1.- Ángulo de inclinación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1.- Ángulo de inclinación"

Transcripción

1 Unidad II.- La línea recta. Todos tenemos la idea intuitiva de lo que es una recta. Las propiedades fundamentales de la recta, de acuerdo a los Axiomas de Euclides, son: Por dos puntos distintos pasa una y sólo una recta. Dos rectas distintas se cortan en un sólo punto o son paralelas. 1.- Ángulo de inclinación Sea 1 una recta no paralela al eje x y que lo intersecta en el punto A. La dirección de la recta en relación con los ejes coordenados puede indicarse si se conoce el ángulo θ < 180 que se obtiene al girar la semirrecta AX en sentido contrario alas manecillas del reloj hasta coincidir con la recta 1. Por lo tanto, este ángulo (θ) se denomina inclinación de la recta 1. La pendiente de una recta La pendiente de una recta no vertical es un numero que mide que tan inclinada esta la recta y hacia donde esta inclinada. La recta de la figura por cada 3 unidades que avanza hacia la derecha, sube 4 unidades, 38

2 decimos que la pendiente de la recta es 4 3. Usualmente se denota con la letra m a la pendiente. Para encontrar la pendiente de una recta no vertical, tomamos dos puntos Px ( 1, y 1) y Qx (, y ) de la recta y calculamos el cociente: y y m = x x Si tomamos otro par de puntos P' y Q' en la misma recta, como se muestra en la figura, se obtienen dos triángulos rectángulos semejantes, y por lo tanto, la razón de sus catetos es la misma. Es decir, la pendiente de una recta puede determinarse usando dos puntos cualesquiera. 1 1 Si la recta es vertical, todos los puntos de la recta tienen la misma primera coordenada, entonces el denominador de la expresión anterior vale cero y por lo tanto, no puede evaluarse m, así que las rectas verticales no tienen pendiente. 0bservaciones: o La pendiente es positiva cuando la recta esta inclinada hacia la derecha. o La pendiente es cero cuando la recta es horizontal. o La pendiente es negativa cuando la recta esta inclinada hacia la izquierda. o Conforme el valor absoluto de la pendiente es mayor, la recta esta mas inclinada. o Una recta vertical no tiene pendiente. 39

3 .- Determinación de la ecuación de la recta. Ecuación de la recta conociendo la pendiente y un punto de ella. Como ya hemos visto antes las ecuaciones en dos variables representan lugares geométricos en el plano. Empezaremos nuestro estudio de lugares geométricos con las rectas, que son los más sencillos. Consideremos el problema de encontrar la ecuación de la recta no vertical que pasa por un punto Px ( 1, y1) y tiene pendiente m. Si Q(x, y) es cualquier otro punto de la recta, se debe satisfacer y y1 m = x x 1 puesto que Q P y la recta no es vertical, x x1, multiplicando por x x1, obtenemos: Ecuación 1: y y1 = m( x x1) Esta forma de la ecuación de la recta se llama ecuación punto-pendiente de la recta, ya que la obtuvimos conociendo la pendiente y un punto de ella, y recíprocamente si vemos una ecuación de este tipo, podemos saber por que punto pasa la recta y que pendiente tiene. 40

4 Ejemplos: 1. Encontrar la ecuación de la recta que pasa por (4, -1) y tiene pendiente -. Solución: m = - y ( x1, y 1) = (4,-1). Sustituyendo en la ecuación anterior, obtenemos: y ( 1) = ( )( x 4) y+ 1= ( x 4). Dar un punto y la pendiente de la recta y -5 = -7(x + 3). Solución: Comparando esta ecuación con la ecuación 1, tenemos que pasa por P( -3,5) y tiene pendiente m = Dibujar la recta cuya ecuación es 3x + y =. Escribimos la ecuación en la forma (1): 3x + y = y - = -3x y- = -3(x - 0). 41

5 La recta pasa por P(0,) y tiene pendiente -3. Localizamos el punto P. Pensamos al -3 como 3. Debemos buscar ahora un punto Qx ( 1, y 1) tal que: 1 y1 3 =. x A partir de P avanzamos horizontalmente 1 unidad (el denominador de la pendiente), bajamos 3 unidades (el numerador de la pendiente, bajamos porque es negativo) y marcamos el punto Q(1, -1). Podemos comprobar que: Ahora unimos los puntos P y Q con una recta. 1 3 = = Podemos escribir la ecuación de una recta de varias maneras, dependiendo de los datos que sepamos de ella., y recíprocamente, si tenemos la ecuación de una recta, podemos llevarla a distintas formas, y obtener de esas expresiones distintas informaciones acerca de la recta. Un caso importante es cuando conocemos la pendiente m y el punto donde corta al eje Y, que usualmente Se denota con la letra b y se llama ordenada al origen. Tomando el punto P(0, b) y la pendiente dada., sustituimos en la ecuación 1. y b= m( x 0), que también se puede escribir como: Ecuación : y = mx + b A esta ultima forma de la ecuación de la recta se le conoce como la ecuación pendiente-ordenada al origen de la recta. Ejemplos: 1. Encontrar la ecuación de la recta que tiene pendiente 3 y que corta al eje Y en el punto -1. Solución: Sustituimos m = 3 y b = -1 en la ecuación : y = 3x + (-1), obteniendo y = 3x -1. 4

6 . Dibujar la recta que tiene por ecuación Solución: y = x 5. 3 La recta corta al eje Y en -5, es decir, pasa por el punto P(0, -5) y tiene pendiente Marcamos el punto P(0, -5). Debemos buscar ahora otro punto Q(x 1, y 1 ) de manera que: y = 1 x1 ( 5), 3 0 m = =. 3 3 para ello, a partir de P avanzamos 3 unidades hacia la derecha (el denominador de la pendiente), hacia abajo (el numerador de la pendiente, bajamos porque la pendiente es negativa) y marcamos el punto Q(3, 7) y trazamos la recta que une a P y Q. Podemos comprobar que: 7 ( 5) = = Observa que si pensamos ala pendiente como m =, a partir de P, avanzamos 3 unidades hacia la 3 izquierda (porque el denominador es negativo) y unidades hacia arriba (porque el numerador es positivo). De esta manera llegamos al punto R( -3, -3) que pertenece a la misma recta. Comprobemos nuevamente 3 ( 5) = =

