El problema del agente viajero

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El problema del agente viajero"

Transcripción

1 CO- (F0) //00 El problema del agente viajero Un vendedor tiene que visitar n + ciudades, cada una exactamente una vez. La distancia entre cada par de ciudades viene dada por d ij (en general d ij d ji ). El problema es encontrar el recorrido (tour) que comienza y termina en la misma ciudad y minimiza la distancia total recorrida ( suena fácil?). Notas: La ciudad de comienzo es irrelevante. Se usa n + por conveniencia notacional. Etiquetamos la ciudad origen como 0 y también como n +. Sea x ij una variable binaria que nos dice si el viajero va de la ciudad i a la ciudad j (i = 0,,..., n; j =,,..., n + ; i j). Se fija x 0,n+ = 0. La función objetivo (a minimizar) es: Ahora las restricciones. n n+ i=0 j=,j i d ij x ij Para garantizar que se llega a cada ciudad exactamente una vez: n x ij =, ( j =,,..., n + ) i=0,i j Para garantizar que se sale de cada ciudad exactamente una vez: n+ j=,j i x ij =, ( i = 0,,..., n) Sin embargo estas restricciones no bastan para garantizar que se está optimizando sobre recorridos, es decir que las soluciones factibles son sólo recorridos. Esto es porque permiten la existencia de subrecorridos: Por ejemplo, en el caso de seis ciudades haciendo las variables x 0, x, x, x, x y x, se satisfacen todas estas restricciones ( verifíquelo!). Esta solución no es un recorrido sino dos sub-recorridos: 0 = 0 y (se sugiere hacer un dibujo) Para restringirnos a recorridos hay que añadir restricciones adicionales. Hay varias formas de

2 CO- (F0) //00 9 hacer esto. Una forma: En cualquier recorrido, para cada subconjunto de índices de N = {0,,..., n} debe haber un arco que vaya a su complemento y otro que venga. En general, para cualquier L N con L n (los de tamaño ya están!) las restricciones x ij {(i,j) i L, j N\L} son satisfechas por todo tour pero todo subtour viola al menos una de ellas. Otra forma: (complementaria) Para cualquier L N con L n poner las restricciones: x ij L {(i,j) i L, j L} Pregunta: En cualquiera de estas dos formas, cuántas restricciones hay para evitar subtours? Respuesta: Alrededor de n+ (una por cada elección de L), que es un número bastante grande para n razonable. Entonces una estrategia muy común es ignorar estas restricciones que evitan sub-recorridos y resolver la relajación resultante. Si se obtiene un recorrido la solución es óptima (COR), si no entonces la solución tiene un sub-recorrido: se añade una restricción que evite dicho sub-recorrido y se resuelve el nuevo problema. Se sigue así hasta encontrar una solución óptima. Esta estrategia ha sido aplicada de diversas formas, siendo efectiva para la resolución de este problema. Note que es una estrategia relajación-restricción en el espíritu de planos cortantes.

3 CO- (F0) //00 0 Una tercera y distinta formulación del PAV: (Tucker) Esta formulación modela las restricciones para evitar sub-recorridos como sigue (las primeras (n + ) restricciones quedan igual). Se añaden variables continuas y i para i = 0,,..., n, n + (ojo, no necesariamente y 0 = y n+ ) y las restricciones y i y j + (n + ) x ij n (i = 0,,..., n; j =,,..., n + ; i j) que son (n + ) n. Veamos que esto logra su cometido. En primer lugar una solución con sub-recorridos viola alguna de estas restricciones. Supongamos falso, que una solución con sub-recorridos satisface todas estas restricciones y lleguemos a una contradicción. En la solución con sub-recorridos alguno de ellos no toca a la ciudad origen. Sumemos las restricciones correspondientes a los pares (i, j) en el sub-recorrido. Los y i y j se cancelan todos y queda (n + ) l nl donde l es la longitud del sub-recorrido. Pero esto es una contradicción. ( Por qué se excluye la ciudad origen del sub-recorrido?). En segundo lugar veamos que un recorrido completo sí es factible (importante). Dado un recorrido, sea y i el lugar que ocupa la ciudad i en dicho recorrido (suponiendo que se parte de la ciudad 0, es decir, y 0 = 0 y y n+ = n + ). Entonces cuando x ij = y i y j + (n + )x ij = k (k + ) + (n + ) = n y listo. Cuando x ij = 0 y i y j + (n + ) x ij = y i y j n (el mayor índice posible menos el menor)

