpendiulares a las aristas). El riterio para denominar a los

6 elementos del triedro, es que la arista esté frente a la ara homónima, es deir, a frente a α, b frente a β, frente a γ. = α + β > γ; α + γ > β; β + γ > α 0 < α + β + γ < 360º 80º < A + +C < 3x80º (540) Figura 7. Elementos de un triedro y relaiones que limitan su existenia. Las ondiiones que deben umplir los datos de un triedro para que exista, se deduen on failidad de la figura 7, son: 0 < α + β+ γ < 360º 80º < A + + C < 3x80º (=540º) α + β > γ; α + γ > β; β + γ > α. En que la suma de dos aras es mayor que la terera. Se trata de resolver los triedros, es deir, onoer los datos α, β, γ, A,, C, siendo onoidos tres de ellos, por onsiguiente hay seis asos, en los que los datos son:. Las tres aras: α, β, γ. 2. Dos aras y el diedro omprendido, por ejemplo: α, β, C 3. Dos diedros y la ara opuesta a uno de ellos, por ejemplo: α, A,. 4. Los tres diedros: A,, C. 5. Dos diedros y la ara que los ontiene, por ejemplo: A,, γ. 6. Dos aras y un diedro de la otra ara, por ejemplo: α, A, β. - Triedro suplementario. División del espaio por los planos de un triedro. Si desde un punto se trazan líneas perpendiulares a las aras de un triedro (figura 8), se obtiene un nuevo triedro de vértie s, denominado suplementario, en el que: α + As = 80º β + s = 80º γ + Cs = 80º A + α s = 80º + β s = 80º C + γ s = 80º Se observa que los tres últimos asos de triedros se pueden resolver mediante su suplementario, reduiéndolos a los tres primeros:

7 . α, β, γ. 4. A,, C. Suplementario αs=80º-a, βs=80º-, γs=80º-c 2. α, β, C 5. A,, γ. Suplementario αs=80º-a, βs=80º-, Cs=80º-γ 3. α, A,. 6. A, α, β. Suplementario αs=80º-a, As=80º-α, s=80º-β. Una vez resuelto, se transforman los resultados al triedro pedido que ya se puede trazar. Figura 8: Triedro suplementario. División espaial de los planos del triedro. Los planos del triedro dividen el espaio en oho partes, que son iguales dos a dos, los opuestos por el vértie. Considerando el semiespaio superior del plano horizontal α, observando en sentido horario los uatro triedros resultantes, según se apreia en la figura 8, tienen las magnitudes relaionadas omo sigue: Triedro Triedro 2 Triedro 3 Triedro 4 α 80-α α 80-α β 80-β 80-β β γ γ 80-γ 80-γ A 80-A A 80-A C C 80-C 80-C bs'' s'' ' bs' '' a'' s'-as' ' s'' a' s' b' b'' β = γ = 90º α = β = γ = 90º Figura 9: Representaión diédria del triedro suplementario. Triedro on dos aras que miden 90º. Triedro trirretángulo, las tres aras miden 90º. Si el triedro tiene dos aras iguales, dos de los uatro triedros de la tabla son iguales. Si las dos aras iguales miden 90º, hay sólo dos triedros diferentes. El triedro trirretángulo se arateriza por tener todos los ángulos retos, on lo que sólo hay un tipo de triedros (figura 9). Esto, junto on el triedro suplementario failita la resoluión de triedros en los que los datos de partida son muy grandes.

8 - Caso º. Construir un triedro, dadas las tres aras α, β, γ. Figura 0: Obtenión de los elementos del triedro, dadas las tres aras. En este aso se visualiza la forma de obtener los elementos del triedro, que será apliable a los demás. En la figura 0 se india, en el espaio, omo determinar la verdadera magnitud de los tres diedros A, y C, para ello:. Se abate la arista a, a ambos lados on harnela b y mediante los ángulos β y γ. 2. Se toma un punto o que equidista de, se traza desde o perpendiular a b y respetivamente y se obtiene. Completando el proeso inverso al abatimiento, se tienen los ángulos y C y la ota del punto. 3. El ángulo A se obtiene sabiendo que sus lados son perpendiulares a la arista a, por lo que trazando desde o perpendiular a ao, (ya que en el abatimiento se onserva la perpendiularidad), hasta ortar a las aristas b y, desde donde se trazan sendos aros que ortan a en o, que es el vértie del ángulo en verdadera magnitud. En la figura se muestra su resoluión diédria en el plano de dibujo. a'' a b ' '' '' o A a' b' b'' C ' a o o ' o Figura : Resoluión del triedro, en el plano de dibujo. ao

