Movimiento oscilatorio

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Movimiento oscilatorio"

Transcripción

1 Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A ka2 v ma T/4 0 ωaω ka2 a ma θ ma T/2 A 0 ω 2 A ka2 v ma 1 3T/4 0 ωaω ka2 a ma θ ma T A 0 ωω 2 A ka2 Javier Junquera A 0 A Active Figure Simple harmonic motion for a block spring system and its analogy to the motion of a simple pendulum (Section 15.5). The parameters in the table at the right refer to the block spring system, assuming that at t 0, A so that A cos t. At the Active Figures link at you can set the initial position of the block and see the block spring system and the analogous pendulum in motion.

2 ibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: Capítulo 12 Física para Ciencias e Ingeniería, Volumen 1, 7 edición Raymod A. Serway y John W. Jewett, Jr. Cengage Learning ISBN Capítulo 15

3 uerza que actúa sobre una partícula unida a un uelle sin masa. Supongamos que el movimiento se realiza sobre una superficie horizontal (unidimensional, a lo largo de la dirección ) y sin rozamiento. A la posición de equilibrio le hacemos corresponder la posición Ley de Hooke La fuerza varía con la posición, proporcional al desplazamiento con respecto a la posición de equilibrio es una constante positiva (constante de recuperación, contante del muelle o constante de rigidez). El signo menos indica que la fuerza ejercida por el muelle tiene sentido opuesto al desplazamiento con respecto a la posición de equilibrio. Valida si el desplazamiento no es demasiado grande.

4 ovimiento de una partícula unida a un muelle sin masa: ovimiento armónico simple. Cuando una partícula está bajo el efecto de una fuerza de recuperación lineal, el movimiento de la partícula se corresponde con un tipo especial de movimiento oscilatorio denominado movimiento oscilatorio armónico. Aplicando a la partícula la segunda ley de Newton en la dirección La aceleración es proporcional al desplazamiento de la partícula con respecto a la posición de equilibrio y va dirigida en sentido opuesto.

5 ovimiento de una partícula unida a un muelle sin masa: ovimiento armónico simple. Por definición de aceleración Definiendo una nueva constante

6 ovimiento armónico simple: olución para la posición como función del tiempo. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t Amplitud del movimiento: el valor máimo de la posición de la partícula, tanto en la dirección positiva como en la negativa (b) Constante de fase (o ángulo de fase) Las dos quedan determinadas únicamente por la posición y velocidad de la partícula en el instante t = 0.

7 ovimiento armónico simple: efinición de frecuencia angular y fase. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t Frecuencia angular (en el sistema internacional se mide en rad/s). (b) Fase del movimiento La solución es periódica y su valor es el mismo cada vez que ωt se incrementa en 2π radianes

8 ovimiento armónico simple: efinición de periodo. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t El periodo T del movimiento es el tiempo que necesita la partícula en cubrir un ciclo completo de su movimiento (b) Se mide en segundos

9 ovimiento armónico simple: efinición de frecuencia. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t La frecuencia f es el inverso del periodo, y representa el número de oscilaciones que la partícula lleva a cabo la partícula por unidad de tiempo (b) Se mide en ciclos por segundo o Herzios (Hz)

10 ovimiento armónico simple: elación entre frecuencia angular, periodo y frecuencia. Ecuación de movimiento: ecuación diferencial de segundo orden La siguiente función coseno es una solución Relación entre las distintas variables Para un sistema muelle partícula No depende de los parámetros del movimiento como y

11 ovimiento armónico simple: elocidad y aceleración. i O T A t Velocidad ) ) v i O v v ma = ωa ω t Valores límites: ± ωa Aceleración a O a ma = ω 2 A t ) Valores límites: ± ω 2 A Valores máimos del módulo de la aceleración y la velocidad

12 ovimiento armónico simple: onsideraciones energéticas. Supongamos que el movimiento se realiza sobre una superficie horizontal (unidimensional, a lo largo de la dirección ) y sin rozamiento. Podemos considerar a la combinación del muelle y del objeto unido a él como un sistema aislado. Como la superficie no tiene rozamiento, la energía mecánica total del sistema permanece constante Suponiendo que el muelle carece de masa, la energía cinética se debe al movimiento de la partícula La energía potencial elástica del sistema se debe al muelle