4 CO- (F0) //00 En la práctica las dos primeras formulaciones han tenido más éxito que la última. Hecho de la vida: En PLEM el tener más restricciones es en general mejor. Ejercicio duro: La región factible (continua) de las primeras dos está contenida en la de la última. Heurísticas para el problema del agente viajero Antes de estudiar algunas técnicas heurísticas para el PAV, vale la pena hacer un comenario sobre cómo los algoritmos que hemos visto se aplican a este problema. Las restricciones que fastidian por su cantidad y estructura son las últimas (las de destrucción de sub-recorridos). Lo que queda sin ellas es un simple Problema de Asignación (flujo en redes) que se resuelve facilmente. Entonces es natural que los algoritmos de B + B o de planos cortantes para el PAV utilicen algún esquema de relajación-restricción que siga estas líneas. Los algoritmos modificados relajan estas restricciones y resuelven la relajación (asignación). Si la solución obtenida es un recorrido, tenemos COR, listo. Caso contrario, añadir restricción que destruya algún sub-recorrido (si se hace directo es planos cortantes, si se hace a través de cotas y en subgrafos es B+B) y proceder con la nueva relajación. Estos algoritmos son computacionalmente aplicables sólo a problemas con unos pocos cientos de ciudades. Para problemas más grandes se necesitan métodos heurísticos. Algunas heurísticas para el PAV: Las heurísticas a ser discutidas se pueden clasificar en dos tipos: Las que construyen recorridos y las que los mejoran. Comenzamos con las primeras. La idea se puede resumir así:. Encontrar un sub-recorrido inicial (basta que tenga dos ciudades pero puede ser de más).. Seleccionar una ciudad a ser añadida al sub-recorrido, usando alguna regla de selección.. Insertar el nodo correspondiente en el sub-recorrido, basándose en un criterio de inserción.. Si se tiene un recorrido, parar. Caso contrario ir a.

5 CO- (F0) //00 Las distintas reglas de selección y criterios de inserción dan lugar a diferentes heurísticas. Veamos una de ellas: La heurística de inserción más barata. Se comienza con un sub-recorrido T con dos ciudades i e i, tales que d i i + d i i = mín i j (d ij + d ji ) es decir, el sub-recorrido más corto entre dos ciudades. Luego se busca el costo mínimo de inserción en el sub-recorrido: c k = mín (i,j) T (d ik + d kj d ij ) y se selecciona un nodo k con ese costo. Luego se inserta el nodo entre las ciudades involucradas en el cálculo de c k. Finalmente se repite este proceso (con los sub-recorridos que se van generando) hasta construir un recorrido. Ejemplo de la heurística de inserción más barata Consideremos el PAV dado por la siguiente matriz de distancias: D = En primer lugar tenemos qe encontrar el sub-recorrido más barato con dos ciudades. Esto se hace calculando mín i j (d ij + d ji ) que corresponde a sumar elementos simétricos de la matriz D y ver cuál nos da menor. En este caso el más pequeño es d + d = + =.

6 CO- (F0) //00 Calculemos ahora el mínimo costo de inserción: c k = mín (i,j) T (d ik + d kj d ij ) : k d k + d k d d k + d k d 0 + = + = + = 0 + = + = = = 0 + = = + 0 = + 9 = + = de donde el mínimo valor es y se obtiene de tres formas. Seleccionamos la inserción del nodo entre los nodos y. Las restantes iteraciones se muestran en la siguiente tabla: Iteración Sub-recorrido k c k i k j k Inserción elegida

7 CO- (F0) //00 dando como recorrido final:. Este recorrido, casualmente, es óptimo. No siempre se corre con la misma suerte. Note que en la tercera columna se calcula, en cada fila y para cada k, el mínimo costo de inserción de ese k particular (en algunos casos hay empate y el k se repite), y luego se toma el mínimo de todos ellos.