7 3. Dibujar la recta que tiene por ecuación 4x- -y = -3. Solución: Escribimos la ecuación en la forma pendiente-ordenada al origen. 4x -y = -3 -y = -4x 3 y = 4x La recta carta al eje Y en 3 y tiene pendiente m = 4 =. 1 Marcamos el punta P(0,3), a partir de ahí, avanzamos 1 unidad a la derecha y 4 hacia arriba para llegar al punto Q(1,7). Trazamos la recta que une a P y Q. 3.- Ecuación general de la recta. Nos gustaría tener una forma de la ecuación de la recta que cubriera tanto a las rectas verticales como a las que no lo son. Esta forma es la ecuación general de la recta y se obtiene pasando todos los términos de la ecuación a un miembro de manera que este quede igualado a cero. Ecuación general de la recta 3: Ax + By + C = 0. Recordemos que dos ecuaciones son equivalentes cuando obtenemos una a partir de la otra efectuando las operaciones siguientes: 1. Sumar la misma cantidad (que puede ser una expresión algebraica) de ambos lados de una ecuación.. Multiplicar ambos lados de una ecuación por la misma cantidad distinta de cero. Dos ecuaciones que son equivalentes representan el mismo lugar geométrico, en el caso de ecuaciones lineales en dos variables, representan la misma recta. Observa que la ecuación general de la recta no es única, ya que si multiplicamos la ecuación anterior por una constante λ distinta de cero, obtenemos la ecuación; λ Ax + λby + λc = 0 que es de la misma forma que la anterior. Así, las tres ecuaciones siguientes son equivalentes y todas están en la forma general; 3x -6y + 1 = 0, x -y + 4 = 0, -x + y -4 = 0 y representan a la recta cuya ecuación pendiente-ordenada al origen es: y = x + 44

8 y esta ecuación es equivalente a las anteriores, pues se obtiene a partir de cualquiera de las anteriores utilizando sucesivamente las dos operaciones enunciadas anteriormente. Ejemplos: 1. Escribir la ecuación y = 4x + 5 en la forma general. Solución: Pasando todos los términos de un lado de la ecuación obtenemos la ecuación en forma general: 4x -y + 5 = 0.. Escribir la ecuación general de la recta que pasa por P( -3,) y tiene pendiente 8. Solución: La ecuación punto-pendiente de la recta es y - = 8(x + 3), efectuando las operaciones y pasando todos los términos de un lado de la ecuación obtenemos la ecuación en la forma general: 8x -y + 6 = Ecuación simétrica de la recta. A partir de la ecuación general de la recta, Ax + By + C = 0, si C 0, podemos pasarlo al otro lado de la igualdad y dividir entre -C para obtener Ax By 1 C + C =, si además, A y B también son distintos de cero, podemos escribir la ecuación anterior como llamamos ahora a = C y b = A C y escribimos, B x y + = 1, C C A B x y Ecuación Simétrica 4: + = 1, a b esta forma de la ecuación de la recta se llama ecuación simétrica de la recta y tiene la ventaja de que podemos ver explícitamente en ella los puntos en los que la recta corta a los dos ejes, en efecto, si hacemos x = 0, obtenemos y = b, y con y = 0, obtenemos x = a, es decir, la recta corta al eje Y en y = b y 45

9 corta al eje X en x = a. Observa que una recta corta a ambos ejes en puntos distintos del origen si y sólo si en su ecuación en forma general, A 0, B 0 y C # 0. Ejemplos: 1. Encontrar la ecuación de la recta que corta a los ejes en (5,0) y (0, -3). Solución: Hacemos a = 5 Y b = -3 y sustituimos en la ecuación simétrica: x y + = 1, 5 3 efectuando las operaciones podemos transformarla a la forma general -3x + 5y + 15 = 0.. Encontrar los puntos de intersección de la recta 5x + 8y -6 = 0 con los ejes. Solución: Pasamos el termino independiente del otro lado de la ecuación y dividimos entre el 5x + 8y -6 = 0 5x + 8y = 6 así que la recta corta a los ejes en ( 6 5, 0) y (0, 3 4 ). 5x 8y + = x y + =

10 5.- Ecuación de la recta en la forma normal. La recta L queda determinada por la longitud de su perpendicular trazada desde el origen y el ángulo positivo W que la perpendicular forma con el eje de las x. La perpendicular OA a la recta L, representada por P, se considera siempre positiva por ser una distancia. EI ángulo W engendrado por OA varia de 0 W < 360. Si damos valores a p y W, la recta L trazada por A(x 1, y,) queda determinada por la ecuación de la recta en su forma normal que se obtiene en la forma siguiente: Observando la figura anterior, tenemos: x1 cos w = p Despejamos: x 1 = p cos w y1 sen w = p Despejamos: y 1 = p sen w Sustituimos los dos valores anteriores en A = (x 1, y 1 ), con lo cual obtenemos las coordenadas del punto A, que son: A = (p cos W, p sen w) Par su parte, la pendiente m de OA es: m =tan w Como la recta L es perpendicular a la recta GA, sus pendientes están relacionadas con; 1 m1 = m es decir, la recíproca con signo cambiado. Como ya sabemos que la pendiente de OA es tan w, la inversa de esta función con signo cambiado de la recta L perpendicular a GA es: -cot w de donde, 47

