Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso cero Matemáticas en informática : Sistemas de ecuaciones lineales"

Transcripción

1 lineales -Jordan Curso cero Matemáticas en informática : de ecuaciones lineales Septiembre 2005

2 lineales -Jordan

3 lineales -Jordan Se llama ecuación lineal con n incógnitas a a x + a 2 x 2 + a 3 x a n x n = b donde a i R son los coeficientes y b R el término independiente. Un sistema de m ecuaciones lineales con n incógnitas es a x + a 2 x 2 + a 3 x a n x n = b a 2 x + a 22 x 2 + a 23 x a 2n x n = b a m x + a m2 x 2 + a m3 x a mn x n = b m Equivalentemente, el sistema se puede escribir como a a 2 a 3 a n x b a 2 a 22 a 23 a 2n x = b 2. a m a m2 a m3 a mn x n b m y vamos a trabajar con él en esta forma Ax = b.

4 lineales -Jordan Un sistema es homogéneo cuando todos los b i son 0. Se llama sistema incompatible al que no tiene solución. En caso contario, se dice compatible: Si la solución es única, compatible determinado. Si no, tiene infinitas soluciones, y se llama compatible indeterminado. Todo sistema homogéneo es compatible, pues siempre admite la solución x i = 0, i. Dos sistemas son equivalentes si admiten las mismas soluciones. Las operaciones elementales en la matriz ampliada (A b) del sistema dan lugar a sistemas equivalentes. Ejemplo: ( x y = 5 4x + 3y = 5 ) ( F 2 2F x 2y = 0 4x + 3y = 5 ) 4x 2y = 0 5y = 5

5 lineales -Jordan

6 lineales -Jordan Método de : (m y n cualesquiera) Operaciones elementales en la matriz ampliada para obtener un sistema equivalente triangular superior A F 2 2F F 3 + F A F F 2 A 8 < : 2x + y z = 6 4x + 5y 5z = 3 2x + 6y 2z = 7 8 < : 2x + y z = 6 3y 3z = 9 4z = 20 Si el sistema es incompatible, obtendremos una matriz de la forma Si el sistema es compatible indeterminado, obtendremos una matriz de la forma (parámetro z) A 2x + y = 6 + z 3y = 9 + 3z x = 9 2 y = 3 + z 9 = ; 9 = ;

7 lineales -Jordan Método de -Jordan: (m y n cualesquiera) Operaciones elementales en la matriz ampliada para obtener un sistema equivalente diagonal A F 2 2F F 3 + F A F F 2 A F F 3 F + 4 F 3 A F 3 F 2 A 8 < No siempre es posible. Por ejemplo para : 2x + y z = 6 4x + 5y 5z = 3 2x + 6y 2z = 7 8 < : 2x + y z = 6 3y 3z = 9 4z = 20 8 < : 2x = 9 3y = 6 4z = 20 9 = ; 9 = ; 9 = ;

8 lineales -Jordan Método de la inversa: (m = n) Para resolver Ax = b, calcular A y obtener x = A b. x 2y + 4z = Para resolver y 2z = 2 2x + 4y 7z = se hace 0 2 = Así x y z = = Recordar que una de las formas de calcular la inversa usaba -Jordan. Observación: Sólo funciona si A tiene inversa (es decir, si det A 0).

9 lineales -Jordan Método de : (m = n) x = Utilizando determinantes, x i = B i det A para i a a 2 b a n B i = a 2 a 22 b 2 a 2n a n a n2 b n a nn { } 5x + 2y = Para resolver se hace x + y = 2 5 = = y = 5 2 = 6 3 = 2

10 lineales -Jordan 2 3 : Resolver, por todos los métodos posibles, el sistema x + y z + t = 2 2x + 3y 4z + 5t = 5 3y + z + 2t = 0 x 4y 3z + 4t = 9 Resolver, por todos los métodos posibles, el sistema x + y z + t = 4 2x 3y 4z + 5t = 0 5y + 5z + 0t = 25 x 4y 3z + 4t = 4 Resolver, por todos los métodos posibles, el sistema x 3y + 4z + 2t = 5 x + 2y 2z + 4t = 3 3x + 4y + 2z + 3t = 5x + 5y + 8z + 8t = 0