9 - Caso 2º. Construir un triedro dadas dos aras y el diedro omprendido: α, β, C. En este aso se trata de determinar A,, γ, para ello se siguen los pasos siguientes (figura 2):. Se dibuja, b,, α. Se traza el ángulo β, la arista a o y un punto o, el ual se desabate apliando el ángulo C, obteniéndose el punto y su ota. 2. Se abate el punto on la harnela b, y se obtiene y γ. 3. El ángulo A, se obtiene omo en el aso anterior, figuras 0 y. b a' Datos: α, β, C ' C o ao ao o Figura 2: Resoluión del Caso 2º de triedros: α, β, C. - Caso 3º. Construir un triedro onoidos dos diedros y la ara opuesta a uno de ellos: α, A,. Para resolver el triedro es preiso obtener β, γ, C, pudiendo tener dos soluiones, según se apreia en las figuras 3 y 4, para lo ual se siguen los pasos: a a' ' A ' A o b b' o b b' a a' o o Figura 3: Resoluión del Caso 3º de triedros: α, A,.. Se traza la arista del diedro, ontiguo a la ara onoida (es deir, del que no se onoe la ara opuesta).

10 2. Se traza el ángulo en un punto ualquiera de la arista, se asigna una ota y se abate el punto, obteniendo o. 3. Se traza desde o, o que forma el ángulo α on b y se obtiene. 4. Por se traza la base del ono orrespondiente al ángulo A y altura la ota de. 5. Desde, las tangentes a la base del ono son las dos aristas a soluión que puede tener el triedro, de donde se obtienen los ángulos γ posibles. 6. El ángulo β se obtiene por abatimiento de la arista on harnela a y el ángulo C omo en asos anteriores, figuras 0 y. A ' o A ' o o a' ' b' o o a b o a' ' b' o o Figura 4: Resoluión diédria del 3 er aso. - Caso 5º. Construir un triedro definido por una ara y sus dos diedros adyaentes. A,, γ. Por su fáil visualizaión, se muestra en la figura 5 la resoluión en perspetiva y diédria de este 5º aso. a b = = C ' C C o b' ao ' ao o Figura 5: Resoluión perspetiva y diédria del 5 er aso. '

Tema 6: Semejanza en el Plano.

Tema 6: Semejanza en el Plano. Tema 6: Semejanza en el Plano. 6.1 Semejanza de Polígonos. Definiión 6..1.- Cuatro segmentos a, b, y d son proporionales si se umple la siguiente igualdad: a =. A ese oiente omún se le llama razón de proporionalidad.

Más detalles

INSTITUTO DE PROFESORES ARTIGAS

INSTITUTO DE PROFESORES ARTIGAS INSTITUTO D PROFSORS RTIGS SPILIDD MTMÁTI GOMTRÍ UNIDD FIH 3: Teorema de Thales y más. 3.1 Teorema de Thales. 3. Teorema de las bisetries. 3.3 irunferenia de polonio. 3.4 riterios de semejanza de triángulos.

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

Tema 2: Representación del punto, recta y plano, en el sistema Diédrico.

Tema 2: Representación del punto, recta y plano, en el sistema Diédrico. Tema 2: Representación del punto, recta y plano, en el sistema Diédrico. Representación del punto. El punto se define por medio de sus proyecciones sobre el horizontal y el vertical. (En perspectiva caballera)

Más detalles

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación:

Ley del Coseno 1. Ley del Coseno. Dado un triángulo ABC, con lados a, b y c, se cumple la relación: Ley del Coseno 1 Ley del Coseno Dado un triángulo ABC, on lados a, b y, se umple la relaión: = a + b abosc (Observe que la relaión es simétria para los otros lados del triángulo.) Para demostrar este teorema,

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

Sistema axonométrico. Con el estudio de esta Unidad nos proponemos alcanzar los siguientes objetivos:

Sistema axonométrico. Con el estudio de esta Unidad nos proponemos alcanzar los siguientes objetivos: UNIDAD 9 Sistema axonométrico E l sistema axonométrico se divide en ortogonal y oblicuo según sea la dirección de proyección. La axonometría ortogonal puede ser isométrica, dimétrica o trimétrica según

Más detalles

Preparado por el Arqto. Jing Chang Lou

Preparado por el Arqto. Jing Chang Lou POLIIEDROS A P U N T E D O C E N T E Preparado por el Arqto. Jing Chang Lou U N I V ER S I D A D D E C H I L E F AC U L T A D D E A R Q U I T EC T U R A Y U R B A N I S MO D EPARTAMENTO C I ENCIAS DE L