13 ovimiento armónico simple: onsideraciones energéticas. Como la superficie no tiene rozamiento, la energía mecánica total del sistema permanece constante La energía mecánica total vendrá dada por: Como

14 ovimiento armónico simple: epresentación gráfica de la energía U K 1 U = k 2 2 K = 1 mv 2 2 K, U φ = 0 K, U 1 2 ka2 T 2 T t A O A Figure (a) Como función del tiempo (b) Como función de la posición

15 ovimiento armónico simple: epresentación gráfica del movimiento a ma t v a K U θ ma 0 A 0 ωω 2 A ka2 v ma T/4 0 ωa ω ka2 a ma θ ma T/2 A 0 ω 2 A ka2 v ma 1 3T/4 0 ωaω ka2 a ma θ ma T A 0 ωω 2 A ka2 A 0 A Active Figure Simple harmonic motion for a block spring system and its analogy to the motion of a simple pendulum (Section 15.5). The parameters in the table at the

16 omparación del movimiento armónico simple con el ovimiento circular uniforme Dispositivo eperimental que muestra la relación Lamp Q A P Ball Cuando el plato giratorio rota con velocidad angular constante, la sombra de la pelota se mueve hacia delante y hacia atrás con un movimiento oscilatorio armónico simple Turntable Screen A Shadow of ball Active Figure An

17 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) Círculo de referencia Consideremos una partícula colocada sobre una circunferencia de radio. La línea define un ángulo con el eje en el instante Si la partícula se mueve a lo largo de la circunferencia con velocidad angular constante, hasta que forme un ángulo con el eje de las para un tiempo dado el ángulo entre y el eje de las es Como la partícula se mueve en una circunferencia, la proyección de sobre el eje de las (punto ), se mueve hacia delante y hacia atrás a lo largo del eje entre los límites

18 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) Los puntos y siempre tienen el mismo valor de la componente. A partir del triángulo rectángulo El movimiento armónico simple a lo largo de una línea recta puede representarse como la proyección de un movimiento circular uniforme a lo largo de un diámetro de la circunferencia de referencia

19 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) La celeridad angular de es la misma que la frecuencia angular del movimiento armónico simple a lo largo del eje La constante de fase del movimiento oscilatorio armónico simple se corresponde con el ángulo inicial que forma con el eje El radio de la circunferencia de referencia se corresponde con la amplitud del movimiento oscilatorio armónico simple

20 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) La celeridad de cuando se mueve por la circunferencia de referencia es Por argumentos geométricos se deduce que la componente de la velocidad es

21 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) La aceleración de en la circunferencia de referencia está dirigida hacia el centro del círculo y tiene por módulo Por argumentos geométricos se deduce que la componente de la aceleración es

22 l muelle vertical El muelle estará en equilibrio estático para una posición y 0 que cumpla Cuando oscila

23 l muelle vertical El efecto de la gravedad es desplazar la posición de equilibrio. El muelle realizará un movimiento oscilatorio armónico en torno a esta nueva posición de equilibrio y 0, con el mismo periodo que el de un muelle horizaontal.

24 l péndulo simple: efinición Consiste en un objeto puntual de masa m, suspendido de una cuerda o barra de longitud L, cuyo etremo superior está fijo. θ T L s m m g sin θ θ m g cos θ m g Active Figure When is En el caso de un objeto real, siempre que el tamaño del objeto sea pequeño comparado con la longitud de la cuerda, el péndulo puede modelarse como un péndulo simple. Cuando el objeto se desplaza hacia un lado y luego se suelta, oscila alrededor del punto más bajo (que es la posición de equilibrio). El movimiento se produce en un plano vertical. El péndulo está impulsado por la fuerza de la gravedad.