11 m =-cot w = cos w sin w Sustituyendo en la ecuación de la recta en su forma punto-pendiente los valores de x 1, y 1 y de m, queda: y y = m( x x ) 1 1 cos w y -p sin w = ( x p cos w ) sin w Quitamos el denominador sen w y desarrollamos: y sen w -p sen w = -cos w(x -p cos w} = -x cos w + p cos w Agrupando: x cos w + y sen w = p sen w + p cos w Factorizamos el segundo miembro: x cos w + y sen w = p (sen w + cos w) Aplicamos la identidad pitagórica: sen w + cos w = 1 sustituimos: x cos w + y sen w = p De donde x cos w + y sen w- p = 0 Forma normal de la ecuación de la recta. Relación en la que w y p son las constantes arbitrarias o parámetros, y el valor de sen w y cos w puede ser positivo o negativo, de acuerdo con el cuadrante en que este el lado terminal del ángulo w. Recordando el círculo geométrico, tenemos: 48

12 Ejemplo: 1. Determina la ecuación de la recta en su forma normal, con w = 60 y p = 3 y grafica. Solución: Sustituimos en: X cos w + y sen w p = 0 X cos 60 + y sen 60-3 = 0 Como cos 60 = 1 Sen 60 = 3 x 3 + y 3= 0 x+ 3y 6= Procedimiento para obtener la forma normal de una recta a partir de su forma general. La ecuación de la recta en su forma general Ax + By + C = 0, queremos representarla en su forma normal x cos w + y sen w p = 0. Con Ax + By + C = 0, siendo K una constante distinta de cero, procedemos como sigue: Dividimos cada termino de Ax + By + C = 0 entre K; así tenemos, Ax By C + + = 0 ; identificando esta expresión con la forma normal, obtenemos: K K K A cos w =, sen w = B K K Elevamos al cuadrado:, -p = C K y p = C K A cos w = Obtenemos K cos w = A K sen w = B Obtenemos sen w = K B K Sumamos miembro a miembro de la igualdad: 49

13 cos w + sen w = A K + B K ; como cos w + sen w = 1, sustituyendo nos queda; 1 = A B K. K + Quitamos el denominador y despejamos K = A + B ; tenemos: K =± A + B y sustituyendo el valor de K Ax By C + + = 0 ± A + B ± A + B ± A + B Fórmula para obtener la forma normal de una recta a partir de su forma general. Para escoger el signo que precederá al radical siguientes: ± A + B se tomaran en consideración los conceptos a. E1 signo que se anteponga al radical debe ser el signo contrario al que tiene el coeficiente de C. Ejemplo: En x + y -4 = 0, como C = -4, el signo que precederá al radical será el (+). b. Si sucede que: C = 0, A 0, B 0; en este caso el signo del radical será el que tiene B. Ejemplo: En x -y = 0, como B = -, el signo que precederá al radical será (-). c. Si sucede que: C = B = 0; en este caso el signo del radical será el de A. Ejemplo: En -7x = 0, como A = -7, el signo que precederá al radical será (-). Ejemplo: Determina la forma normal de la recta 1x -5y -5 = 0 así como los valores de p, W, y traza la gráfica. Sustituimos en: Ax By C + + = 0 ± A + B ± A + B ± A + B A = 1; B = -5; C = -5; = ± A + B = Como el coeficiente de C esta precedido del signo (-), tomamos el signo positivo del radical: 1x 5y 5 =

14 de donde, 1 cos w = ; sen w = 13 p = 4; p = 4 5 ; 13 1x 5y 4= Como el seno w es negativo y coseno de w es positivo, el ángulo w debe medirse en el cuarto cuadrante; su valor es 337 3'. Cos w = 1 13 =.930 Sen w = 5 = w = º 37' w = -º 37' w = 359º 60' - º 37' w = 337 3'. 7.- Ángulo de intersección entre dos rectas. Si la recta L1, con ecuación y = m I x + b1, se interseca con la recta L, con ecuación y = m x + b, se forman dos ángulos, el ángulo θ y su suplementario θ. Para obtener el valor del ángulo θ procedemos en la forma siguiente: Como "en todo triángulo, un ángulo exterior es igual a la suma de los dos ángulos interiores no adyacentes a el": α1+ β = α Despejando: β = α α1 Como β = θ par ser opuestas por el vértice queda, θ = α α1 51

15 el problema lo resolveremos usando la función tangente; en consecuencia, podemos indicar que; tanθ = tan( α α ). 1 En trigonometría se demostró que la tangente de la diferencia de dos ángulos es; como tanα = m, tanα = m 1 1 Sustituyendo queda: tanα tanα 1 α1 =. 1 + (tan α1)(tan α) tan( α ) m m1 tan( θ ) = 1 + ( m )( m ) 1 Fórmula para obtener el valor del ángulo θ. Para aplicar esta relación se debe tener sumo cuidado al determinar cual es la pendiente m 1 y cual m. Para ello se deben seguir las indicaciones siguientes: A. Si las dos pendientes son positivas, m es la mayor y m 1 la menor. B. Cuando una pendiente es positiva y la otra negativa, m es la pendiente negativa y m 1 la positiva. C. Cuando las dos pendientes son negativas, m tiene mayor valor absoluto. Observa: m es la pendiente de la recta que forma el ángulo mayor con el sentido positivo del eje de las x. CONCLUSION: 1. Expresamos las ecuaciones de las rectas en su forma común.. Trazamos las gráficas. 3. Determinamos cual es m 1 y cual m. Sustituimos en la fórmula. 4. Obtenemos el valor del ángulo de la función tangente en las tablas de valores naturales de las funciones trigonométricas. 5