11 lineales -Jordan

12 lineales -Jordan En la sección anterior vimos que el método de permite decidir si un sistema es compatible o no. El Teorema de afirma: Ax = b compatible rango(a) = rango(a b) De hecho, para n incógnitas: rango(a) rango(a b) Sistema incompatible (S.I.) rango(a) = rango(a b) = r Sistema compatible r = n Determinado (S.C.D.) r < n Indeterminado (S.C.I.) con n r parámetros

13 lineales -Jordan x + 2y + 3z = Discutir el sistema x 2y + 5z = 0 x + 0y 9z = 2 3 rango 2 5 = S.I. 2 3 rango = x + 2y + 3z = Discutir, en función de λ, x 2y + 5z = 0 x + 0y 9z = λ rg rg = λ = { 3 si λ 2 2 si λ = 2 S.I. si λ 2, S.C.I. si λ = 2

14 lineales -Jordan (a) : Aplicar para discutir los siguientes sistemas. En caso de ser compatibles, resolverlos. (b) (c) x + y + z = 4 2x y + z = 5 3x + 2y + 5z = 3 3x 2z = 7 2x + y + z = 5 2x + y z = 5 3x + 2y + z = x + y + 2z = 0 2x y + z + 2t = 5 x + y + z + t = 4 3x + y + z t = 6 6x + y + 3z + 2t = 5

15 lineales -Jordan 2 : Discutir los siguientes sistemas en función del valor del parámetro a: 2x ay + z = (a) 4x + (3 a)y + 2z = 4 + a (b) ax + ay + (a + )z = ax + y + z = x + ay + z = x + y + az = x + y + z = a

16 lineales -Jordan Antes de seguir, intenta resolver los ejercicios propuestos. Una vez que los hayas intentado, podrás comprobar tus resultados con las soluciones que aparecen a continuación.

17 lineales -Jordan 2 Soluciones resolución: Por cualquiera de los métodos, {x = 4, y =, z = 5, t = 4} Sistema compatible indeterminado. Por, {x = + 25t, y = 2 7t, z = + 9t, t = t} 3 Sistema incompatible.

18 lineales -Jordan Soluciones : (a) Sistema compatible determinado, con solución {x =, y = 5, z = 2} (b) Sistema incompatible. (c) Sistema compatible indeterminado con un grado de libertad. {x = + t, y = 5 + t, z = 2 3t, t = t}

19 lineales Soluciones : -Jordan 2 (a) det A = a 2 + 5a + 6 Para a 2, a 3, sistema compatible determinado (porque det A 0 rango máximo). Para a = 2, sistema compatible indeterminado con un grado de libertad. Para a = 3, sistema incompatible. (b) det(a b) = (a + 3)(a ) 3 Para a 3, a, sistema incompatible. Para a = 3, sistema compatible determinado. Para a =, sistema compatible indeterminado con dos grados de libertad (equivale a x + y + z =, tiene solución x = y z, y = y, z = z).

20 lineales -Jordan Matemáticas Bachillerato 2, Tecnología, Esther Bescós y Zoila Pena, Ed. Oxford, 998. Página sobre el estudio de sistemas de ecuaciones lineales. Dos páginas sobre discusión de sistemas por son ésta y ésta otra.

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Universidad de Granada Máster de Profesorado U. D. SISTEMAS DE ECUACIONES Director del trabajo : D. Antonio López Megías SISTEMAS DE ECUACIONES Pilar FERNÁNDEZ CARDENETE Granada,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva,

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES CONCEPTO Un sistema de m ecuaciones lineales con n incógnitas es un sistema de la forma: a 11 x 1 + a 12 x 2 +... + a 1n x n b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n b 2.........................

Más detalles

Sistemas de ecuaciones lineales dependientes de un parámetro

Sistemas de ecuaciones lineales dependientes de un parámetro Vamos a hacer uso del Teorema de Rouché-Frobenius para resolver sistemas de ecuaciones lineales de primer grado. En particular, dedicaremos este artículo a resolver sistemas de ecuaciones lineales que

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Apuntes Tema 11 Sistemas de ecuaciones 11.1 Definiciones Def.: Se llama sistema de ecuaciones lineales a un conjunto de igualdades dadas de la siguiente forma: a 11 x 1 + a 12 x 2 + a 1n x n = b 1 a 21

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales ALBERTO VIGNERON TENORIO Dpto. de Matemáticas Universidad de Cádiz Índice general 1. Sistemas de ecuaciones lineales 1 1.1. Sistemas de ecuaciones lineales. Definiciones..........