Más detalles

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO

Controles de Calidad en la Fabricación de un Rodete Pelton. Murray Garcia, Harry Ernesto CAPITULO II MARCO TEORICO CAPITULO II MARCO TEORICO Reordemos que las Turbinas Pelton son Turbinas de Aión, y son apropiadas para grandes saltos y pequeños audales; por lo ual sus números espeífios son bajos. Referente a las partes

Más detalles

ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS

ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS ÁNGULOS ÁNGULO FORMADO ENTRE DOS RECTAS QUE SE CORTAN 1 - Se halla el plano que forman R y S. 2 Se abaten las dos rectas para hallar el ángulo. Se puede abatir con el método directo, o con el método tradicional

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Tenemos la recta

Más detalles

Algunos resultados importantes de Geometría Euclidiana en el plano:

Algunos resultados importantes de Geometría Euclidiana en el plano: lgunos resultados importantes de Geometría Eulidiana en el plano: Grados y radianes El despeje de la siguiente euaión permite realizar la onversión de la unidad angular: grados 180º radianes π Triángulo

Más detalles

TEMA VI: ÁNGULOS ENTRE ELEMENTOS

TEMA VI: ÁNGULOS ENTRE ELEMENTOS TEMA VI: ÁNGULOS ENTRE ELEMENTOS 6.1.D Ángulo entre dos rectas El cálculo del ángulo de dos rectas que se cortan es sencillo. Si las rectas se cruzan, el ángulo es el formado entre una de las rectas y

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Disontinuidades en un Punto - Tiene ramas infinitas en un punto y 5 La reta 5 es una asíntota vertial - Presenta un salto en un punto, si y

Más detalles

12 ÁNGULOS EN DIÉDRICO

12 ÁNGULOS EN DIÉDRICO 12-1 Apuntes de dibujo técnico Patxi Aguirrezabal M artin 12 ÁNGULOS EN DIÉDRICO Ángulos de la recta con los planos de proyección. Ángulo de dos rectas y bisectriz del ángulo. Ángulo de recta y plano.

Más detalles

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO

31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31. SISTEMA AXONOMÉTRICO. LA RECTA Y EL PLANO 31.1. Representación de la recta. Si un punto se representaba por cuatro proyecciones, la recta se representa igual por cuatro proyecciones. Proyecciones de

Más detalles

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo 1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a

Cónicas. = 0 son rectas que pasan por su centro y tienen de pendiente m tal que: a) m = a .- Las asíntotas de la hipérbola a x + a y + axy + a 0x + a 0y + a 00 = 0 son retas que pasan por su entro y tienen de pendiente m tal que: a a) m = a b) m es raíz de m + a m + a 0 a = a + am + a m = )

Más detalles

SISTEMA DIÉDRICO PERTENENCIA VISIBILIDAD VISIBILIDAD 3º PROYECCIÓN PLANOS NO DADOS POR SUS TRAZAS

SISTEMA DIÉDRICO PERTENENCIA VISIBILIDAD VISIBILIDAD 3º PROYECCIÓN PLANOS NO DADOS POR SUS TRAZAS SISTEMA DIÉDRICO PERTENENCIA 1. Dado un plano cualquiera cuya traza horizontal forma 40º con la LT y 60º la traza vertical, situar pasando por un punto A que le pertenece y de altura 30 mm, todas sus rectas

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

A(50,10,25) B(70,5,50) C(52,-10,37) A(45,15,35) B(45,-10,15) C(45,50,60) C(45,30,43) A(20,-5,70) B(45,-10,80) C(60,14,22)

A(50,10,25) B(70,5,50) C(52,-10,37) A(45,15,35) B(45,-10,15) C(45,50,60) C(45,30,43) A(20,-5,70) B(45,-10,80) C(60,14,22) Diédrico. Pertenencia de un punto a una recta. Dados los puntos indicados. Averiguar si están o no alineados. Partes vistas y ocultas y sectorización de la recta que contiene los puntos A y B Halla los

Más detalles

SISTEMAS DE REPRESENTACIÓN 20

SISTEMAS DE REPRESENTACIÓN 20 CIRCUNFERENCIA En el curso de Sistemas de Representación 10 se omite, por falta de tiempo, el tema correspondiente a la construcción y proyecciones de la circunferencia, base fundamental para el estudio

Más detalles

PROPORCIONES Y SEMEJANZA. LA RAZON entre dos cantidades es el cociente indicado entre ellas, la razón de a y b se escribe b. a b.

PROPORCIONES Y SEMEJANZA. LA RAZON entre dos cantidades es el cociente indicado entre ellas, la razón de a y b se escribe b. a b. Proporiones y Semejanza 1 PROPORCIONES Y SEMEJANZA LA RAZON entre dos antidades es el oiente indiado entre ellas, la razón de a y b se esribe b a y se lee: a es a b. PROPORCION: Es la igualdad de dos razones.