16 Ejemplo: Determina el valor del ángulo que forman las rectas 3x + y -6 = 0 con x -3y -4 = 0 (ángulo menor). Solución: Pendiente m de la recta 3x + y 6 = 0: y = -3x + 6 de donde m = -3 Pendiente m de la recta x 3y 4 = 0: -3y = -x y = x y = x 3 3 de donde m = 3 Determinamos cual es m 1 y cual m. Como una es positiva y la otra negativa, m es la pendiente negativa y m 1 la positiva; en consecuencia: m = -3 y m 1 = 3. Sustituimos en la fórmula: m m1 tan( θ ) = 1 + ( m )( m ) tanθ = = = = = = ( ) ( ) θ = Ejemplo: Si A(1, 6), C(4, -), B(7,4), calcula el valor del ángulo C. Recordamos que en geometría, para designar un ángulo, entre otros procedimientos, la letra que esta al centro de las otras dos, en este caso la C, es la correspondiente al vértice. 53

17 Solución: Pendiente de la recta (1, 6), (4, -): 6 ( ) 6+ 8 m = = = Pendiente de la recta (4, -), (7, 4): (4) 6 m = = = 4 (7) 3 de donde m = 8 y m 1 =. 3 Sustituyendo en la formula: tan C = 3 = 3 = 3 = ( 14) 3 ( 13) =1.07 C = Familia de rectas. La ecuación de una recta, como ya lo estudiamos, queda determinada por dos condiciones independientes: dos puntos, la pendiente y un punto, la pendiente y su intersección con el eje, y la intersección de la recta con los dos ejes coordenados. En consecuencia aceptamos que una recta que satisface una sola condición, no es una recta única, ya que hay infinidad de rectas que cumplen la misma condición. Todas las rectas que satisfacen una condición geométrica previamente establecida forman una familia o haz de rectas. En la ecuación de la recta y = mx + b, las constantes m y b son los parámetros. Si asignamos un valor particular a uno de los parámetros, se obtiene la ecuación de una familia de rectas del otro parámetro que identificaremos como K (K debe ser un número real). Ejemplo: Si m = 3, resulta y = 3x + K, que es la familia de todas las rectas paralelas cuya pendiente m es igual a 3. En forma semejante, si en la ecuación y = mx + b ponemos b =, resulta y = Kx +, que es la ecuación de la familia o haz de rectas cuya intersección con el eje y es la misma, en este ejemplo. 54

18 Observa que hay una recta x = 0 (el eje y) que no esta incluida en y = Kx +, puesto que se necesitaría que K =, lo cual no esta permitido puesto que indicamos que K debe ser un numero real. Sol. y = Kx +, con la recta x =, que también forma parte de la familia. A veces, una familia de rectas tiene excepciones, que deben indicarse para hacer las notar en la solución, como en el ejemplo que se acaba de analizar. Ejemplo: Determina la ecuación de la familia de rectas que pasan a través de (1, ). Bosqueja la gráfica. Solución: Sol. y - = K (x -1), con la recta x = 1. Utilizamos la ecuación de la recta que pasa por un punto y tiene una pendiente dada: y y1 = m( x x1) Esta familia se representa analíticamente con la ecuación: y = m( x 1) Como a m se le puede asignar cualquier valor dentro de los números reales, queda: y = K( x 1) m no está definida para una recta paralela al eje y; por ello, la ecuación anterior no incluye a la recta x = 1, que también pasa por el punto (1, ) y, por consiguiente, pertenece a la familia. 55

19 Ejemplo: Determina la ecuación de la familia de las rectas que son paralelas a 3x + 4y + = 0. Haz la gráfica. 3 Solución: Sol. y = x K 4 Utilizamos la ecuación de la recta pendiente-intersección y = mx + b Quitamos el denominador 4 y queda: 3x + 4y + K = 0 Como a b se le puede asignar cualquier valor dentro de los números reales, queda: y = mx + K 3x + 4y + = 0 4y = -3x - 3 y = x y = x 4 de donde la pendiente de cada miembro 3 de la familia debe ser: y el valor de 4 K arbitrario. De esta forma la familia se representa con: 3 y = x K o en la forma general 3x + 4y + K = O. 4 56

20 9.- Aplicaciones de la forma normal de la ecuación de la recta. Distancia de un punto a una recta. Consideremos una recta l cualquiera y un punto P( Xl, YI) que no este en la recta. La distancia de la recta l a P se define como la distancia de P al punto de l que esté más cercano a él. Construyamos una recta k, paralela a l que pase por P y la recta j, perpendicular a l que pasa por el origen. La recta j corta a l y a k en Q y R respectivamente. Observa en la figura que la distancia de P a l es la misma que la distancia de Q a R. Para encontrar esta distancia debemos encontrar las coordenadas de Q y de R y aplicar la fórmula de la distancia entre dos puntos. Para encontrar las coordenadas de Q y R, escribimos las ecuaciones de l, k y j: l : Ax + By + C = 0 k : Ax + By + C' = 0 j : Bx -Ay = 0 En la ecuación de k aparece una constante C' que determinaremos posteriormente. Resolviendo simultáneamente las ecuaciones de l y j, obtenemos las coordenadas de Q: AC BC Q, A + B A + B Resolviendo simultáneamente las ecuaciones de k y j, obtenemos las coordenadas de R: AC BC R, A + B A + B Calculamos ahora el cuadrado de la distancia de R a Q: d ( ) ( ) ( ) = AC AC + BC BC A + B A + B ( ), 57

21 Simplificando la expresión anterior, obtenemos: extrayendo raíz cuadrada, encontramos: d = ( C C ) A + B, ( C C ) d = ± A + B. Para determinar C, usamos el hecho de que Px ( 1, y1) pertenece a K, así que ( x1, y 1) satisface la ecuación de k: de donde, Ax1+ By1+ C = 0 C = Ax By 1 1. Sustituyendo el valor de C en la formula de la distancia, obtenemos; Ax1+ By1+ C d =. ± A + B Como la distancia debe ser un número no negativo, el signo de la raíz se escoge para que d sea positiva. Ejemplo: 1. Determinar la distancia de la recta 5x+ 4y+ 15= 0 al punto A (, 4 ). Al graficar los datos dados, tenemos: La distancia pedida se considera absoluta, es decir, no dirigida. Al sustituir los datos en la ecuación para distancia absoluta, obtenemos: 58