25 l péndulo simple: cuación de movimiento Fuerzas que actúan sobre el objeto: - La fuerza ejercida por la cuerda, - Gravedad, L θ s T m g sin θ m g m Active Figure When θ m g cos θ is La componente tangencial de la fuerza de la gravedad, siempre actúa hacia la posición de equilibrio, en sentido opuesto al desplazamiento. La componente tangencial de la fuerza de la gravedad es una fuerza de recuperación. Ley de Newton para escribir la ecuación del movimiento en la dirección tangencial s es la posición medida a lo largo del arco circular. El signo menos indica que la fuerza tangencial apunta hacia la posición de equilibrio.

26 l péndulo simple: cuación de movimiento Ley de Newton para escribir la ecuación del movimiento en la dirección tangencial. L θ T Si medimos el ángulo en radianes s m m g sin θ θ m g cos θ m g Active Figure When is Como la longitud del hilo es constante Finalmente, la ecuación de movimiento es En general no se trata de un auténtico movimiento armónico simple

27 l péndulo simple: cuación de movimiento para ángulos pequeños Aproimación para ángulos pequeños, si están epresados en radianes

28 l péndulo simple: cuación de movimiento para ángulos pequeños Aproimación para ángulos pequeños, si están epresados en radianes Ecuación del movimiento armónico simple con Solución Frecuencia angular Posición angular máima Periodo Independiente de la masa y de la posición angular máima

29 scilaciones amortiguadas: efinición Las fuerzas resistivas, como el rozamiento, frenan el movimiento del sistema. La energía mecánica del sistema disminuye con el tiempo y el movimiento se amortigua. Supongamos una fuerza resistiva proporcional a la velocidad y de sentido es opuesto a la misma Donde b es una constante relacionada con la intensidad de la fuerza resistiva. La segunda ley de Newton sobre la partícula vendría dada por Por definición de velocidad y aceleración

30 scilaciones amortiguadas: cuación de movimiento Si suponemos que los parámetros del sistema son tales que (fuerza resistiva pequeña) La solución vendría dada por Donde la frecuancia angular del movimiento sería La solución formal es muy similar a la de un movimiento oscilatorio sin amortiguar, pero ahora la amplitud depende del tiempo

31 scilaciones amortiguadas: epresentación gráfica A Ae b t 2m Oscilador subamortiguado 0 t Active Figure Graph of Cuando la fuerza resistiva es relativamente pequeña, el carácter oscilatorio del movimiento se conserva, pero la amplitud de la vibración disminuye con el tiempo, y el movimiento, en última instancia, cesa.

32 scilaciones amortiguadas: scilaciones críticamente amortiguadas y sobreamortiguadas Si definimos la frecuencia natural como Podemos escribir la frecuencia angular de vibración del oscilador amortiguado como A medida que la fuerza resistiva aumenta, las oscilaciones se amortiguan con mayor rapidez. Cuando b alcanza un valor crítico b c tal que :Oscilador críticamente amortiguado El sistema ya no oscila más. Vuelve a la posición de equilibrio siguiendo una eponencial Si el medio es tan viscoso que :Oscilador sobreamortiguado El sistema no oscila. Retorna a la posición de equilibrio. Cuando más viscoso sea el medio, más tarda en volver.

33 scilaciones amortiguadas: scilaciones críticamente amortiguadas y sobreamortiguadas A medida que la fuerza resistiva aumenta, las oscilaciones se amortiguan con mayor rapidez. Cuando b alcanza un valor crítico b c tal que :Oscilador críticamente amortiguado El sistema ya no oscila más. Vuelve a la posición de equilibrio siguiendo una eponencial Si el medio es tan viscoso que :Oscilador sobreamortiguado El sistema no oscila. Retorna a la posición de equilibrio. Cuando más viscoso sea el medio, más tarda en volver. a b c t Figure Graphs of position

34 scilaciones forzadas: efinición La energía mecánica de un oscilador amortiguado disminuye con el tiempo. Es posible compensar esta pérdida de energía aplicando una fuerza eterna que realice un trabajo positivo sobre el sistema. La amplitud del movimiento permanece constante si la energía que se aporta en cada ciclo del movimiento es eactamente igual a la pérdida de energía mecánica en cada ciclo debida a las fuerzas resistivas. Ejemplo de oscilador forzado: oscilador amortiguado al que se le comunica una fuerza eterna que varía periódicamente con el tiempo. constante frecuencia angular eterna La segunda ley de Newton queda como