Más detalles

UNIDAD 1.- PROBABILIDAD

UNIDAD 1.- PROBABILIDAD UNIDAD 1.- PROBABILIDAD 1. EXPERIMENTOS ALEATORIOS. ESPACIO MUESTRAL. Definiión: Un fenómeno o experienia se die aleatorio uando al repetirlo en ondiiones análogas no se puede predeir el resultado. Si

Más detalles

- Determinar la distancia del punto P al plano α. C'' P'' B'' A'' A' B'

- Determinar la distancia del punto P al plano α. C'' P'' B'' A'' A' B' Dado el plano α por las coordenadas relativas de los puntos A, B, y C, y el punto P, según las proyecciones diédricas en el método directo del croquis adjunto, se pide: - Trazar por P una recta r perpendicular

Más detalles

18. PERSPECTIVA CABALLERA.

18. PERSPECTIVA CABALLERA. 18. PERSPECTIVA CABALLERA. La perspectiva caballera es un sistema de representación que utiliza la proyección paralela oblicua, en el que las dimensiones del plano proyectante frontal, como las de los

Más detalles

ANGULOS. La unidad de medida es el grado sexagesimal. La "circunferencia completa " mide 360º (grados sexagesimales). Además considere que.

ANGULOS. La unidad de medida es el grado sexagesimal. La circunferencia completa  mide 360º (grados sexagesimales). Además considere que. PREUNIVERSITARIO PROGRAMA DE NIVELACIÓN Y REFORZAMIENTO M 04 PRO-OCTAV@ TEXTO Nº 2 GEOMETRÍA ANGULOS SISTEMAS DE UNIDADES DE MEDIDA: SISTEMA SEXAGESIMAL: La unidad de medida es el grado sexagesimal. La

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son

Más detalles

28. SISTEMA DIÉDRICO.- DISTANCIAS, VERDADERAS MAGNITUDES.

28. SISTEMA DIÉDRICO.- DISTANCIAS, VERDADERAS MAGNITUDES. 28. SISTEMA DIÉDRICO.- DISTANCIAS, VERDADERAS MAGNITUDES. 28.1. Verdaderas magnitudes. 28.1.1. Distancia entre dos puntos. Tenemos en el espacio dos puntos A y B, la distancia entre ellos es el segmento

Más detalles

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1

Un paralelogramo es un cuadrilátero con sus lados opuestos paralelos. Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 1.1. PARALELOGRAMO Definiión Un paralelogramo es un uadrilátero on sus lados opuestos paralelos o Los paralelogramos gozan de las siguientes propiedades PROPIEDAD 1 En todo paralelogramo, los lados opuestos

Más detalles

Matemáticas III Andalucía-Tech. Integrales múltiples

Matemáticas III Andalucía-Tech. Integrales múltiples Matemátias III Andaluía-Teh Tema 4 Integrales múltiples Índie. Preliminares. Funión Gamma funión Beta. Integrales dobles.. Integral doble de un ampo esalar sobre un retángulo................ Integral doble

Más detalles

Educación Plástica y Visual 4.1 INSTRUMENTOS PARA EL DIBUJO TÉCNICO:

Educación Plástica y Visual 4.1 INSTRUMENTOS PARA EL DIBUJO TÉCNICO: 4 FORMAS GEOMÉTRICAS Normalmente, un dibujo se puede realizar de dos maneras. La primera es a mano alzada, es decir, sin utilizar ningún instrumento que sirva de guía o de apoyo para el trazado de formas.

Más detalles

Para aprender Termodinámica resolviendo problemas

Para aprender Termodinámica resolviendo problemas GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.

Más detalles

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros

Solución: Observamos que los números de la sucesión se pueden escribir de la siguiente L de esta manera la suma de los primeros roblema : uánto suman los primeros 008 términos de la suesión 0,,,,, L? Soluión: Observamos que los números de la suesión se pueden esribir de la siguiente 0 manera,,,,, L de esta manera la suma de los

Más detalles

1. Dibujar un punto del primer cuadrante y su simétrico respecto del plano vertical de proyección.

1. Dibujar un punto del primer cuadrante y su simétrico respecto del plano vertical de proyección. Referencias.- En todos los ejercicios: La primera coordenada representa a la distancia al plano lateral de referencia, la segunda coordenada es el alejamiento y la tercera coordenada es la elevación. [P(x,