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA

CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA CAPÍTULO 4 PROGRAMACIÓN LINEAL ENTERA Programación Lineal Entera Es una técnica que permite modelar y resolver problemas cuya característica principal es que el conjunto de soluciones factibles es discreto.

Más detalles

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.

Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria. Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación

Más detalles

Ejemplo: ubicación de estación de bomberos

Ejemplo: ubicación de estación de bomberos 15.053 Jueves, 11 de abril Más aplicaciones de la programación entera. Técnicas de plano de corte para obtener mejores cotas. Ejemplo: ubicación de estación de bomberos Considere la ubicación de estaciones

Más detalles

Programación lineal: Algoritmo del simplex

Programación lineal: Algoritmo del simplex Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b

Más detalles

Formulando con modelos lineales enteros

Formulando con modelos lineales enteros Universidad de Chile 19 de marzo de 2012 Contenidos 1 Forma de un problema Lineal Entero 2 Modelando con variables binarias 3 Tipos de Problemas Forma General de un MILP Problema de optimización lineal

Más detalles

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile

Programación Entera. Nelson Devia C. IN Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile IN3701 - Modelamiento y Optimización Departamento de Ingeniería Industrial Universidad de Chile 2011 Basado en Bertsimas, D., Tsitsiklis, J. (1997) Introduction to Linear Optimization Capítulos 10 y 11

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/

Degeneración y ciclaje. Método de las dos fases CO-3411 (S08) 30/03/ CO-3411 (S08 30/03/2008 98 Degeneración y ciclaje En el caso de problemas generales, una solución será degenerada cuando alguna de las variables básicas se encuentra en una de sus cotas (comparar con el

Más detalles

En el siguiente capítulo se hablará del uso del método de generación de columnas para resolver el problema de corte ( cutting stock ).

En el siguiente capítulo se hablará del uso del método de generación de columnas para resolver el problema de corte ( cutting stock ). Capitulo 3 Método de Generación de Columnas El método de generación de columnas, es muy útil en problemas con un gran número de variables pero con un relativamente pequeño número de restricciones (Hunsaker,

Más detalles

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas.

84 Tema 3. Dualidad. todas las restricciones son del tipo, todas las variables son no negativas. Tema 3 Dualidad En el desarrollo de la programación lineal la teoria de la dualidad es importante, tanto desde el punto de vista teórico como desde el punto de vista práctico. Para cada modelo lineal se

Más detalles

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30 Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

Contenido. 1 Resolución mediante planos de corte. Resolución mediante planos de corte

Contenido. 1 Resolución mediante planos de corte. Resolución mediante planos de corte Contenido 1 Resolución mediante planos de corte para LP para IP Facultad de Ingeniería. UdelaR Fundamentos de Programación Entera 1/20 para LP para IP Resolución mediante planos de corte La metodología

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Complejidad Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 33 Contenidos Problemas y Procedimientos de solución Problemas de optimización v/s problemas de decisión Métodos,

Más detalles

Práctica 2. Algoritmos de búsqueda local (local search algorithms) y algoritmos avariciosos (greedy algorithms)

Práctica 2. Algoritmos de búsqueda local (local search algorithms) y algoritmos avariciosos (greedy algorithms) PLANIFICACIÓN Y GESTIÓN DE REDES Grado en Ingeniería Telemática Curso 2012-2013 Práctica 2. Algoritmos de búsqueda local (local search algorithms) y algoritmos avariciosos (greedy algorithms) Autor: Pablo

Más detalles

IN34A - Optimización

IN34A - Optimización IN34A - Optimización Modelos de Programación Lineal Leonardo López H. lelopez@ing.uchile.cl Primavera 2008 1 / 24 Contenidos Programación Lineal Continua Problema de Transporte Problema de Localización

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Fundamentos de Programación Entera

Fundamentos de Programación Entera Fundamentos de Programación Entera Carlos Testuri Germán Ferrari Departamento de Investigación Operativa. Instituto de Computación. Facultad de Ingeniería. Universidad de la República 2012-2016 Facultad

Más detalles

Segundo parcial. Martes, 23 de abril de 2003

Segundo parcial. Martes, 23 de abril de 2003 5.053 Segundo parcial Martes, 3 de abril de 003 Se permite traer una hoja de papel con anotaciones por una cara. Responda a todas las preguntas en los cuadernillos de examen.. Controle el tiempo. Si un

Más detalles

CAPÍTULO 3. GRASP (Greedy Randomized Adaptive Search Procedures). Los problemas de optimización surgen de las situaciones de aplicación práctica.