35 scilaciones forzadas: efinición Tras un periodo de tiempo suficientemente largo, cuando el aporte de energía por cada ciclo que realiza la fuerza eterna iguale a la cantidad de energía mecánica que se transforma en energía interna en cada ciclo, se alcanzará una situación de estado estacionario. Solución En un oscilador forzado, la partícula vibra con la frecuencia de la fuerza eterna La amplitud del oscilador forzado es constante para una fuerza eterna dada

36 scilaciones forzadas: mplitud A b = 0 Undamped Small b Large b La amplitud incrementa al disminuir la amortiguación. Cuando no hay amortiguación, la amplitud del estado estacionario tiende a infinito en la frecuencia de resonancia. 0 ω ω 0 Figure Graph of amplitude ω

37 scilaciones forzadas: mplitud La amplitud del oscilador forzado es constante para una fuerza eterna dada (es esa fuerza eterna la que conduce al sistema a un estado estacionario). Si la amortiguación es pequeña, la amplitud se hace muy grande cuando la frecuencia de la fuerza eterna se aproima a la frecuencia propia del oscilador. Al drástico incremento en la amplitud cerca de la frecuencia natural se le denomina resonancia, y la frecuencia natural del oscilador se le denomina también frecuencia de resonancia.

38 scilaciones forzadas: mplitud La razón por la cual en la frecuencia de resonancia la amplitud es máima es porque en ese momento la energía se transfiere al sistema en las condiciones más favorables. Velocidad del oscilador Energía suministrada por la fuerza eterna por unidad de tiempo Misma función trigonométrica que la fuerza eterna La fuerza eterna está en fase con la velocidad La potencia transferida el oscilador es máima cuando la fuerza aplicada está en fase con la velocidad

39 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Cuánto se va estirar el sistema en su conjunto? Cortesía de Ricardo Cabrera

40 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Cortesía de Ricardo Cabrera

41 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Cortesía de Ricardo Cabrera

42 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Equivalente significa que si al conjunto le colgamos un cuerpo y se estira, al colgarle el mismo peso al equivalente este se estira lo mismo Cortesía de Ricardo Cabrera

43 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Podemos dibujar los diagramas de cuerpo aislado para: - el punto de unión de los dos muelles - la masa que cuelga del segundo muelle - la masa que cuelga del muelle equivalente Asumiendo que el sistema está en reposo, es decir, ninguno de los cuerpos está acelerado Luego Cortesía de Ricardo Cabrera

44 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Luego

45 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Cortesía de Ricardo Cabrera

46 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Cuánto se va estirar el sistema en su conjunto? Cortesía de Ricardo Cabrera

47 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Cortesía de Ricardo Cabrera

48 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Cortesía de Ricardo Cabrera

49 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Equivalente significa que si al conjunto le colgamos un cuerpo y se estira, al colgarle el mismo peso al equivalente este se estira lo mismo Cortesía de Ricardo Cabrera

50 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Podemos dibujar los diagramas de cuerpo aislado para: - la masa que cuelga de los dos muelles - la masa que cuelga del muelle equivalente Asumiendo que el sistema está en reposo, es decir, ninguno de los cuerpos está acelerado Luego Cortesía de Ricardo Cabrera

51 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Luego

52 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Cortesía de Ricardo Cabrera

53 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Ambos con la misma frecuencia y los dos según el eje Cuál es el resultado de combinar ambos movimientos? (pregunta relacionada con superposición, concepto básico en ondas) Respuesta: hay que sumar ambos movimientos El resultado es otro movimiento armónico simple donde k k M Es el muelle efectivo, cuando ambos muelles tienen inicialmente diferentes compresiones

54 coplamiento entre movimientos oscilatorios armónicos (MAS) φ A 2 2 ωt φ 1 φ A A La epresión de la amplitud proviene de aplicar el teorema del coseno El ángulo proviene de proyectar sobre la línea azul