22 d = d = Ax1+ By1+ C. A + B 5x+ 4y+ 15. ( 5) + ( 4) Y al sustituir las coordenadas del punto A(, 4), tenemos: 5 ( ) + 44 ( ) + 15 d = d = d = 41 La distancia de la recta 5x+ 4y+ 15= 0 al punto A (, 4 ) es: d = Distancia entre rectas paralelas Para encontrar la distancia entre dos rectas paralelas, tomamos un punto en una de ellas y encontramos la distancia de ahí a la otra recta. Ejemplo: Encontrar la distancia entre las rectas 6x + y - 3 = 0 y 6x + y + 5 = 0. 59

23 Solución: Las rectas son paralelas, pues mediante un calculo directo se ve que la pendiente de ambas es m = -3. Elegimos un punto cualquiera en la primera recta. Para ello, tomamos cualquier valor de x, por ejemplo x = 1, lo sustituimos en la ecuación y encontramos el valor de y correspondiente: Así que el punto recta: 6 (1) + y 3 = 0 3 y =. 3 p(1, ) pertenece ala primera recta. Calculamos ahora la distancia de P a la segunda así que la distancia entre las rectas es: 3 61 () d = = = =,

24 10.- Ejercicios de repaso: I. Halla la ecuación de la recta que pasa por el punto dado y tiene la pendiente que se indica. a) A(5, 9) y m = 3. II. b) B(-6, 5) y m = 3 Encuentra la ecuación de la recta que pasa por el punto dado y tiene el ángulo de inclinación que se indica. a) A(7, 4) y θ = 60 b) P(, -7) y θ = 135 III. Halla la ecuación de la recta que tiene la pendiente dada y su intersección con el eje y se indica. 3 a) m =, intersección (-3) 5 b) m = -5, intersección () IV. Encuentra la ecuación de la recta que pasa por los puntos dados. a) A(, 4) y B(-7, 5) b) P(-3, -) y Q(5, 3) V. Halla la ecuación de la recta en la forma normal, para los siguientes valores de p y w; trazar la gráfica correspondiente. a) p = 6 y w = 4 π 3 b) p = 7 y w = 45 VI. Determina la distancia de las siguientes rectas dadas al punto indicado. 1. 4x -5y -13 = 0 al punto A (7, -1).. x + 5y + 10 = 0 al punto C (1, 3). 3. 3x -4y + = 0 al punto P (5, -). VII. Determina los ángulos interiores de los siguientes triángulos cuyos vértices son los puntos que a continuación se indican; comprueba los resultados: a) A(-, 0), B(5, -5) y C(3, 7) b) K(, 5), L(-3, -) y M(4, ) 61

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS

UNIDAD IV DISTANCIA ENTRE DOS PUNTOS UNIDAD IV DISTANCIA ENTRE DOS PUNTOS Dados los puntos: P(x1, y1) y Q(x2, y2), del plano, hallemos la distancia entre P y Q. Sin pérdida de generalidad, tomemos los puntos P y Q, en el primer cuadrante

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1) Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente

Más detalles

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia.

Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4 Sistema de coordenadas cartesianas. Ecuación de la recta y de la circunferencia. Clase 4... 1 1. Sistema de Coordenadas Cartesianas... 2 1.a. Punto medio... 3 1.b. Distancia entre dos puntos...

Más detalles

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO

INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO INGENIERO EN COMPUTACION TEMA: RECTA EN EL PLANO ELABORÓ: M. EN C. LUIS ENRIQUE KU MOO FECHA: SEPTIEMBRE DE 2016 UNIDAD DE APRENDIZAJE

Más detalles

LECCIÓN Nº 02 LA LINEA RECTA

LECCIÓN Nº 02 LA LINEA RECTA LECCIÓN Nº 02 LA LINEA RECTA Definición En estudios anteriores de geometría plata se menciona que una recta es un conjunto de puntos del plano. En el estudio del álgebra se menciona que un conjunto tal

Más detalles

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta

UNIDAD XVII LA LINEA RECTA. Modulo 4 Ecuación de la recta UNIDAD XVII LA LINEA RECTA Modulo 4 Ecuación de la recta OBJETIVO Encontrar y determinar la ecuación de una recta, conocidos los puntos de intersección con los ejes coordenados. 4. 1. LINEA RECTA. Lugar

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con a

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

Bloque 2. Geometría. 3. La recta. 1. Definición de recta

Bloque 2. Geometría. 3. La recta. 1. Definición de recta Bloque 2. Geometría 3. La recta 1. Definición de recta Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares, cuyo corte es el punto 0 de

Más detalles

ECUACIONES DE RECTAS Y PLANOS

ECUACIONES DE RECTAS Y PLANOS ECUACIONES DE RECTAS Y PLANOS Una recta en el plano está determinada cuando se dan dos puntos cualesquiera de la recta, o un punto de la recta y su dirección (su pendiente o ángulo de inclinación). La

Más detalles

m y b x 0 y b y b mx Esto conduce a la siguiente forma de la ecuación de una recta con la ordenada al origen.

m y b x 0 y b y b mx Esto conduce a la siguiente forma de la ecuación de una recta con la ordenada al origen. COLEGIO HERNANDO DURAN DUSSAN GUIA NIVELACION GRADO 0 Y 02 SEGUNDO PERIODO Leer el documento y resolver los ejercicios en hojas tipo examen (excelente presentación) Funciones lineales A continuación se

Más detalles

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l.

UNIDAD 3 LA RECTA Y SU ECUACIÓN CARTESIANA. Dada la ecuación de dos rectas. Determinará si se cortan, si son paralelas o perpendiculares. Y l. UNIDAD 3 LA RECTA SU ECUACIÓN CARTESIANA OBJETIVOS ESPECÍFICOS. Al término de la unidad, el alumno: Conocerá las distintas formas de representación de la recta e identificará cuál de ellas conviene usar.