CAPÍTULO 3. GRASP (Greedy Randomized Adaptive Search Procedures). Los problemas de optimización surgen de las situaciones de aplicación práctica. CAPÍTULO 3 GRASP (Greedy Randomized Adaptive Search Procedures). Los problemas de optimización surgen de las situaciones de aplicación práctica. Estos problemas se aplican en distintas áreas, tales como:

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

Tema 3 Optimización lineal. Algoritmo del simplex

Tema 3 Optimización lineal. Algoritmo del simplex Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo

Más detalles

Algoritmo de ramificación y acotación

Algoritmo de ramificación y acotación Algoritmo de ramificación y acotación Investigación Operativa Ingeniería Técnica en Informática de Gestión UC3M Curso 08/09 Descripción de los objetivos En esta práctica desarrollaremos el algoritmo de

Más detalles

Curso: Teoría, Algoritmos y Aplicaciones de Gestión Logística. Modelos de Ubicación de Instalaciones

Curso: Teoría, Algoritmos y Aplicaciones de Gestión Logística. Modelos de Ubicación de Instalaciones Curso: Teoría, Algoritmos y Aplicaciones de Gestión Logística. Modelos de Ubicación de Instalaciones Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad

Más detalles

Coloreo de Grafos. Algoritmos y Estructuras de Datos III

Coloreo de Grafos. Algoritmos y Estructuras de Datos III Coloreo de Grafos Algoritmos y Estructuras de Datos III Coloreo de nodos Definiciones: Un coloreo (válido) de los nodos de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u, v) E.

Más detalles

(b) Cuál es la desventaja principal de una heurística con aprendizaje? es más informada que otra función heurística optimista h 2 *?

(b) Cuál es la desventaja principal de una heurística con aprendizaje? es más informada que otra función heurística optimista h 2 *? UNIVERIDD REY JUN CRLO CURO 0-0 INTELIGENCI RTIFICIL Hoja de Problemas Tema Ejercicio : Conteste a las siguientes preguntas: (a) Cómo funciona una heurística con aprendizaje? olución: Una heurística con

Más detalles

máx 5x 1 + 7x 2 s.a 2x 1 + x x 1 + 9x 2 41 x 1 0, x 2 0, enteras, z opt z opt 38

máx 5x 1 + 7x 2 s.a 2x 1 + x x 1 + 9x 2 41 x 1 0, x 2 0, enteras, z opt z opt 38 Programación Lineal Entera / Investigación Operativa PROBLEMAS DE INVESTIGACIÓN OPERATIVA. Hoja 4. Resuelve el siguiente problema de programación entera por el método Branch and Bound: máx 5x + 7x s.a

Más detalles

Problemas: formulación, ejemplos, representación de soluciones y estructuras de entorno

Problemas: formulación, ejemplos, representación de soluciones y estructuras de entorno Problemas: formulación, ejemplos, representación de soluciones y estructuras de entorno Christopher Expósito Izquierdo, J. Marcos Moreno Vega cexposit@ull,es, jmmoreno@ull.es Departamento de Ingeniería

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO

PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO PROGRAMACION ENTERA: METODO DE BIFURCACIÓN Y ACOTAMIENTO La mayor parte de los PE se resuelven en la práctica mediante la técnica de ramificación y acotamiento. En este método se encuentra la solución

Más detalles

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III

Grafos Eulerianos y Hamiltonianos. Algoritmos y Estructuras de Datos III Grafos Eulerianos y Hamiltonianos Algoritmos y Estructuras de Datos III Grafos eulerianos Definiciones: Un circuito C en un grafo (o multigrafo) G es un circuito euleriano si C pasa por todos las aristas

Más detalles

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento

Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Análisis Post Optimal y Algoritmo de Ramificación y Acotamiento Marcel Goic F.