55 coplamiento entre movimientos oscilatorios armónicos (MAS) Caso particular Acoplamiento en fase A 2 =0.2 A=0.4 A 1 =0.2

56 coplamiento entre movimientos oscilatorios armónicos (MAS) Caso particular Acoplamiento en oposición de fase A 2 =0.5 A 1 =0.2 A=-0.3

57 coplamiento entre movimientos oscilatorios armónicos (MAS) A Caso particular Acoplamiento en desfase A 1 A 2

58 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Ambos según con diferentes frecuencias ( y ) e igual fase M A 2 ω 2 t 2 k K ω 1 t A 1 1 A

59 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Ambos según con diferentes frecuencias ( y ) e igual fase Supongamos que las dos tienen la misma amplitud Amplitud Frecuencia = t 2 1 2

60 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Si las oscilaciones son de pequeña amplitud, podemos suponer que los movimientos a lo largo de y de son independientes ean dos MAS representa k k M Fuerza central atractiva trayectorias elípticas a trayectoria está acota La trayectoria está acotada por las amplitudes B φ=π/6 A Si Si Si Polarización lineal Polarización elíptica

61 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Si el resultado son las llamadas figuras de Lissajous Aparecen tipicamente en un osciloscopio Aparecen típicamente en un osciloscopio ' = 1 2 ' = 3 2 ' = 3 4 ' = 5 4 ' = 5 6 ' = 9 8

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Javier Junquera. Dinámica del sólido rígido

Javier Junquera. Dinámica del sólido rígido Javier Junquera Dinámica del sólido rígido ibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 omento angular de un cuerpo que rota

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 005/006 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 4 MOVIMIENTO ARMÓNICO SIMPLE

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 4 MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 4 MOVIMIENTO ARMÓNICO SIMPLE El movimiento armónico simple, o también llamado M.A.S., se trata de una clase de

Más detalles

OSCILACIONES Y ONDAS

OSCILACIONES Y ONDAS Prof. Maurizio Mattesini OSCILACIONES Y ONDAS Capítulo 14 Oscilaciones Copyright 004 by W. H. Freeman & Company 1 Capítulo 14 1. Movimiento armónico simple (MAS). Energía del MAS 3. Algunos sistemas oscilantes

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A.

Septiembre Pregunta 2B.- a) b) Junio Pregunta 2B.- a) b) Modelo Pregunta 2A.- a) b) Septiembre Pregunta 1A. Septiembre 2013. Pregunta 2B.- La velocidad de una partícula que describe un movimiento armónico simple alcanza un valor máximo de 40 cm s 1. El periodo de oscilación es de 2,5 s. Calcule: a) La amplitud

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

Tema 5: Movimiento Armónico Simple.

Tema 5: Movimiento Armónico Simple. Tema 5: Movimiento Armónico Simple. 5.1 Oscilaciones y vibraciones Movimientos periódicos de vaivén alrededor de la posición de equilibrio. Oscilaciones (amplitud apreciable) y vibraciones (amplitud inapreciable)

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/45 Fátima Masot Conde Ing. Industrial 2007/08 2/45 Índice: 1. Movimiento Armónico Simple. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple.

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

TEMA 8: MOVIMIENTO OSCILATORIO Introducción

TEMA 8: MOVIMIENTO OSCILATORIO Introducción TEMA 8: MOVIMIENTO OSCILATORIO 8..-Introducción Decimos que una partícula realiza un movimiento periódico cuando a intervalos iguales de tiempo, llamados periodo T, su posición, x, velocidad, v, y aceleración,

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

x 0,05 v A x 4 0,10 0,05 1,09ms E ,09 2,97 10 J

x 0,05 v A x 4 0,10 0,05 1,09ms E ,09 2,97 10 J 0. Un punto describe una trayectoria circular de m de radio con una velocidad de 3 rad/s. Expresar la ecuación del movimiento que resulta al proyectar el punto sobre el diámetro vertical: a) El tiempo

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Física Curso: Física General

Física Curso: Física General UTP FIMAAS Física Curso: Física General Sesión Nº 16 : Oscilaciones Mecánicas Oscilaciones Mecánicas Movimiento oscilatorio Movimiento periódico Movimiento armónico simple (MAS) Elementos del MAS Ecuación