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

1º BACH SISTEMA DIÉDRICO III

1º BACH SISTEMA DIÉDRICO III SISTEMA DIÉDRICO III ABATIMIENTOS, GIROS, CAMBIOS DE PLANO. SISTEMA DIÉDRICO III: ABATIMIENTOS, CAMBIOS DE PLANO Y GIROS 1- ABATIMIENTOS Los abatimientos se utilizan para hallar la verdadera magnitud (

Más detalles

DE LA RECTA PROYECCIONES DEL

DE LA RECTA PROYECCIONES DEL 44 Punto, SISTEM NMÉTIC: recta, plano y cuerpos PECCINES DEL PUNT PECCINES DE L ECT PECCINES DEL PLN ECTS CNTENIDS EN PLNS Plano definido por dos rectas que se cortan INTESECCIÓN DE PLNS INTESECCIÓN DE

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

2.4 Transformaciones de funciones

2.4 Transformaciones de funciones 8 CAPÍTULO Funiones.4 Transformaiones de funiones En esta seión se estudia ómo iertas transformaiones de una funión afetan su gráfia. Esto proporiona una mejor omprensión de ómo grafiar Las transformaiones

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

SESIÓN DE APRENDIZAJE

SESIÓN DE APRENDIZAJE INSTITUCIÓN EDUCATIVA INMACULADA DE LA MERCED SESIÓN DE APRENDIZAJE APRENDIZAJE ESPERADO Determina la regla de orrespondenia de una funión Representa e Identifia funiones Resuelve operaiones on funiones

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

Dibujo Técnico Curvas técnicas

Dibujo Técnico Curvas técnicas 22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta

Más detalles

A G R. Diédrico 17. Cuerpos 4. Tetraedro

A G R. Diédrico 17. Cuerpos 4. Tetraedro Dibujar los tetraedros, de igual arista, en las cuatro posiciones siguientes: 1. Apoyado por la cara AB en el PH (la posición de la izquierda). 2. on una arista, la AB en el PH y la opuesta horizontal.

Más detalles

CASOS DIRECTOS. Pueden ocurrir dos casos, según que las rectas se corten o se crucen :

CASOS DIRECTOS. Pueden ocurrir dos casos, según que las rectas se corten o se crucen : TEMA 17 ANGULOS 17.1. ANGULOS ENTRE DOS RECTAS CASOS DIRECTOS Pueden ocurrir dos casos, según que las rectas se corten o se crucen : 17.1.1. LAS RECTAS SE CORTAN Supongamos (fig. 9.4) que queremos hallar

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

KMN : JKL : Pagina 1 de 16 SOLUCIONES OCTUBRE 2016

KMN : JKL : Pagina 1 de 16 SOLUCIONES OCTUBRE 2016 agina de 6 UIE URE 06 utor: Riard eiró i Estruh tubre - entro de un retángulo se han insrito 6 irunferenias de igual radio r (ver figura) eterminar la medida de los lados del retángulo oluión: ea el retángulo

Más detalles

11. CURVAS TÉCNICAS ÓVALO Definición Construcción de óvalos

11. CURVAS TÉCNICAS ÓVALO Definición Construcción de óvalos 11. CURVAS TÉCNICAS Las curvas técnicas tienen muchas aplicaciones en la resolución de problemas de dibujo técnico, ya sean éstos provenientes del ámbito del diseño industrial, arquitectónico o gráfico.

Más detalles

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville.

Lección 4. Ecuaciones diferenciales. 4. Propiedades algebraicas de las soluciones. Fórmulas de Abel y Liouville. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0. 4. Proiedades algebraias de las soluiones. Fórmulas de Abel y Liouville. A lo largo de esta seión suondremos que P, Q y R son funiones ontinuas en un intervalo

Más detalles

TEMA 7 SISTEMA AXONOMETRICO

TEMA 7 SISTEMA AXONOMETRICO TEMA 7 SISTEMA AXONOMETRICO 1. AXONOMETRICO....2 2. FUNDAMENTOS Y DEFINICIONES....2 2.1 EJES Y PLANOS DE COORDENADAS....2 2.2 FUNDAMENTO DEL SISTEMA AXONOMETRICO....3 3. ESCALAS GRAFICAS DE REDUCCION....7

Más detalles

A RG. Diédrico 13. Abatimientos Hoja 1/2

A RG. Diédrico 13. Abatimientos Hoja 1/2 menor cota, es horizontal; 2 - El otro vértice, él E, contiguo al A esta en el P; 3 - El pentágono está en el 1º A G R F 2 A 2 F 1 E B 1 2 A LA D 1 0 1 B 1LB 0 menor cota, es horizontal; 2 - El otro vértice,

Más detalles

2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS]