Más detalles

Apuntes de Funciones

Apuntes de Funciones Apuntes de Funciones El concepto de función es un elemento fundamental dentro del análisis matemático, así como en sus aplicaciones. Esta idea se introdujo con el objetivo de matematizar la transformación

Más detalles

VECTORES : Las Cantidades Vectoriales cantidades escalares

VECTORES : Las Cantidades Vectoriales cantidades escalares VECTORES En física hay dos tipos de cantidades: Las Cantidades Vectoriales son aquellas que tiene tanto magnitud como dirección y sentido sobre la dirección), mientras que las cantidades escalares son

Más detalles

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

UNIDAD III TRIGONOMETRIA

UNIDAD III TRIGONOMETRIA UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos

Más detalles

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante. ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS

Más detalles

5 Rectas y planos en el espacio

5 Rectas y planos en el espacio 5 Rectas planos en el espacio A B AB v A cada par de puntos A B del plano o del espacio tridimensional, hemos asociado en un vector AB como se muestra en la figura contigua; de manera que si conocemos

Más detalles

Secciones Cónicas. 0.1 Parábolas

Secciones Cónicas. 0.1 Parábolas Secciones Cónicas 0.1 Parábolas Las secciones cónicas, también llamadas cónicas, se obtienen cortando un cono circular recto doble con un plano. Al cambiar la posición del plano se tiene un círculo, una

Más detalles

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS

UNIDAD 3 : ELEMENTOS GEOMÉTRICOS UNIDAD 3 : ELEMENTOS GEOMÉTRICOS 3.A.1 Características de un lugar geométrico 3.A ELEMENTOS DE GEOMETRÍA PLANA Se denomina lugar geométrico a todo conjunto de puntos que cumplen una misma propiedad o que

Más detalles

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA

PROBLEMAS RESUELTOS DE LA ECUACIÓN DE LA RECTA PROLEMS RESUELTOS DE L ECUCIÓN DE L RECT 1) Hallar la pendiente el ángulo de inclinación de la recta que pasa por los puntos (-, ) (7, -) 1 m 1 m 7 1 comom tan entonces 1 1 tan 1,4 ) Los segmentos que

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes)

1. Coordenadas en el plano. (Sistema de coordenadas, ejes de coordenadas, abcisas, ordenadas, cuadrantes) Bloque 7. VECTORES. ECUACIONES DE LA RECTA. (En el libro Tema 9, página 159) 1. Coordenadas en el plano. 2. Definiciones: vector libre, módulo, dirección, sentido, vectores equipolentes, vector fijo, coordenadas

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles

Tema 6 La recta Índice

Tema 6 La recta Índice Tema 6 La recta Índice 1. Ecuación vectorial de la recta... 2 2. Ecuaciones paramétricas de la recta... 2 3. Ecuación continua de la recta... 2 4. Ecuación general de la recta... 3 5. Ecuación en forma

Más detalles

1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2.

1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2. Ejercicios resueltos sobre parabolas: 1. Usando la definición, hallar la ecuación de la parábola que tiene su foco en F(2,0) y su dirección DD es la recta de ecuación x = -2. Trácese la gráfica con los

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles

Lugares geométricos y cónicas

Lugares geométricos y cónicas Lugares geométricos y cónicas E S Q U E M A D E L A U N I D A D. Lugar geométrico página 6.. Definición página 6. Circunferencia página 6.. Ecuación página 6.. Casos particulares página 67. Elipse página

Más detalles

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada.

LA RECTA. Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. LA RECTA Una recta r es el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. En geometría euclidiana, la recta o la línea recta, se extiende en una misma dirección, existe

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

2.2 Rectas en el plano

2.2 Rectas en el plano 2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto

Más detalles

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1

UCV FACULTAD DE INGENIERIA CALCULO I 16/04/2010. Solución al primer examen parcial. x - x 3 1 UCV FACULTAD DE INGENIERIA CALCULO I 16/04/010 Solución al primer eamen parcial 1. Encuentre el conjunto de todos los números reales que satisfacen el sistema de inecuaciones - 3 4 4 0 1 1 1 Solución:

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano).

GEOMETRÍA ANALÍTICA. La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). GEOMETRÍA ANALÍTICA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). LA RECTA.- La recta es un conjunto infinito de puntos alineados en

Más detalles

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.

II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan. II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre

Más detalles

es el lugar geométrico de los puntos p tales que ; R (1)

es el lugar geométrico de los puntos p tales que ; R (1) LA RECTA DEL PLANO ECUACIÓN VECTORIAL Y ECUACIONES PARAMÉTRICAS La recta en el plano como lugar geométrico Dados un punto p un vector no nulo u, la recta T paralela a u que pasa por p es el lugar geométrico

Más detalles

UNIDAD 5. La Elipse. Aprendiendo sobre la elipse. Juan Adolfo Álvarez Martínez Autor

UNIDAD 5. La Elipse. Aprendiendo sobre la elipse. Juan Adolfo Álvarez Martínez Autor UNIDAD 5. La Elipse Aprendiendo sobre la elipse Juan Adolfo Álvarez Martínez Autor LA ELIPSE DEFINICIÓN Se llama elipse al lugar geométrico de los puntos tales que la suma de sus distancias a dos puntos

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en

A pesar de la importancia de las cónicas como secciones de una superficie cónica, para estudiar los elementos y propiedades de cada una de ellas en SECCIONES CÓNICAS Las secciones cónicas se pueden definir como lugares geométricos en el plano, sin embargo la definición clásica de las cónicas, que se debe a Apolonio de Perga, se hizo mediante un procedimiento

Más detalles

Lección 51. Funciones III. Funciones lineales

Lección 51. Funciones III. Funciones lineales Lección 51 Funciones III Funciones lineales Una función lineal es una función de la forma f (x) = mx + b, donde m y b son constantes. Se llama lineal porque su gráfica es una línea recta, en el plano R

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS

EJERCICIOS Y PROBLEMAS RESUELTOS Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer

Más detalles

El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados.