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

1 Sistemas de ecuaciones lineales.

1 Sistemas de ecuaciones lineales. Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sea S el siguiente sistema de m ecuaciones lineales y n incógnitas: 9 a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 >=

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción B Reserva

Más detalles

(Matrices y determinantes. Sistemas de ecuaciones lineales) A partir del curso dejaron de publicarse los exámenes de reserva.

(Matrices y determinantes. Sistemas de ecuaciones lineales) A partir del curso dejaron de publicarse los exámenes de reserva. ÁLGEBRA LINEAL (Matrices y determinantes. Sistemas de ecuaciones lineales) Curso 9-1 -Enunciados: pg.. -Soluciones: pg 3. Curso 1-11 -Enunciados: pg. 5. -Soluciones: pg 6. Curso 11-1 -Enunciados: pg. 8.

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva,

Más detalles

Ejercicio 3 de la Opción A del modelo 1 de 2008.

Ejercicio 3 de la Opción A del modelo 1 de 2008. Ejercicio 3 de la Opción A del modelo 1 de 2008. Dado el sistema de ecuaciones lineales x + λy z = 0 2x + y + λz = 0 x + 5y λz = λ +1 [1 5 puntos] Clasifícalo según los valores del parámetro λ. (b) [1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES Índice: 1.Introducción--------------------------------------------------------------------------------------- 2 2. Ecuaciones lineales------------------------------------------------------------------------------

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Reserva, Ejercicio 3, Opción A Reserva, Ejercicio 4, Opción A Reserva 3, Ejercicio 3, Opción A Reserva

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva 2, Ejercicio 4, Opción A Reserva

Más detalles

EJERCICIOS DE DETERMINANTES

EJERCICIOS DE DETERMINANTES EJERCICIOS DE 1) Si m n = 5, cuál es el valor de cada uno de estos determinantes? Justifica las p q respuestas: 2) Resuelve las siguientes ecuaciones: 3) Calcula el valor de estos determinantes: 4) Halla

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

Sistema de ecuaciones Parte II

Sistema de ecuaciones Parte II Regla de Cramer Sistema de ecuaciones Parte II La regla de Cramer sirve para resolver sistemas de ecuaciones lineales. Se aplica a sistemas que cumplan las dos condiciones siguientes: El número de ecuaciones

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción A Reserva

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS II TEMA : SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción A Reserva, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción A Reserva

Más detalles

1. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: x 3y + 7z = 10 5x y + z = 8 x + 4y 10z = 11

1. Utilizar el método de Gauss para clasificar y resolver cuando sea posible los siguientes sistemas: x 3y + 7z = 10 5x y + z = 8 x + 4y 10z = 11 Teorema de Rouché Frobenius: Si A es la matriz de coeficientes de un sistema de ecuaciones lineales y AM la matriz ampliada de un sistema de ecuaciones lineales. Si r(a = r(am = número de incógnitas =

Más detalles

Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales.

Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Problemas y Ejercicios Resueltos. Tema 4: Sistemas de ecuaciones lineales. Ejercicios 1.- Determinar el rango de la siguiente matriz: 0 1 3 4 1 3 5. Solución. 0 1 3 4 1 3 5 AT 1( 1) AT 1 ( 1)T 14 ( 1 )

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

Matrices, Determinantes y Sistemas Lineales.

Matrices, Determinantes y Sistemas Lineales. 12 de octubre de 2014 Matrices Una matriz A m n es una colección de números ordenados en filas y columnas a 11 a 12 a 1n f 1 a 21 a 22 a 2n f 2....... a m1 a m2 a mn f m c 1 c 2 c n Decimos que la dimensión

Más detalles

Matemática II Tema 3: resolución de sistemas de ecuaciones lineales

Matemática II Tema 3: resolución de sistemas de ecuaciones lineales Matemática II Tema 3: resolución de sistemas de ecuaciones lineales 2012 2013 Índice Sistemas de ecuaciones lineales 1 Interpretación geométrica y definición 1 Método de eliminación 4 Resolución de sistemas

Más detalles

2. Sistemas de ecuaciones lineales.

2. Sistemas de ecuaciones lineales. 2. Sistemas de ecuaciones lineales. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2002 Contents 1 Introducción 2 2 Operaciones elementales