2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS] 2º BACH. SISTEMA DIÉDRICO [ABATIMIENTOS, CAMBIOS DE PLANOS, GIROS Y ÁNGULOS] ABATIMIENTOS ABATIMIENTO DE UN PUNTO CONTENIDO EN UN PLANO. Sobre el P.H. Sobre el P.V. 1 ABATIMIENTO DE UNA RECTA CONTENIDA

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF

Además del centro y el radio, distinguen: 1. Cuerda: segmento que une dos puntos cualquiera de la circunferencia. EF 23 1.5 ircunferencia efinición ado un punto y una distancia r, la circunferencia de centro y radio r, es el conjunto de puntos del plano y solo ellos, que están a la distancia r del punto. La circunferencia

Más detalles

OPCIÓN A. A1.- Construir el triángulo del que se conoce la longitud de su lado AC y la longitud de las medianas m c = 40 mm y m a = 55 mm.

OPCIÓN A. A1.- Construir el triángulo del que se conoce la longitud de su lado AC y la longitud de las medianas m c = 40 mm y m a = 55 mm. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II Curso 2010-2011 2 INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro.

Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro. Tema 7: Superficies regladas desarrollables. Pirámide-cono, prisma-cilindro. Definición y representación diédrica. Las superficies regladas están generadas por el movimiento de una recta. En las superficies

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VI: Geometría 3D (III)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VI: Geometría 3D (III) UNIDAD DIDÁCTICA VI: Geometría 3D (III) 1 ÍNDICE Página: 2 SUPERFICIES PRISMÁTICAS.. 2 2.1 PRISMAS 2 3 SUPERFICIES PIRAMIDALES.. 3 3.1 PIRÁMIDES 4 4 SECCIONES PLANAS. 5 5 DESARROLLOS Y TRANSFORMADAS...

Más detalles

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas

Supercies Regladas. Ejemplo El cilíndro y el cono circular son ejemplos de supercies regladas Unidad 1. Superies Cuádrias 1.6 Superies Regladas Superies Regladas Deniión 1. Una superie on la propiedad de que para ada punto en ella hay toda una reta que está ontenida en la superie y que pasa por

Más detalles

Sistema cónico de 10perspectiva lineal

Sistema cónico de 10perspectiva lineal UNIDAD Sistema cónico de 10perspectiva lineal Línea de horizonte y puntos de fuga (Ilustración de los autores utilizando la fotografía de la Tumba del Sulta n del cementerio de la mezquita Al Mashun, Medan,

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: DIBUJO TÉCNICO II UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: DIBUJO TÉCNICO II INSTRUCCIONES GENERALES Y CALIFICACIÓN Después

Más detalles

Autor: Arqto. Jing Chang Lou

Autor: Arqto. Jing Chang Lou SIISTEMA DIIEDRIICO A P U N T E D O C E N T E Autor: Arqto. Jing Chang Lou BIBLIOGRAFÍA SISTEMA DIÉDRICO Ferrer Muñoz, José Luis Ediciones Paraninfo (1999) GEOMETRÍA DESCRIPTIVA Izquierdo Asensi, Fernando

Más detalles

Por qué k µ es un cuadrivector?

Por qué k µ es un cuadrivector? Por qué k µ es un uadrivetor? odemos deir algo aera de por qué la freuenia y el vetor número P de onda forman un uadrivetor. La respuesta orta es: onda plana en un sistema, onda plana en todos. La idea

Más detalles

Polígonos IES BELLAVISTA

Polígonos IES BELLAVISTA Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:

Más detalles

APUNTES DE SISTEMA DIÉDRICO (1)

APUNTES DE SISTEMA DIÉDRICO (1) APUNTES DE SISTEMA DIÉDICO (1) Departamento de Dibujo I. E. S. Jaime Ferrán SISTEMA DIÉDICO El Sistema Diédrico es un Sistema de epresentación que se basa en una Proyección Paralela o Cilíndrica Ortogonal

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8.1. TANGENCIAS Se dice que dos figuras planas son tangentes cuando tienen un solo punto en común, al que se conoce como punto de tangencia. Las tangencias pueden

Más detalles

FICHA DE TRABAJO Nº 18

FICHA DE TRABAJO Nº 18 FICHA DE TRABAJO Nº 18 Nombre Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 11-12 Área Matemática Tema TRIÁNGULOS II: Líneas y Puntos Notables LINEAS y PUNTOS NOTABLES EN EL TRIANGULO

Más detalles

GEOMETRÍA TANGENCIAS - 1

GEOMETRÍA TANGENCIAS - 1 GEOMETRÍA TANGENCIAS - 1 TANGENCIAS BÁSICAS Recordemos que dos líneas se dice que son tangentes cuando tienen un solo punto común sin cortarse. Para resolver cualquier problema de tangencias de rectas

Más detalles

'" \ ~ ~ C A B. I AI' ~B PROBe 33. A' ,-----"'48 PROBe 34. PROBe 30 A B PROB.31 A 8. C con A y B origina el triangulo.