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Julio 202 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el cual

Más detalles

Programación Dinámica

Programación Dinámica Programación Dinámica Adaptado de Algorithm Design Goodrich and Tamassia Programación Dinámica 1 Calculando la serie de Fibonacci 1,1,2,3,5,8,13,21,. fib(n) = 1 si n = 0,1 fib(n 1) + fib(n 2) o.c. Programación

Más detalles

RESUMEN DE ALGORITMOS PROBABILÍSTICOS

RESUMEN DE ALGORITMOS PROBABILÍSTICOS RESUMEN DE ALGORITMOS PROBABILÍSTICOS En los algoritmos probabilísticos hay ciertas decisiones que se toman al azar bajo condiciones estadísticamente estables como una distribución uniforme. Normalmente

Más detalles

Programación Lineal Entera. Programación Entera

Programación Lineal Entera. Programación Entera Programación Lineal Entera PE Programación Entera Modelo matemático, es el problema de programación lineal Restricción adicional de variables con valores enteros. Programación entera mita Algunas variables

Más detalles

Programación Dinámica

Programación Dinámica Programación Dinámica Es aplicada típicamente a problemas de optimización, donde puede haber muchas soluciones, cada una tiene un valor asociado y prentendemos obtener la solución con valor óptimo. Al

Más detalles

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero

Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas

Más detalles

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos:

1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila 0/1 para los siguientes casos: PROGRAMACIÓN DINÁMICA RELACIÓN DE EJERCICIOS Y PROBLEMAS 1. Diseñe algoritmos que permitan resolver eficientemente el problema de la mochila /1 para los siguientes casos: a. Mochila de capacidad W=15:

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16 Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R

Más detalles

Algoritmos de Planos de Corte

Algoritmos de Planos de Corte Algoritmos de Planos de Corte Problema: max {cx / x X} con X = {x / Ax b, x Z n + } Proposición: conv (X) es un poliedro que puede entonces escribirse como conv (X) = {x / Ax b, x 0} Lo mismo ocurre para

Más detalles

1 ÁLGEBRA DE MATRICES

1 ÁLGEBRA DE MATRICES 1 ÁLGEBRA DE MATRICES 1.1 DEFINICIONES Las matrices son tablas numéricas rectangulares. Se dice que una matriz es de dimensión m n si tiene m filas y n columnas. Cada elemento de una matriz se designa

Más detalles

Método simplex para redes (representaciones gráficas) Cálculo del flujo de un árbol de expansión

Método simplex para redes (representaciones gráficas) Cálculo del flujo de un árbol de expansión . 7 Árbol con ofertas y demandas. (Suponemos que el flujo de los demás arcos es igual a ) Método simplex para redes (representaciones gráficas) 6 - flujo en el arco (,)? Método simplex para redes (representaciones

Más detalles

Tema 7: Problemas clásicos de Programación Lineal

Tema 7: Problemas clásicos de Programación Lineal Tema 7: Problemas clásicos de Programación Lineal 1.- Características generales de un problema de transporte y asignación Surgen con frecuencia en diferentes contextos de la vida real. Requieren un número

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

Forma estándar de un programa lineal

Forma estándar de un programa lineal Forma estándar de un programa lineal Sin pérdida de generalidad, todo programa lineal se puede escribir como: min cx s.t Ax = b x 0 Objetivo: minimizar Todas las desigualdades como ecuaciones Todas las

Más detalles

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker Tema 5 Dualidad y condiciones de Karush-Kuhn-Tucker José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 5 Condiciones de Karush-Kuhn-Tucker (KKT). Problemas

Más detalles

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías

Modelos de Redes: Árbol. M. En C. Eduardo Bustos Farías Modelos de Redes: Árbol de expansión n mínimam M. En C. Eduardo Bustos Farías as Objetivos Conceptos y definiciones de redes. Importancia de los modelos de redes Modelos de programación n lineal, representación

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

1. Defina el problema de particionamiento. Escriba un ejemplo de este tipo de problema, junto con su formulación general en AMPL.