El plano cartesiano tiene como finalidad describir la posición de puntos, los cuales se representan por sus coordenadas o pares ordenados. GEOMETRÍA ANALÍTICA: EL PLANO CARTESIANO: El plano cartesiano está formado por dos rectas numéricas perpendiculares, una horizontal y otra vertical que se cortan en un punto. La recta horizontal es llamada

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u )

Definición 1.28 (Determinación de una recta) Una recta en el plano viene determinada por un punto y un vector libre, no nulo, r (P; u ) 1.3. La recta en el plano afín La recta está formada por puntos del plano en una dirección dada. La ecuación de la recta es la condición necesaria y suficiente que deben cumplir las coordenadas de un punto

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar!

Introducción. Esperamos que el presente texto contenga el material básico para el desarrollo de este curso, bienvenido y... A estudiar! Introducción La Geometría Analítica, es fundamental para el estudio y desarrollo de nuevos materiales que nos facilitan la vida diaria, razón por la cual esta asignatura siempre influye en la vida de todo

Más detalles

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada:

GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada: GEOMETRÍA EN EL PLANO. La ecuación de la recta que pasa por el punto A(4, 6) y es perpendicular a la recta 4x y + = 0 es: A) x + y + 8 = 0 B) 6x 4y 48 = 0 C) x + y = 0 (Convocatoria junio 00. Examen tipo

Más detalles

Trigonometría. M. en I. Gerardo Avilés Rosas

Trigonometría. M. en I. Gerardo Avilés Rosas Trigonometría M. en I. Gerardo Avilés Rosas Agosto de 06 Tema Trigonometría Objetivo: El alumno reforzará los conceptos de trigonometría para lograr una mejor comprensión del álgebra. Contenido. Definición

Más detalles

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos

MATEMÁTICAS 1º BACH. C. N. Y S. 25 de enero de 2010 Geometría y Logaritmos MATEMÁTICAS 1º BACH. C. N. Y S. 5 de enero de 010 Geometría y Logaritmos x yz 1) Tomar logaritmos, y desarrollar, en la siguiente expresión: A 4 ab log x log b 4log a log y ) Quitar logaritmos: log A )

Más detalles

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253

En la notación C(3) se indica el valor de la cuenta para 3 kilowatts-hora: C(3) = 60 (3) = 1.253 Eje temático: Álgebra y funciones Contenidos: Operatoria con expresiones algebraicas Nivel: 2 Medio Funciones 1. Funciones En la vida diaria encontramos situaciones en las que aparecen valores que varían

Más detalles

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz

Lugar Geométrico. Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz 1 Lugar Geométrico Se llama lugar geométrico a un conjunto de puntos que cumplen una determinada propiedad. Mediatriz Mediatriz de un segmento es el lugar geométrico de los puntos del plano que equidistan

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Utiliza correctamente el lenguaje algebraico, geométrico y trigonométrico.. Identifica la simbología propia de la geometría y la trigonometría. Saberes

Más detalles

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera

TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO. y una base de vectores de V cualquiera TEMA 12.- RECTAS Y PLANOS EN EL ESPACIO 1.- PUNTOS Y VECTORES. ESPACIO AFÍN y una base de vectores de V cualquiera {,, B = u1 u2 u} A cada punto del espacio, P, le asociamos el vector OP, que tendrá unas

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

1. Ángulos orientados

1. Ángulos orientados NOCIONES ELEMENTALES DE TRIGONOMETRIA En lo que sigue se repasan conceptos elementales de trigonometría, que serán utilizados en temas posteriores de la asignatura.. Ángulos orientados Un ángulo orientado

Más detalles

Trigonometría. 1. Ángulos:

Trigonometría. 1. Ángulos: Trigonometría. Ángulos: - Ángulos en posición estándar: se ubican en un sistema de coordenadas XY. El vértice será el origen (0,0) y el lado inicial coincide con el eje X positivo. - Ángulos positivos:

Más detalles

CARÁCTER DE LA GEOMETRÍA ANALÍTICA

CARÁCTER DE LA GEOMETRÍA ANALÍTICA CARÁCTER DE LA GEOMETRÍA ANALÍTICA La Geometría Elemental, conocida a por el estudiante, se denomina también Geometría PURA para distinguirla del presente estudio. Recordaremos que por medio de un sistema

Más detalles

Resolución Guía de Trabajo. Geometría Analítica.

Resolución Guía de Trabajo. Geometría Analítica. Universidad de la Frontera Facultad de Ingeniería TEMUCO, Agosto 8 de 01 Departamento de Matemática y Estadística Resolución Guía de Trabajo. Geometría Analítica. Fundamentos de Matemáticas. Profesores:

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: GEOMETRÍA ANALITICA GUÍA DE ESTUDIO PARA LA ÚLTIMA OPORTUNIDAD DE ACREDITAR LA MATERÍA Geometría analítica 1.- Ecuación de la recta 2.- Cónicas 3.-Ecuación de la parábola UNIDAD II: CONICAS (CIRCUNFERENCIA Y PARABOLAS) Una superficie cónica de revolución está engendrada por la rotación de

Más detalles

Elementos de geometría analítica

Elementos de geometría analítica UNIDAD 7: APLIQUEMOS ELEMENTOS DE GEOMETRIA ANALITICA. Introducción Elementos de geometría analítica En esta unidad última nos ocuparemos del estudio de los conceptos más fundamentales de la geometría

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

Geometría analítica del plano

Geometría analítica del plano 8 Geometría analítica del plano Objetivos En esta quincena aprenderás a: Reconocer los elementos de un vector identificando cuando dos vectores son equipolentes. Hacer operaciones con vectores libres tanto

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ SECCIÓN DE MATEMÁTICA Prof.