' \ ~ ~ C A B. I AI' ~B PROBe 33. A' ,-----'48 PROBe 34. PROBe 30 A B PROB.31 A 8. C con A y B origina el triangulo. 14 TRNGULOS PROBLEM 29.- CONSTRUR UN TRNGULO EQULTERO CONOCENDO L DMENSON DE SUS LDOS. Sea 1a 10ngitud de los 1ados 1a reta B; sobre una reta indefinida XX' marquese un punto y partiendo de e1, 11evese

Más detalles

1 SITÚA LOS PUNTOS. Mide las coordenadas de cada punto desde O. X positivo del punto 3. Z positivo del punto 3. Y positivo del punto 3

1 SITÚA LOS PUNTOS. Mide las coordenadas de cada punto desde O. X positivo del punto 3. Z positivo del punto 3. Y positivo del punto 3 SOLUCIÓN 1. Sitúa los puntos Mide la primera coordenada (X) en la dirección de la Línea de Tierra, empezando desde la izquierda La segunda coordenada (Y) en perpendicular a la LT, con las positivas hacia

Más detalles

C. ÁNGULOS: Geometría plana. Trazados geométricos fundamentales

C. ÁNGULOS: Geometría plana. Trazados geométricos fundamentales C. ÁNGULOS: DEFINICIÓN. Si sobre un plano se consideran dos semirrectas de origen común, el plano queda dividido en dos regiones denominadas ángulos. Ángulo es por tanto la parte del plano comprendida

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

(g) XeF 4. Se mezclan 0,4 moles de xenón con 0,8 moles de flúor en un recipiente de 2,0 L. En el equilibrio, el 60 % del Xe se ha convertido en XeF 4

(g) XeF 4. Se mezclan 0,4 moles de xenón con 0,8 moles de flúor en un recipiente de 2,0 L. En el equilibrio, el 60 % del Xe se ha convertido en XeF 4 A 00º C de temeratura, se rodue la reaión: Xe g + F g XeF 4 g Se mezlan 0,4 moles de xenón on 0,8 moles de flúor en un reiiente de,0 L. En el equilibrio, el 60 % del Xe se ha onvertido en XeF 4. Determina:

Más detalles

Construcciones de cuadriláteros

Construcciones de cuadriláteros Construcciones de cuadriláteros Heriberto Cisternas Escobedo 1 Colegio Constitución Departamento de Matemática En la resolución de un problema de construcción comenzamos por suponer resuelto el problema;

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Euaiones de primer grado. Resuelve las siguientes euaiones de primer grado on paréntesis. 3( + ) + ( 3 ) = 7 3( ) ( 3 ) ( + ) = 3( ) ( + ) ( + 3) = 3 + = 5 ( 7 ). Resuelve las siguientes euaiones de primer

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA FULTD DE IENIS EXTS Y NTURLES SEMILLERO DE MTEMÁTIS GRDO: 10 TLLER Nº: 14 SEMESTRE I ELEMENTOS DE GEOMETRÍ RESEÑ HISTÓRI L GEOMETRÍ es una ciencia muy antigua y su origen se debe a la necesidad que poseía

Más detalles

PÁGINA 76. sen 34 = BC AB = = 0,56. cos 34 = AC AB = = 0,82. tg 34 = BC AC = = 0,68. Pág mm. 35 mm. 51 mm

PÁGINA 76. sen 34 = BC AB = = 0,56. cos 34 = AC AB = = 0,82. tg 34 = BC AC = = 0,68. Pág mm. 35 mm. 51 mm Soluciones a las actividades de cada epígrafe PÁGIN 76 Pág. 1 1 Dibuja sobre un ángulo como el anterior, 34, un triánguo rectángulo mucho más grande. Halla sus razones trigonométricas y observa que obtienes,

Más detalles

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores

ANÁLISIS DE LOS INTERCAMBIADORES DE CALOR. Mg. Amancio R. Rojas Flores ANÁLISIS DE LOS INERAMBIADORES DE ALOR Mg. Amanio R. Rojas Flores En la prátia los interambiadores de alor son de uso omún y un ingeniero se enuentra a menudo en la posiión de: seleionar un interambiador

Más detalles

Unidad 1: Ángulos. Ángulos entre rectas paralelas

Unidad 1: Ángulos. Ángulos entre rectas paralelas Ángulos entre rectas paralelas Cuando se presentan dos rectas paralelas distintas quedan delimitadas 3 regiones: Si las dos rectas paralelas son cortadas por otra (llamada transversal o secante), quedan