Más detalles

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS 1.- DEFINICIÓN DE SISTEMAS DE ECUACIONES LINEALES Definición: se llama sistema de ecuaciones lineales al

Más detalles

SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. Sistemas de ecuaciones lineales DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Capítulo 4 Matrices, determinantes y sistemas de ecuaciones lineales DEFINICIÓN DE MATRIZ DE NÚMEROS REALES Una matriz de números reales de tamaño m n es un conjunto ordenado por filas y columnas de números

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Tema 1 Sistemas de ecuaciones lineales 11 Definiciones Sea K un cuerpo Una ECUACIÓN LINEAL CON COEFICIENTES EN K es una expresión del tipo a 1 x 1 + + a n x n = b, en la que n es un número natural y a

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales TIPOS DE SISTEMAS. DISCUSIÓN DE SISTEMAS. Podemos clasificar los sistemas según el número de soluciones: Incompatible. No tiene solución Compatible. Tiene solución. Compatible

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS CC SOCIALES CAPÍTULO 2 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

CLASIFICACIÓN DE LOS SISTEMAS DE ECUACIONES LINEALES. DETERMINADO Tiene una única solución. COMPATIBLE Tiene solución

CLASIFICACIÓN DE LOS SISTEMAS DE ECUACIONES LINEALES. DETERMINADO Tiene una única solución. COMPATIBLE Tiene solución CLASIFICACIÓN DE LOS SISTEMAS DE ECUACIONES LINEALES DETERMINADO Tiene una única solución SISTEMA COMPATIBLE Tiene solución INCOMPATIBLE No tiene solución INDETERMINADO Tiene infinitas soluciones I.E.S.

Más detalles

1. a) Sean A, B y X matrices cuadradas de orden n. Despeja X en la ecuación X.A = 2X + B 2. 1 b)

1. a) Sean A, B y X matrices cuadradas de orden n. Despeja X en la ecuación X.A = 2X + B 2. 1 b) Curso 9/. a) Sean, X matrices cuadradas de orden n. Despeja X en la ecuación X. = X + b) Calcula la matri X, siendo = = Solución: a) X. X.( - Id).( - Id) X.X.( - Id) - X. - X -.( Id) X.( - Id) b) 4 ( Id)

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

La calculadora gráfica como recurso didáctico en la enseñanza de las matemáticas: resolución de sistemas de ecuaciones lineales

La calculadora gráfica como recurso didáctico en la enseñanza de las matemáticas: resolución de sistemas de ecuaciones lineales Diciembre de 007, Número, páginas 7-70 ISSN: 8-060 Coordinado por Agustín Carrillo de Albornoz La calculadora gráfica como recurso didáctico en la enseñanza de las matemáticas: resolución de sistemas de

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 0 REFLEXION Y RESUELVE Resolución de sistemas Ò mediante determinantes y Resuelve, aplicando x x e y, los siguientes sistemas de ecuaciones: 3x 5y 73 a

Más detalles

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x

La regla de Cramer. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2... a n1 x 1 + a n2 x Consideremos un sistema de n ecuaciones lineales con n incógnitas como el siguiente: a 11 x 1 + a 1 x +. + a 1n x n b 1 a 1 x 1 + a x +. + a n x n b... a n1 x 1 + a n x +. + a nn x n b n La matriz de los

Más detalles

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades

TEMA 8. Sistemas de Ecuaciones Lineales: Método de Gauss. 1. Sistemas de ecuaciones lineales. Generalidades TEMA 8 F MATEMÁTICOS TEMA 8 Sistemas de Ecuaciones Lineales: Método de Gauss 1 Sistemas de ecuaciones lineales Generalidades Uno de los problemas centrales del álgebra lineal es la resolución de ecuaciones

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 37 CONTENIDO

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva 2, Ejercicio 3, Opción A Reserva

Más detalles

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss

Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss página 1/6 Teoría Tema 4 Notación matricial en la resolución de sistemas de ecuaciones por Gauss Índice de contenido Matriz del sistema y matriz ampliada...2 Método de Gauss...3 Solución única, ausencia

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Método de Gauss SISTEMAS DE ECUACIONES LINEALES Consideremos el siguiente sistema de tres ecuaciones con tres incógnitas: x+ y+ 4z= x = (I) 2y+ z= 4 y= ( 2,, ) es la sol ución 3z = 6 z = 2 El sistema (I)

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte)

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte) Sistema de Ecuaciones Lineales Matrices y Determinantes (ª Parte) Definición: Sistemas Equivalentes Dos sistemas de ecuaciones son equivalentes si y solo si tienen el mismo conjunto solución Teorema fundamental

Más detalles

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas aplicadas a la Ciencias Sociales Comunidad de Madrid (Resueltos) Isaac Musat Hervás 15 de noviembre de 2016 2 Índice general 1. Álgebra 7 1.1. Año 2000.............................