Más detalles

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA C. MOVIMIENTOS OSCILATORIOS R. Artacho Dpto. de Física y Química ÍNDICE 1. Oscilaciones o vibraciones armónicas 2. El movimiento armónico simple 3. Consideraciones dinámicas del MAS

Más detalles

Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA

Física I. Dinámica de Rotación. Ing. Alejandra Escobar UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Física I Dinámica de Rotación UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar TRABAJO Y ENERGÍA EN EL MOVIMIENTO En la unidad anterior se ha estudiado con

Más detalles

Tema 9: Movimiento oscilatorio*

Tema 9: Movimiento oscilatorio* ema 9: Movimiento oscilatorio* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez/Prof.Dra. Ana M. Marco Ramírez Física I. Grado en Ingeniería

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 011/01 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

transparent MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016

transparent   MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016 transparent www.profesorjrc.es MECÁNICA CLÁSICA 9 de septiembre de 2016 MECÁNICA CLÁSICA MECÁNICA CLÁSICA 1 CINEMÁTICA 2 DINÁMICA 3 ENERGÍA Y TRABAJO 4 DINÁMICA DE ROTACIÓN MECÁNICA CLÁSICA www.profesorjrc.es

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 27 septiembre 2016 2016-Septiembre A. Pregunta 2.- Un cuerpo que se mueve describiendo un movimiento armónico simple a lo largo del eje X presenta, en el instante inicial, una aceleración nula y una velocidad de 5 i cm s

Más detalles

Tema 9: Movimiento oscilatorio

Tema 9: Movimiento oscilatorio Tema 9: Movimiento oscilatorio FISICA I, 1º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Representación

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2016

PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA SOLUCIONARIO PROBAK 25 URTETIK Contesta 4 de los 5 ejercicios propuestos (Cada pregunta tiene un valor de 2,5 puntos, de los

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

1 Movimiento Oscilatorio

1 Movimiento Oscilatorio 1 Movimiento Oscilatorio 1.1 El Resorte Ley de Hooke: F = kx k: constante del resorte, se mide en N/m. 1.2 Movimiento Oscilatorio La solución de la ecuación de movimiento: ma = kx 1 es: x(t) = A cos(!t

Más detalles

Unidad 7. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. El oscilador armónico.

Unidad 7. J.M.L.C. - Chena - IES Aguilar y Cano. Vibraciones y ondas. El oscilador armónico. Unidad 7 Vibraciones y ondas chenalc@gmail.com Movimientos periódicos: Se repiten las posiciones cada cierto tiempo. Movimientos oscilatorios: Movimientos periódicos que cambian de sentido sobre una misma

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

3 Movimiento vibratorio armónico

3 Movimiento vibratorio armónico 3 Movimiento vibratorio armónico Actividades del interior de la unidad. Una partícula que oscila armónicamente inicia su movimiento en un extremo de su trayectoria y tarda 0, s en ir al centro de esta,

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Resúmenes y tipos de problemas de movimiento armónico simple y péndulo

Resúmenes y tipos de problemas de movimiento armónico simple y péndulo Resúmenes y tipos de problemas de movimiento armónico simple y péndulo Campillo Miguel Hernández, 5 30011 Murcia 22 de noviembre de 2011 c 2011 Índice 1. Movimiento armónico simple 1 2. Péndulo simple

Más detalles

TEMA: MOVIMIENTO ARMÓNICO SIMPLE

TEMA: MOVIMIENTO ARMÓNICO SIMPLE TEMA: MOVIMIENTO ARMÓNICO SIMPLE C-J-04 a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple MAS y Movimiento Circular Slide 2 / 71 Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES 1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Dinámica de los sistemas de partículas. Javier Junquera

Dinámica de los sistemas de partículas. Javier Junquera Dinámica de los sistemas de partículas Javier Junquera Bibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Física

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

Dinámica de los sistemas de partículas. Javier Junquera

Dinámica de los sistemas de partículas. Javier Junquera Dinámica de los sistemas de partículas Javier Junquera Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 8 Definiciones básicas Supongamos

Más detalles

Física Ciclo Dos Ed Media Capacitación 2000 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S)

Física Ciclo Dos Ed Media Capacitación 2000 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S) MOVIMIENTO ARMÓNICO SIMPLE (M.A.S) Movimiento Armónico Simple es aquel que en la aceleración está siempre apuntando hacia la posición del equilibrio y es directamente proporcional al desplazamiento. También

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Tema 6: Movimiento vibratorio.