Más detalles

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1

INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES. Tema 1 INTRODUCCIÓN A LAS MATEMÁTICAS SUPERIORES Tema 1 1.1 BREE INTRODUCCIÓN A LA LÓGICA MATEMÁTICA Bibliografía: Smith, Karl J.- Introduión a la Lógia simbólia.- Grupo Editorial Iberoaméria.- Méio, 1991. Espinosa

Más detalles

Núcleo e Imagen de una Transformación Lineal

Núcleo e Imagen de una Transformación Lineal Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la

Más detalles

Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos básicos:

Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos básicos: MATEMÁTICA MÓDULO 2 Eje temático: Geometría 1. PROPIEDADES ANGULARES EN LA CIRCUNFERENCIA Comencemos este breve estudio acerca de las propiedades angulares en la circunferencia describiendo algunos elementos

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec.

TRIGONOMETRÍA 1 (Resumen) cotg. Definiciones generales (válidas para cualquier ángulo de cualquier cuadrante) y r. cosec. sec. Tignometía Resumen TRIGONOMETRÍA (Resumen) Definiiones en tiángulos etángulos ateto opuesto sen ateto ontiguo os ateto opuesto tg ateto ontiguo ose ateto opuesto se ateto ontiguo ateto ontiguo otg ateto

Más detalles

La relación que existe entre un cambio de elevación h, en un líquido y un cambio en la presión, Δp, p h [Kg/m 2 ]

La relación que existe entre un cambio de elevación h, en un líquido y un cambio en la presión, Δp, p h [Kg/m 2 ] II.3. DESRROLLO DE L RELCION PRESION-ELEVCION es: La relaión que existe entre un ambio de elevaión h, en un líquido un ambio en la resión, Δ, h [Kg/m ].3. Donde γ es el eso eseífio del líquido, esta viene

Más detalles

POLÍGONOS REGULARES. Ejemplo: Hexágono 360º / 6 = 60º. TRIÁNGULO 3 120º 60º 180º (3-2)= 180º CUADRADO 4 90º 90º 180º (4-2)= 360º

POLÍGONOS REGULARES. Ejemplo: Hexágono 360º / 6 = 60º. TRIÁNGULO 3 120º 60º 180º (3-2)= 180º CUADRADO 4 90º 90º 180º (4-2)= 360º A B G C F LADO D E A B G C F D E APOTEMA DIAGONALES RADIO 360º / n (180º- ) ELEMENTOS Y PROPIEDADES DE LOS POLÍGONOS REGULARES. (Ilustración nº 1). Diagonal: Es el segmento que une dos vértices no consecutivos.

Más detalles

TALLER No. 17 GEOMETRÍA

TALLER No. 17 GEOMETRÍA TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?

Más detalles

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO

INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos

Más detalles

Pueden ocurrir dos casos, según que las rectas se corten o se crucen :

Pueden ocurrir dos casos, según que las rectas se corten o se crucen : TEMA 17 ANGULOS 17.1. ANGULOS ENTRE DOS RECTAS Pueden ocurrir dos casos, según que las rectas se corten o se crucen : 17.1.1. LAS RECTAS SE CORTAN Supongamos (fig. 9.4) que queremos hallar el ángulo que

Más detalles

HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA

HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA HOMOLOGÍA Y AFINIDAD 1. HOMOLOGÍA La Homología es una transformación geométrica de una figura plana en otra. Se utiliza con mucha frecuencia en geometría descriptiva y por lo tanto en dibujo industrial.

Más detalles

1.1 Definición Dos triángulos son congruentes si poseen lados y ángulos congruentes.

1.1 Definición Dos triángulos son congruentes si poseen lados y ángulos congruentes. rograma Focalizado Geometría de proporción III Marco Teórico 1. ongruencia de triángulos ( ) 1.1 efinición os triángulos son congruentes si poseen lados y ángulos congruentes. l superponer dos triángulos

Más detalles

1. Espacio producto tensorial

1. Espacio producto tensorial ENTRELAZAMIENTO Espaio produto tensorial. Sistemas Compuestos. Entrelazamiento. Sistema de n qubits. La base de Bell. Fotones entrelazados: La Conversión Paramétria a la baja. . Espaio produto tensorial

Más detalles

Sistema diédrico: prisma, cono y cilindro

Sistema diédrico: prisma, cono y cilindro UNIDAD 7 Sistema diédrico: prisma, cono y cilindro Capitel basado en el prisma y el cilindro (Modificación de la fotografía de la Mezquita de las Tornerías, Toledo, de Luana Fischer Ferreira, del Banco

Más detalles