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones)

1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS ACTIVIDADES PROPUESTAS PARA EL ALUMNO. Infinitas soluciones) Infinitas soluciones) TEMA 2.- SISTEMAS DE ECUACIONES 1.- ECUACIONES LINEALES CON 2 Y 3 INCÓGNITAS La ecuación 2x 3 5 tiene un término en x (el término 2x), otro en y (el término -3y) y un término independiente (el 5) Este

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

3- Sistemas de Ecuaciones Lineales

3- Sistemas de Ecuaciones Lineales Nivelación de Matemática MTHA UNLP 1 3- Sistemas de Ecuaciones Lineales 1. Introducción Consideremos el siguiente sistema, en él tenemos k ecuaciones y n incógnitas. Los coeficientes a ij son números reales

Más detalles

Teoría Tema 6 Discusión de sistemas por el método de Gauss

Teoría Tema 6 Discusión de sistemas por el método de Gauss página 1/9 Teoría Tema 6 Discusión de sistemas por el método de Gauss Índice de contenido Método de Gauss...2 Discusión de sistemas por el método de Gauss...4 Sistemas que dependen de parámetros desconocidos...6

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. A1.- Determina a y b sabiendo que el sistema de ecuaciones x + 3y +z = 1 -x + y +z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas. Para que el sistema tenga, al menos, dos soluciones distintas

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales Actividades de Enseñanza-Aprendizaje. Resuelve los siguientes sistemas de ecuaciones lineales : 3x + y + z = 5 a) x + y = 0 b) x + 3 y + z = x + 5 y = 3

Más detalles

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos.

PAU Madrid. Matemáticas II. Año Examen de junio. Opción A. Ejercicio 1. Valor: 3 puntos. Opción A. Ejercicio 1. Valor: 3 puntos. Dado el sistema de ecuaciones lineales: { x ay = 2 se pide: ax y = a + 1 a) (2 puntos) Discutir el sistema según los valores del parámetro a. Resolverlo cuando la

Más detalles

1.1. CÁLCULO DEL RANGO POR EL MÉTODO DE GAUSS. son matrices escalonadas reducidas mientras que

1.1. CÁLCULO DEL RANGO POR EL MÉTODO DE GAUSS. son matrices escalonadas reducidas mientras que 1 1 PRELIMINARES 11 CÁLCULO DEL RANGO POR EL MÉTODO DE GAUSS Denición 1 Una matriz es escalonada si: 1 Todas las las nulas, si las hay, están en la parte inferior de la matriz 2 El número de ceros al comienzo

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

1. Un sistema lineal de dos ecuaciones con cuatro incógnitas puede ser compatible e indeterminado? Razonar la respuesta con algún ejemplo.

1. Un sistema lineal de dos ecuaciones con cuatro incógnitas puede ser compatible e indeterminado? Razonar la respuesta con algún ejemplo. Matemáticas Selectividad Sistemas de Ecuaciones 1. Un sistema lineal de dos ecuaciones con cuatro incógnitas puede ser compatible e indeterminado? Razonar la respuesta con algún ejemplo. (Prueba previa

Más detalles

Discusión de sistemas de ecuaciones

Discusión de sistemas de ecuaciones Discusión de sistemas de ecuaciones En las matemáticas de segundo de Bachillerato (y en los exámenes de selectividad) son bastante comunes los ejercicios como éste: Discutir el siguiente sistema de ecuaciones

Más detalles

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I Sistemas de Ecuaciones Lineales, Método de Gauss Parte I Ecuación lineal con n incógnita ES cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG UCLM Septiembre 0 Propuesta B Matemáticas II º Bachillerato Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PROPUESTA B EJERCICIO Dada la función Matemáticas II Septiembre