Tema 6: Movimiento vibratorio. Física. 2º Bachillerato. Tema 6: Movimiento vibratorio. 6.1. Introducción. Cinemática de MAS. Un cuerpo describe un movimiento periódico cuando su posición, velocidad y aceleración se repiten al cabo de

Más detalles

Bases Físicas del Medio Ambiente. Oscilaciones

Bases Físicas del Medio Ambiente. Oscilaciones Bases Físicas del Medio Ambiente Oscilaciones Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento

Más detalles

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA

FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA FÍSICA GENERAL Fac. Cs. Exactas - UNCPBA Cursada 218 Cátedra Teoría/Práctica (Comisión 1): Dr. Fernando Lanzini Dr. Matías Quiroga Teoría/Práctica (Comisión 2): Dr. Sebastián Tognana Prof. Olga Garbellini

Más detalles

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 FACULTAD DE INGENIERÍA 2018 1 GUIAS DE PROBLEMAS Nº12 PROBLEMA Nº1 Un bloque de masa m está colocado en el punto medio de una viga de peso ligero

Más detalles

Física I Apuntes de Clase 9, Turno H Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 9, Turno H Prof. Pedro Mendoza Zélis Física I Apuntes de Clase 9, 18 Turno H Prof. Pedro Mendoza Zélis Movimiento Armónico Simple (M.A.S.) Es interesante analizar un tipo de movimiento que es el que ocurre cuando un objeto es apartado de

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2013 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2013 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 013 Problemas Dos puntos por problema. Problema 1 Primer parcial: El radio de una noria de feria mide 5 m y da una vuelta en 10 s. a Hállese

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Slide 1 / 71 Slide 2 / 71 MS y Movimiento ircular Movimiento rmónico Simple Hay una profunda conexión entre el Movimiento armónico simple (MS) y el Movimiento ircular Uniforme (MU). Movimiento armónico

Más detalles

Movimientos en la recta(iii) Aceleración variable: el oscilador armónico

Movimientos en la recta(iii) Aceleración variable: el oscilador armónico Movimientos en la recta(iii) Aceleración variable: el oscilador armónico Resumen Primera parte Comenzar por el principio es bien Qué es lo que ya sabes? Qué es lo que no sabes? Resumen Primera parte Comenzar

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2016 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2016 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen inal. Septiembre de 016 Problemas (Dos puntos por problema). Problema 1: El vector de posición de una partícula que describe un movimiento curvilíneo en

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Preguntas de opción múltiple (4 puntos c/u) TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 05 SOLUCIÓN ) Un auto y un camión parten del reposo y aceleran al mismo ritmo. Sin embargo, el auto acelera por

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

La bola realiza una oscilación cuando sale del punto A, pasa por O, llega hasta A'' y se devuelve nuevamente hasta llegar al punto A.

La bola realiza una oscilación cuando sale del punto A, pasa por O, llega hasta A'' y se devuelve nuevamente hasta llegar al punto A. MOVIMIENTO ARMONICO SIMPLE GRADO ONCE 1 De acuerdo a la siguiente imagen se puede afirmar: La bola realiza una oscilación cuando sale del punto A, pasa por O, llega hasta A'' y se devuelve nuevamente hasta

Más detalles

La fuerza ejercida por el resorte está en la dirección del resorte y con sentido contrario al desplazamiento del objeto.