1. Defina el problema de particionamiento. Escriba un ejemplo de este tipo de problema, junto con su formulación general en AMPL. DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA o. DIPLOMATURA DE ESTADÍSTICA Ampliación de la Investigación Operativa. Curso 00/0 a Prueba de Evaluación Continua. Fecha: 6-6-0. Defina el problema

Más detalles

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue:

Desarrollo de las condiciones de optimalidad y factibilidad. El problema lineal general se puede plantear como sigue: Método simplex modificado Los pasos iterativos del método simplex modificado o revisado son exactamente a los que seguimos con la tabla. La principal diferencia esá en que en este método se usa el algebra

Más detalles

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA

RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice

Más detalles

Ejercicios - Resolución de problemas lineales. Método Simplex

Ejercicios - Resolución de problemas lineales. Método Simplex Ejercicios - Resolución de problemas lineales. Método Simplex Programación Matemática LADE Curso 8/9. Dado el problema lineal máx x x x + x s.a. x + x + x = 4 x + x 4 x justifica que el punto x = ( T es

Más detalles

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds

Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para

Más detalles

El problema de localización del árbol de concentradores

El problema de localización del árbol de concentradores El problema de localización del árbol de concentradores I. Contreras 1 E. Fernández 1 A. Marín 2 1 Departmento de Estadística e I.O. Universidad Politécnica de Cataluña 2 Departmento de Estadística e I.O.

Más detalles

El Problema del Vendedor Viajero

El Problema del Vendedor Viajero IN47B, Ingeniería de Operaciones Contenidos 1 Introducción 2 Resolviendo TSP 3 Programación Entera y el TSP Descripción del Problema Definición: Dado un conjunto finito de ciudades, y costos de viaje entre

Más detalles

Caminos y Flujos optimales. 2da y 3er clase 2007

Caminos y Flujos optimales. 2da y 3er clase 2007 Caminos y Flujos optimales 2da y 3er clase 2007 ESQUELETOS OPTIMALES (mínimo) Esqueleto de G =(X,U) es un subgrafo que es un árbol y que contiene todos los vértices de G. Esqueleto Mínimo de G = (X, U,

Más detalles

Dualidad y postoptimización

Dualidad y postoptimización Dualidad y postoptimización José María Ferrer Caja Universidad Pontificia Comillas Definición A cada problema de optimización lineal le corresponde otro que se denomina problema dual En forma canónica

Más detalles

Figura 1: Esquema de las tablas simplex de inicio y general.

Figura 1: Esquema de las tablas simplex de inicio y general. RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar

Más detalles

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III Metaheurísticas y heurísticas Algoritmos y Estructuras de Datos III Metaheurísticas Heurísticas clásicas. Metaheurísticas o heurísticas modernas. Cuándo usarlas? Problemas para los cuales no se conocen

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE

PROGRAMACION DE REDES. MODELOS DE TRANSPORTE PROGRAMACION DE REDES. MODELOS DE TRANSPORTE El modelo de transporte o modelo de distribución es un ejemplo de un problema de optimización de redes. Se aplican para resolver ciertos tipos de problemas

Más detalles

ANÁLISIS DE SENSIBILIDAD.

ANÁLISIS DE SENSIBILIDAD. ANÁLISIS DE SENSIBILIDAD. En la mayoría de las aplicaciones practicas, algunos datos del problema no son conocidos con exactitud y por esto son estimados tan bien como sea posible. Es importante poder

Más detalles

Problemas de programación entera: El método Ramifica y Acota. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Problemas de programación entera: El método Ramifica y Acota. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Problemas de programación entera: El método Ramifica y Acota Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema La estrategia Divide y vencerás Árboles de enumeración

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN ENTERA

INTRODUCCIÓN A LA PROGRAMACIÓN ENTERA INTRODUCCIÓN A LA PROGRAMACIÓN ENTERA Los problemas de programación lineal en que se requiere que algunas o todas las variables tomen valores enteros, son de programación entera. La programación entera