Más detalles

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL

Más detalles

Tema 3: Sistemas de ecuaciones lineales

Tema 3: Sistemas de ecuaciones lineales Tema 3: Sistemas de ecuaciones lineales 1. Introducción Los sistemas de ecuaciones resuelven problemas relacionados con situaciones de la vida cotidiana que tiene que ver con las Ciencias Sociales. Nos

Más detalles

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES Ignacio López Torres. Reservados todos los derechos. Prohibida la reproducción total o parcial de esta obra, por cualquier medio electrónico

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

Capítulo 2 Soluciones de ejercicios seleccionados

Capítulo 2 Soluciones de ejercicios seleccionados Capítulo Soluciones de ejercicios seleccionados Sección..4. (a) Sí. (b) No. (c) Sí.. (a) x = si α, pero si α = todo número real es solución de la ecuación. (b) (x, y) = (λ 7/, λ) para todo λ R.. Si k 6

Más detalles

Ejercicio 1 de la Opción A del modelo 1 de Solución

Ejercicio 1 de la Opción A del modelo 1 de Solución Ejercicio 1 de la Opción A del modelo 1 de 2008 Sean f : R R y g : R R las funciones definidas por f(x) = x 2 -(x + 1) + ax + b y g(x) = ce Se sabe que las gráficas de f y g se cortan en el punto ( 1,

Más detalles

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente. 1 MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos horizontales

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

SISTEMAS LINEALES CLASIFICACIÓN DE LOS SISTEMAS LINEALES. 1. Resolver:

SISTEMAS LINEALES CLASIFICACIÓN DE LOS SISTEMAS LINEALES. 1. Resolver: SISTEMAS LINEALES Se llama sistema de ecuaciones, o, sistema de ecuaciones simultáneas al conjunto de dos o más ecuaciones que se verifican para un mismo valor de la, o, las incógnitas. Ejemplo: El sistema:

Más detalles

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en:

MATRICES. TIPOS DE MATRICES Según el aspecto de las matrices, éstas pueden clasificarse en: Repaso de Matrices MATRICES Una matriz es una tabla ordenada de escalares a ij de la forma La matriz anterior se denota también por (a ij ), i =1,..., m, j =1,..., n, o simplemente por (a ij ). Los términos

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

Sistemas de Ecuaciones Lineales. Matrices y determinantes.

Sistemas de Ecuaciones Lineales. Matrices y determinantes. Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación

Más detalles

Tema 5: Sistemas de Ecuaciones Lineales

Tema 5: Sistemas de Ecuaciones Lineales Tema 5: Sistemas de Ecuaciones Lineales Eva Ascarza-Mondragón Helio Catalán-Mogorrón Manuel Vega-Gordillo Índice 1 Definición 3 2 Solución de un sistema de ecuaciones lineales 4 21 Tipos de sistemas ecuaciones

Más detalles

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores.

Matrices y sistemas de ecuaciones lineales. Autovalores y autovectores. Tema 5 Matrices y sistemas de ecuaciones lineales Autovalores y autovectores 5 Introducción Una matriz es una disposición ordenada de elementos de la forma: a a a m a a a m a n a n a nm Sus filas son las

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

4. Sistemas de ecuaciones lineales

4. Sistemas de ecuaciones lineales 4. Sistemas de ecuaciones lineales En esta práctica aprenderemos a discutir y resolver sistemas de ecuaciones lineales con el ordenador Algunas órdenes importantes à La orden RowReduce Como se vio en la

Más detalles

Sistemas de Ecuaciones

Sistemas de Ecuaciones Sistemas de ecuaciones P.A.U. 1. Considerar el sistema de ecuaciones: 2x 2y z = 4 x + 2y 2z = 1 x z = 1 a) Existe una solución del mismo en la que y = 0? b) Resolver el sistema homogéneo asociado al sistema

Más detalles

Lo rojo sería la diagonal principal.

Lo rojo sería la diagonal principal. MATRICES. Son listas o tablas de elementos y que tienen m filas y n columnas. La dimensión de la matriz es el número se filas y de columnas y se escribe así: mxn (siendo m el nº de filas y n el de columnas).

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

Tema II. Sistemas de ecuaciones lineales

Tema II. Sistemas de ecuaciones lineales Tema II. Sistemas de ecuaciones lineales Sistemas 1 1. Sistemas de ecuaciones lineales 2. Teorema de Rouché 3. Resolución de s.e. lineales 4. Regla de Cramer 5. Otros métodos 1. Sistemas de ecuaciones

Más detalles