La fuerza ejercida por el resorte está en la dirección del resorte y con sentido contrario al desplazamiento del objeto. Movimiento periódico F = k x La fuerza ejercida por el resorte está en la dirección del resorte y con sentido contrario al desplazamiento del objeto. FIS1503 - Griselda Garcia - 1er. Semestre 2009 1 /

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido Pregunta 1 Considere un péndulo formada por una masa de,

Más detalles

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 )

tg φ 0 = sen φ 0 v máx = d A sen(ω t + ϕ 0 ) PROBLEMAS DE FÍSICA º BACHILLERATO (PAU) Vibración y ondas 4/09/03. Pueden tener el mismo sentido el desplazamiento y la aceleración en un oscilador armónico simple?. En un oscilador armónico que tiene

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e

Por una cuerda tensa se propagan dos ondas armónicas: y 1 (x, t) = +0, 02 sen(2 t + 20 x) e Opción A. Ejercicio 1 [a] Eplique el fenómeno de interferencia entre dos ondas. (1 punto) Por una cuerda tensa se propagan dos ondas armónicas: y 1 (, t) = +0, 0 sen( t + 0 ) e y (, t) = 0, 0 sen( t 0

Más detalles

ACTIVIDADES DE RECUPERACIÓN FÍSICA 2º BACHILLERATO

ACTIVIDADES DE RECUPERACIÓN FÍSICA 2º BACHILLERATO ACTIVIDADES DE RECUPERACIÓN FÍSICA º BACHILLERATO REPASO DE MECÁNICA.- Puede ser negativa la energía potencial gravitatoria? a) Sí. De hecho, siempre es negativa. b) En ocasiones. c) Nunca. Siempre es

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

1. Movimiento oscilatorio

1. Movimiento oscilatorio FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO ARMÓNICO

Más detalles

F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS

F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS F2B-T03-Vibraciones y ondas-doc 2-PROBLEMAS PAU OTRAS COMUNIDADES RESUELTOS 1. 1.- Comenta si la siguiente afirmación es verdadera o falsa: En un movimiento armónico simple dado por x = A senωt las direcciones

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: a) Se dibujan las fuerzas que actúan sobre el sistema. b) Se calcula cada fuerza. c) Se calcula la resultante

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento

Posición de un Cuerpo. Elementos para la descripción del movimiento. Vector de Posición y Vector Desplazamiento 1 Bárbara Cánovas Conesa 637 70 113 www.clasesalacarta.com 1 Cinemática Posición de un Cuerpo Coordenadas Cartesianas Coordenadas Polares Vector de Posición (,, z) r, q r Elementos para la descripción

Más detalles

Oscilaciones. (2)Equilibrio inestable (3) Equilibrio estable

Oscilaciones. (2)Equilibrio inestable (3) Equilibrio estable Oscilaciones INTRODUCCIÓN La vibración de la cuerda de una guitarra, de un cristal de cuarzo, de la membrana de un altoparlante, del sonido, el movimiento de los pistones de un motor, el vaivén de un péndulo,

Más detalles

Ejercicio integrador

Ejercicio integrador Capítulo 3 1 Ejercicio integrador En qué punto del movimiento de un péndulo simple la tensión de la cuerda es mayor? a) Cuando se detiene momentáneamente antes de regresar. b) En el punto más bajo de su

Más detalles

donde g es la gravedad y l es la longitud de la

donde g es la gravedad y l es la longitud de la Bioclimática Lección: Principios físicos de vibraciones Elaborado por: Pilar Cristina Barrera Silva Mg. Educación, Física, Licenciada en Artes Plásticas Investigadora en Bioclimática y en Didáctica de

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS PROBLEMAS M.A.S. 1. De un resorte elástico de constante k = 500 N m -1 cuelga una masa puntual de 5 kg. Estando el conjunto en equilibrio, se desplaza

Más detalles

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA Las vibraciones forzadas son aquellas que se originan y mantienen mediante fuerzas aplicadas exteriormente y que no dependen de la posición ni del movimiento

Más detalles

FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS

FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS FISVIR Física virtual al alcance de todos TALLER DE EJERCICIOS PARA PRACTICAR OBJETOS VIRTUALES DE APRENDIZAJE OVA s OTRAS TAREAS Preguntas. 1. Cuál es la distancia total recorrida por un cuerpo que ejecuta

Más detalles