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ SECCIÓN DE MATEMÁTICA Prof. U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ SECCIÓN DE MATEMÁTICA Prof. Esther Morales INTRODUCCIÓN: La geometría analítica combina el Álgebra

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN

ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN ECUACIÓN ORDINARIA DE LA ELIPSE CON CENTRO FUERA DEL ORIGEN Sugerencias para quien imparte el curso Consideramos conveniente realizar todo el proceso de obtención de la ecuación ordinaria de la elipse

Más detalles

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO

PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta

Más detalles

Ecuación Vectorial de la Recta

Ecuación Vectorial de la Recta Ecuación Vectorial de la Recta Definimos una recta r como el conjunto de los puntos del plano, alineados con un punto P y con una dirección dada. Si P(x 1, y 1 ) es un punto de la recta r, el vector tiene

Más detalles

LUGARES GEOMÉTRICOS. CÓNICAS

LUGARES GEOMÉTRICOS. CÓNICAS 9 LUGARES GEOMÉTRICOS. CÓNICAS Página PARA EMPEZAR, RELEXIONA Y RESUELVE Cónicas abiertas: parábolas e hipérbolas Completa la siguiente tabla, en la que α es el ángulo que forman las generatrices con el

Más detalles

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz.

La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. La Parábola La parábola es el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado foco y de una recta fija llamada directriz. Características geométricas. a) Vértice. Es el

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 22 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 3, Opción A Reserva, Ejercicio

Más detalles

Función lineal Ecuación de la recta

Función lineal Ecuación de la recta Función lineal Ecuación de la recta Función constante Una función constante toma siempre el mismo valor. Su fórmula tiene la forma f()=c donde c es un número dado. El valor de f() en este caso no depende

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido

Dado un vector fijo, existen infinitos vectores fijos que tienen igual módulo, dirección y sentido 1. VECTORES. DEFINICIONES. OPERACIONES Un vector fijo AB queda determinado por dos puntos, el origen A y el extremo B Se llama módulo del vector AB a la distancia que hay entre A y B. Se designa por AB

Más detalles

OPERACIONES GEOMÉTRICAS CON VECTORES

OPERACIONES GEOMÉTRICAS CON VECTORES GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.ch Profesor: David Valenzuela Z Magnitudes escalares y vectoriales La gran variedad de cosas medibles (magnitudes) se pueden clasificar en

Más detalles

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL

REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se

Más detalles

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados

TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

El teorema de Pitágoras

El teorema de Pitágoras El teorema de Pitágoras Son muchas las situaciones de la vida real en las que nos encontramos ante figuras geométricas. Saber identificarlas, nombrarlas y realizar cálculos con sus componentes son objetivos

Más detalles

Tarea 1. César Hernández Aguayo

Tarea 1. César Hernández Aguayo Solución: Tarea 1. César Hernández Aguayo 1. Graficar y explicar cómo surge la gráfica. f(x) = sen 1 (x). La función seno inverso, denotada por sen 1, está definida por f = sen 1 x si y sólo si x = sen

Más detalles

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial

GUÍA DE APRENDIZAJE Introducción al álgebra vectorial Liceo Juan XXIII V.A Departamento de ciencias Física Prof. David Valenzuela GUÍA DE APRENDIZAJE Introducción al álgebra vectorial www.fisic.jimdo.com Tercero medio diferenciado Magnitudes escalares y vectoriales

Más detalles

Docente Matemáticas. Marzo 11 de 2013

Docente Matemáticas. Marzo 11 de 2013 Geometría Analítica Ana María Beltrán Docente Matemáticas Marzo 11 de 2013 1 Geometría Analítica Definición 1. Un lugar geométrico es el conjunto de todos los puntos del plano que tienen una característica

Más detalles

G E O M E T R Í A M É T R I C A P L A N A

G E O M E T R Í A M É T R I C A P L A N A G E O M E T R Í A M É T R I C A P L A N A. PUNTO MEDIO D E UN SEGME NTO. S IMÉTRICO DE U N PUNTO Sean A y a,a b B,b las coordenadas de dos puntos del plano que determinan el segmento AB. Las coordenadas

Más detalles

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo

Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo 44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +

Más detalles

UNIDAD 2. La Recta. Características de la Recta

UNIDAD 2. La Recta. Características de la Recta UNIDAD 2. La Recta Características de la Recta Juan Adolfo Álvarez Martínez Autor 1 CONCEPTOS BASICOS. Como ya has podido observar, existen muchos ejemplos donde la línea recta es de utilidad, y uno de

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0

1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0 Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a

Más detalles

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano.

1. Si están situados en rectas paralelas: la recta que une los orígenes, deja sus extremos en un mismo semiplano. CAPÍTULO 1 El plano vectorial Consideremos P como el plano intuitivo de puntos: A,B,C... 1.1. El espacio vectorial de los vectores Definición 1.1 Vectores fijos Dado dos puntos cualesquiera A e B del espacio

Más detalles

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones

DESIGUALDADES. AXIOMA 1.- Tricotomía de los números reales. Si a y b son números reales entonces se cumple una y solo una de las relaciones DESIGUALDADES 4.1.- AXIOMAS DE ORDEN. Cualquier conjunto o Campo de números que satisface los siguientes 4 Axiomas se dice que es un conjunto de números ORDENADO. El conjunto o Campo de los números reales

Más detalles

Se define la derivada de una función f(x) en un punto "a" como el resultado, del siguiente límite:

Se define la derivada de una función f(x) en un punto a como el resultado, del siguiente límite: TEMA: DERIVADAS. Derivada de una función en un punto Se define la derivada de una función f() en un punto "a" como el resultado, del siguiente límite: f ( a + ) f ( a) f '( a) lim Si el límite eiste es

Más detalles