Más detalles

Guia N 1. Sea G = (V, E) un grafo no dirigido. Pruebe que las siguiente proposiciones son equivalentes:

Guia N 1. Sea G = (V, E) un grafo no dirigido. Pruebe que las siguiente proposiciones son equivalentes: IN77O: Modelos y Algoritmos de Optimización Profesores : Cristián Cortés, Daniel Espinoza Auxiliares : José Mu~noz, Rodrigo López, Diego Morán P1.- Caracterizaciones árboles Guia N 1 Sea G = (V, E) un

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

Interpolación y aproximaciones polinómicas

Interpolación y aproximaciones polinómicas This is page i Printer: Opaque this Interpolación y aproximaciones polinómicas Oldemar Rodríguez Rojas Octubre 008 ii This is page iii Printer: Opaque this Contents 1 Interpolación y aproximaciones polinómicas

Más detalles

Tema 5 Árboles y Grafos.

Tema 5 Árboles y Grafos. Tema 5 Árboles y Grafos. Definiciones básicas de teoría de grafos. Un grafo consta de un conjunto de nodos, un conjunto de aristas y una correspondencia f del conjunto de aristas al conjunto de nodos.

Más detalles

Introducción. Königsberg, s.xviii A

Introducción. Königsberg, s.xviii A Teoría de Grafos Introducción Königsberg, s.xviii A B C D Euler resuelve este problema mediante la teoría de grafos: sólo puede haber un ciclo euleriano cuando todos los nodos tienen un número par de aristas

Más detalles

El Problema de Transporte

El Problema de Transporte El Problema de Transporte INVESTIGACIÓN DE OPERACIONES I Maestro Ing. Julio Rito Vargas Avilés Octubre 2008 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para el

Más detalles

Sistemas de Ecuaciones. Lineales II

Sistemas de Ecuaciones. Lineales II Sistemas de Ecuaciones Lineales II Factorización LU: Eliminación Gaussiana Relación con la factorización LU 521230-1 - DIM Universidad de Concepción Solución de sistemas con matriz triangular Dadas L =

Más detalles

Fundamentos de Investigación de Operaciones Certamen # 2

Fundamentos de Investigación de Operaciones Certamen # 2 Certamen # 2 Profesores: María Cristina Riff & Esteban Sáez 6 de junio de 2003 1. Una pequeña empresa constructora debe construir 3 casas en los próximos 5 meses. Una vez que alguna de las casas está terminada,

Más detalles

Caminos. Sobre los problemas de encontrar caminos en grafos. Complexity D.Moshkovitz

Caminos. Sobre los problemas de encontrar caminos en grafos. Complexity D.Moshkovitz Caminos Sobre los problemas de encontrar caminos en grafos 1 Introdución Objetivos: Introducir más problemas sobre grafos. Resumen: Caminos Hamiltonianos Caminos Eulerianos 2 Camino Hamiltoniano Entrada:

Más detalles

3. Métodos clásicos de optimización lineal

3. Métodos clásicos de optimización lineal 3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema

Más detalles

La Teoría del Consumidor. El Problema del Consumidor

La Teoría del Consumidor. El Problema del Consumidor La Teoría del Consumidor El Problema del Consumidor El Problema del Consumidor El consumidor elige la cesta de bienes que maximiza su bienestar (utilidad) dentro del conjunto de cestas de bienes factibles.

Más detalles

Tema: Algoritmos para la ruta más corta en un Grafo.

Tema: Algoritmos para la ruta más corta en un Grafo. Programación IV. Guía No. 10 1 Facultad: Ingeniería Escuela: Computación Asignatura: Programación IV Tema: Algoritmos para la ruta más corta en un Grafo. Objetivos Específicos Definir el concepto de camino

Más detalles

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL

MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de

Más detalles

Optimización de redes

Optimización de redes UNIVERSIDAD DE MANAGUA Al más alto nivel Optimización de redes Problema de la Ruta más corta Problema del Árbol de expansión mínima Problema del Flujo máximo Problema de Flujo de costo mínimo Maestro Ing.

Más detalles

Inteligencia Artificial I

Inteligencia Artificial I Ingeniería en Sistemas Computacionales Inteligencia Artificial I Rafael Rivera López Departamento de Sistemas y Computación 1 Ago-Dic 2008 Veracruz, Ver. Unidad IV Técnicas de Búsqueda y Satisfacción de

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Sistemas de Ecuaciones Lineales. Matrices y determinantes.

Sistemas de Ecuaciones Lineales. Matrices y determinantes. Capítulo 3 Sistemas de Ecuaciones Lineales Matrices y determinantes 31 Sistemas de Ecuaciones Lineales El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación

Más detalles

Programación Lineal. El método simplex

Programación Lineal. El método simplex Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación

Más detalles

1. GRAFOS : CONCEPTOS BASICOS

1. GRAFOS : CONCEPTOS BASICOS 1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos

Más detalles

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia

A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E Valencia Factorización de Cholesky de matrices singulares A.M. Urbano, R. Cantó, B. Ricarte Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València, E-460 Valencia amurbano@mat.upv.es,rcanto@mat.upv.es,bearibe@mat.upv.es,

Más detalles

Problemas de flujo en redes: aplicación a redes de transporte urbano

Problemas de flujo en redes: aplicación a redes de transporte urbano Problemas de flujo en redes: aplicación a redes de transporte urbano Cristián E. Cortés Universidad de Chile V Escuela de Invierno, Luis A. Santaló 23-27 de Julio 2012 1 1 Outline Caracterización del equilibrio

Más detalles

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten Tema 2 Fundamentos Teóricos de la Programación Dinámica 2.1. Teorema de Optimalidad de Mitten El objetivo básico en la programación dinámica consiste en descomponer un problema de optimización en k variables

Más detalles

Estructuras de Datos

Estructuras de Datos 108 Ejercicio: Genere el árbol binario de búsqueda para la siguiente secuencia de números: 8, 9, 11, 15, 19, 20, 21, 7, 3, 2, 1, 5, 6, 4, 13, 14, 10, 12, 17, 16, 18. Analice y describa lo que sucede durante

Más detalles

Optimización de Problemas no lineales.

Optimización de Problemas no lineales. Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Industrial IN34A: Clase Auxiliar Optimización de Problemas no lineales. Marcel Goic F. Esta es una versión bastante

Más detalles

Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Programación entera: Ejemplos, resolución gráfica, relajaciones lineales Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Programación entera: definición, motivación,

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo.

NOTACIÓN O GRANDE. El análisis de algoritmos estima el consumo de recursos de un algoritmo. NOTACIÓN O GRANDE El análisis de algoritmos estima el consumo de recursos de un algoritmo. Esto nos permite comparar los costos relativos de dos o más algoritmos para resolver el mismo problema. El análisis

Más detalles

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3)

BASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) 4 de Julio de 26 ASES MATEMÁTICAS DEL MÉTODO SIMPLEX (Parte 3) Postgrado de Investigación de Operaciones Facultad de Ingeniería Universidad Central de Venezuela 4 de Julio de 26 MÉTODO SIMPLEX REVISADO

Más detalles

Control 2 IN mayo 2009

Control 2 IN mayo 2009 Profs: Auxs: Daniel Espinoza Gonzalo Romero Víctor Bucarey Nelson Devia Jocelyn González Daniel Lillo Fernando Solari Control 2 IN3701 28 mayo 2009 Pregunta 1 La empresa de pigmentos LILLO & Co. debe decidir

Más detalles

1.Restricciones de Desigualdad 2.Procedimiento algebraico

1.Restricciones de Desigualdad 2.Procedimiento algebraico Universidad Nacional de Colombia Sede Medellín 1. Restricciones de Desigualdad Clase # 6 EL MÉTODO M SIMPLEX El método m simplex es un procedimiento algebraico: las soluciones se obtienen al resolver un

Más detalles

x, la identificamos como una variable

x, la identificamos como una variable MÓDULO Ecuaciones lineales Objetivo. El estudiante será capaz de resolver ecuaciones que contienen una variable por medio de técnicas específicas y graficará ecuaciones de primer grado que contienen dos

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles