Movimiento oscilatorio

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Movimiento oscilatorio"

Transcripción

1 Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A ka2 v ma T/4 0 ωaω ka2 a ma θ ma T/2 A 0 ω 2 A ka2 v ma 1 3T/4 0 ωaω ka2 a ma θ ma T A 0 ωω 2 A ka2 Javier Junquera A 0 A Active Figure Simple harmonic motion for a block spring system and its analogy to the motion of a simple pendulum (Section 15.5). The parameters in the table at the right refer to the block spring system, assuming that at t 0, A so that A cos t. At the Active Figures link at you can set the initial position of the block and see the block spring system and the analogous pendulum in motion.

2 ibliografía FUENTE PRINCIPAL Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: Capítulo 12 Física para Ciencias e Ingeniería, Volumen 1, 7 edición Raymod A. Serway y John W. Jewett, Jr. Cengage Learning ISBN Capítulo 15

3 uerza que actúa sobre una partícula unida a un uelle sin masa. Supongamos que el movimiento se realiza sobre una superficie horizontal (unidimensional, a lo largo de la dirección ) y sin rozamiento. A la posición de equilibrio le hacemos corresponder la posición Ley de Hooke La fuerza varía con la posición, proporcional al desplazamiento con respecto a la posición de equilibrio es una constante positiva (constante de recuperación, contante del muelle o constante de rigidez). El signo menos indica que la fuerza ejercida por el muelle tiene sentido opuesto al desplazamiento con respecto a la posición de equilibrio. Valida si el desplazamiento no es demasiado grande.

4 ovimiento de una partícula unida a un muelle sin masa: ovimiento armónico simple. Cuando una partícula está bajo el efecto de una fuerza de recuperación lineal, el movimiento de la partícula se corresponde con un tipo especial de movimiento oscilatorio denominado movimiento oscilatorio armónico. Aplicando a la partícula la segunda ley de Newton en la dirección La aceleración es proporcional al desplazamiento de la partícula con respecto a la posición de equilibrio y va dirigida en sentido opuesto.

5 ovimiento de una partícula unida a un muelle sin masa: ovimiento armónico simple. Por definición de aceleración Definiendo una nueva constante

6 ovimiento armónico simple: olución para la posición como función del tiempo. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t Amplitud del movimiento: el valor máimo de la posición de la partícula, tanto en la dirección positiva como en la negativa (b) Constante de fase (o ángulo de fase) Las dos quedan determinadas únicamente por la posición y velocidad de la partícula en el instante t = 0.

7 ovimiento armónico simple: efinición de frecuencia angular y fase. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t Frecuencia angular (en el sistema internacional se mide en rad/s). (b) Fase del movimiento La solución es periódica y su valor es el mismo cada vez que ωt se incrementa en 2π radianes

8 ovimiento armónico simple: efinición de periodo. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t El periodo T del movimiento es el tiempo que necesita la partícula en cubrir un ciclo completo de su movimiento (b) Se mide en segundos

9 ovimiento armónico simple: efinición de frecuencia. A T t Ecuación de movimiento: ecuación diferencial de segundo orden A (a) La siguiente función coseno es una solución A A t La frecuencia f es el inverso del periodo, y representa el número de oscilaciones que la partícula lleva a cabo la partícula por unidad de tiempo (b) Se mide en ciclos por segundo o Herzios (Hz)

10 ovimiento armónico simple: elación entre frecuencia angular, periodo y frecuencia. Ecuación de movimiento: ecuación diferencial de segundo orden La siguiente función coseno es una solución Relación entre las distintas variables Para un sistema muelle partícula No depende de los parámetros del movimiento como y

11 ovimiento armónico simple: elocidad y aceleración. i O T A t Velocidad ) ) v i O v v ma = ωa ω t Valores límites: ± ωa Aceleración a O a ma = ω 2 A t ) Valores límites: ± ω 2 A Valores máimos del módulo de la aceleración y la velocidad

12 ovimiento armónico simple: onsideraciones energéticas. Supongamos que el movimiento se realiza sobre una superficie horizontal (unidimensional, a lo largo de la dirección ) y sin rozamiento. Podemos considerar a la combinación del muelle y del objeto unido a él como un sistema aislado. Como la superficie no tiene rozamiento, la energía mecánica total del sistema permanece constante Suponiendo que el muelle carece de masa, la energía cinética se debe al movimiento de la partícula La energía potencial elástica del sistema se debe al muelle

13 ovimiento armónico simple: onsideraciones energéticas. Como la superficie no tiene rozamiento, la energía mecánica total del sistema permanece constante La energía mecánica total vendrá dada por: Como

14 ovimiento armónico simple: epresentación gráfica de la energía U K 1 U = k 2 2 K = 1 mv 2 2 K, U φ = 0 K, U 1 2 ka2 T 2 T t A O A Figure (a) Como función del tiempo (b) Como función de la posición

15 ovimiento armónico simple: epresentación gráfica del movimiento a ma t v a K U θ ma 0 A 0 ωω 2 A ka2 v ma T/4 0 ωa ω ka2 a ma θ ma T/2 A 0 ω 2 A ka2 v ma 1 3T/4 0 ωaω ka2 a ma θ ma T A 0 ωω 2 A ka2 A 0 A Active Figure Simple harmonic motion for a block spring system and its analogy to the motion of a simple pendulum (Section 15.5). The parameters in the table at the

16 omparación del movimiento armónico simple con el ovimiento circular uniforme Dispositivo eperimental que muestra la relación Lamp Q A P Ball Cuando el plato giratorio rota con velocidad angular constante, la sombra de la pelota se mueve hacia delante y hacia atrás con un movimiento oscilatorio armónico simple Turntable Screen A Shadow of ball Active Figure An

17 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) Círculo de referencia Consideremos una partícula colocada sobre una circunferencia de radio. La línea define un ángulo con el eje en el instante Si la partícula se mueve a lo largo de la circunferencia con velocidad angular constante, hasta que forme un ángulo con el eje de las para un tiempo dado el ángulo entre y el eje de las es Como la partícula se mueve en una circunferencia, la proyección de sobre el eje de las (punto ), se mueve hacia delante y hacia atrás a lo largo del eje entre los límites

18 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) Los puntos y siempre tienen el mismo valor de la componente. A partir del triángulo rectángulo El movimiento armónico simple a lo largo de una línea recta puede representarse como la proyección de un movimiento circular uniforme a lo largo de un diámetro de la circunferencia de referencia

19 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) La celeridad angular de es la misma que la frecuencia angular del movimiento armónico simple a lo largo del eje La constante de fase del movimiento oscilatorio armónico simple se corresponde con el ángulo inicial que forma con el eje El radio de la circunferencia de referencia se corresponde con la amplitud del movimiento oscilatorio armónico simple

20 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) La celeridad de cuando se mueve por la circunferencia de referencia es Por argumentos geométricos se deduce que la componente de la velocidad es

21 omparación del movimiento armónico simple con el ovimiento circular uniforme y y ω v = ωa ω y v a = ω 2 A y P P a P O A φ P y O A θ Q t = 0 O v v Q O a a Q θ = ωt ω + φ (a) (b) (c) (d) La aceleración de en la circunferencia de referencia está dirigida hacia el centro del círculo y tiene por módulo Por argumentos geométricos se deduce que la componente de la aceleración es

22 l muelle vertical El muelle estará en equilibrio estático para una posición y 0 que cumpla Cuando oscila

23 l muelle vertical El efecto de la gravedad es desplazar la posición de equilibrio. El muelle realizará un movimiento oscilatorio armónico en torno a esta nueva posición de equilibrio y 0, con el mismo periodo que el de un muelle horizaontal.

24 l péndulo simple: efinición Consiste en un objeto puntual de masa m, suspendido de una cuerda o barra de longitud L, cuyo etremo superior está fijo. θ T L s m m g sin θ θ m g cos θ m g Active Figure When is En el caso de un objeto real, siempre que el tamaño del objeto sea pequeño comparado con la longitud de la cuerda, el péndulo puede modelarse como un péndulo simple. Cuando el objeto se desplaza hacia un lado y luego se suelta, oscila alrededor del punto más bajo (que es la posición de equilibrio). El movimiento se produce en un plano vertical. El péndulo está impulsado por la fuerza de la gravedad.

25 l péndulo simple: cuación de movimiento Fuerzas que actúan sobre el objeto: - La fuerza ejercida por la cuerda, - Gravedad, L θ s T m g sin θ m g m Active Figure When θ m g cos θ is La componente tangencial de la fuerza de la gravedad, siempre actúa hacia la posición de equilibrio, en sentido opuesto al desplazamiento. La componente tangencial de la fuerza de la gravedad es una fuerza de recuperación. Ley de Newton para escribir la ecuación del movimiento en la dirección tangencial s es la posición medida a lo largo del arco circular. El signo menos indica que la fuerza tangencial apunta hacia la posición de equilibrio.

26 l péndulo simple: cuación de movimiento Ley de Newton para escribir la ecuación del movimiento en la dirección tangencial. L θ T Si medimos el ángulo en radianes s m m g sin θ θ m g cos θ m g Active Figure When is Como la longitud del hilo es constante Finalmente, la ecuación de movimiento es En general no se trata de un auténtico movimiento armónico simple

27 l péndulo simple: cuación de movimiento para ángulos pequeños Aproimación para ángulos pequeños, si están epresados en radianes

28 l péndulo simple: cuación de movimiento para ángulos pequeños Aproimación para ángulos pequeños, si están epresados en radianes Ecuación del movimiento armónico simple con Solución Frecuencia angular Posición angular máima Periodo Independiente de la masa y de la posición angular máima

29 scilaciones amortiguadas: efinición Las fuerzas resistivas, como el rozamiento, frenan el movimiento del sistema. La energía mecánica del sistema disminuye con el tiempo y el movimiento se amortigua. Supongamos una fuerza resistiva proporcional a la velocidad y de sentido es opuesto a la misma Donde b es una constante relacionada con la intensidad de la fuerza resistiva. La segunda ley de Newton sobre la partícula vendría dada por Por definición de velocidad y aceleración

30 scilaciones amortiguadas: cuación de movimiento Si suponemos que los parámetros del sistema son tales que (fuerza resistiva pequeña) La solución vendría dada por Donde la frecuancia angular del movimiento sería La solución formal es muy similar a la de un movimiento oscilatorio sin amortiguar, pero ahora la amplitud depende del tiempo

31 scilaciones amortiguadas: epresentación gráfica A Ae b t 2m Oscilador subamortiguado 0 t Active Figure Graph of Cuando la fuerza resistiva es relativamente pequeña, el carácter oscilatorio del movimiento se conserva, pero la amplitud de la vibración disminuye con el tiempo, y el movimiento, en última instancia, cesa.

32 scilaciones amortiguadas: scilaciones críticamente amortiguadas y sobreamortiguadas Si definimos la frecuencia natural como Podemos escribir la frecuencia angular de vibración del oscilador amortiguado como A medida que la fuerza resistiva aumenta, las oscilaciones se amortiguan con mayor rapidez. Cuando b alcanza un valor crítico b c tal que :Oscilador críticamente amortiguado El sistema ya no oscila más. Vuelve a la posición de equilibrio siguiendo una eponencial Si el medio es tan viscoso que :Oscilador sobreamortiguado El sistema no oscila. Retorna a la posición de equilibrio. Cuando más viscoso sea el medio, más tarda en volver.

33 scilaciones amortiguadas: scilaciones críticamente amortiguadas y sobreamortiguadas A medida que la fuerza resistiva aumenta, las oscilaciones se amortiguan con mayor rapidez. Cuando b alcanza un valor crítico b c tal que :Oscilador críticamente amortiguado El sistema ya no oscila más. Vuelve a la posición de equilibrio siguiendo una eponencial Si el medio es tan viscoso que :Oscilador sobreamortiguado El sistema no oscila. Retorna a la posición de equilibrio. Cuando más viscoso sea el medio, más tarda en volver. a b c t Figure Graphs of position

34 scilaciones forzadas: efinición La energía mecánica de un oscilador amortiguado disminuye con el tiempo. Es posible compensar esta pérdida de energía aplicando una fuerza eterna que realice un trabajo positivo sobre el sistema. La amplitud del movimiento permanece constante si la energía que se aporta en cada ciclo del movimiento es eactamente igual a la pérdida de energía mecánica en cada ciclo debida a las fuerzas resistivas. Ejemplo de oscilador forzado: oscilador amortiguado al que se le comunica una fuerza eterna que varía periódicamente con el tiempo. constante frecuencia angular eterna La segunda ley de Newton queda como

35 scilaciones forzadas: efinición Tras un periodo de tiempo suficientemente largo, cuando el aporte de energía por cada ciclo que realiza la fuerza eterna iguale a la cantidad de energía mecánica que se transforma en energía interna en cada ciclo, se alcanzará una situación de estado estacionario. Solución En un oscilador forzado, la partícula vibra con la frecuencia de la fuerza eterna La amplitud del oscilador forzado es constante para una fuerza eterna dada

36 scilaciones forzadas: mplitud A b = 0 Undamped Small b Large b La amplitud incrementa al disminuir la amortiguación. Cuando no hay amortiguación, la amplitud del estado estacionario tiende a infinito en la frecuencia de resonancia. 0 ω ω 0 Figure Graph of amplitude ω

37 scilaciones forzadas: mplitud La amplitud del oscilador forzado es constante para una fuerza eterna dada (es esa fuerza eterna la que conduce al sistema a un estado estacionario). Si la amortiguación es pequeña, la amplitud se hace muy grande cuando la frecuencia de la fuerza eterna se aproima a la frecuencia propia del oscilador. Al drástico incremento en la amplitud cerca de la frecuencia natural se le denomina resonancia, y la frecuencia natural del oscilador se le denomina también frecuencia de resonancia.

38 scilaciones forzadas: mplitud La razón por la cual en la frecuencia de resonancia la amplitud es máima es porque en ese momento la energía se transfiere al sistema en las condiciones más favorables. Velocidad del oscilador Energía suministrada por la fuerza eterna por unidad de tiempo Misma función trigonométrica que la fuerza eterna La fuerza eterna está en fase con la velocidad La potencia transferida el oscilador es máima cuando la fuerza aplicada está en fase con la velocidad

39 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Cuánto se va estirar el sistema en su conjunto? Cortesía de Ricardo Cabrera

40 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Cortesía de Ricardo Cabrera

41 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Cortesía de Ricardo Cabrera

42 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Equivalente significa que si al conjunto le colgamos un cuerpo y se estira, al colgarle el mismo peso al equivalente este se estira lo mismo Cortesía de Ricardo Cabrera

43 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Podemos dibujar los diagramas de cuerpo aislado para: - el punto de unión de los dos muelles - la masa que cuelga del segundo muelle - la masa que cuelga del muelle equivalente Asumiendo que el sistema está en reposo, es decir, ninguno de los cuerpos está acelerado Luego Cortesía de Ricardo Cabrera

44 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Luego

45 uelles acoplados en serie Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en serie, y de ellos colgamos un objeto de masa Cortesía de Ricardo Cabrera

46 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Cuánto se va estirar el sistema en su conjunto? Cortesía de Ricardo Cabrera

47 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Cortesía de Ricardo Cabrera

48 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Podemos imaginar que colgamos los dos muelles del techo, aún sin colgarles la masa. En esta configuración, los muelles no están deformados (no están estirados) Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Cortesía de Ricardo Cabrera

49 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Vamos a suponer que podemos sustituir el conjunto de esos dos muelles por un muelle equivalente. Equivalente significa que si al conjunto le colgamos un cuerpo y se estira, al colgarle el mismo peso al equivalente este se estira lo mismo Cortesía de Ricardo Cabrera

50 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Podemos dibujar los diagramas de cuerpo aislado para: - la masa que cuelga de los dos muelles - la masa que cuelga del muelle equivalente Asumiendo que el sistema está en reposo, es decir, ninguno de los cuerpos está acelerado Luego Cortesía de Ricardo Cabrera

51 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Luego

52 uelles acoplados en paralelo Supongamos dos muelles de masa despreciable y de constantes elásticas y. Supongamos además que colocamos los dos muelles en paralelo, y de ellos colgamos un objeto de masa Cortesía de Ricardo Cabrera

53 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Ambos con la misma frecuencia y los dos según el eje Cuál es el resultado de combinar ambos movimientos? (pregunta relacionada con superposición, concepto básico en ondas) Respuesta: hay que sumar ambos movimientos El resultado es otro movimiento armónico simple donde k k M Es el muelle efectivo, cuando ambos muelles tienen inicialmente diferentes compresiones

54 coplamiento entre movimientos oscilatorios armónicos (MAS) φ A 2 2 ωt φ 1 φ A A La epresión de la amplitud proviene de aplicar el teorema del coseno El ángulo proviene de proyectar sobre la línea azul

55 coplamiento entre movimientos oscilatorios armónicos (MAS) Caso particular Acoplamiento en fase A 2 =0.2 A=0.4 A 1 =0.2

56 coplamiento entre movimientos oscilatorios armónicos (MAS) Caso particular Acoplamiento en oposición de fase A 2 =0.5 A 1 =0.2 A=-0.3

57 coplamiento entre movimientos oscilatorios armónicos (MAS) A Caso particular Acoplamiento en desfase A 1 A 2

58 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Ambos según con diferentes frecuencias ( y ) e igual fase M A 2 ω 2 t 2 k K ω 1 t A 1 1 A

59 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Ambos según con diferentes frecuencias ( y ) e igual fase Supongamos que las dos tienen la misma amplitud Amplitud Frecuencia = t 2 1 2

60 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Si las oscilaciones son de pequeña amplitud, podemos suponer que los movimientos a lo largo de y de son independientes ean dos MAS representa k k M Fuerza central atractiva trayectorias elípticas a trayectoria está acota La trayectoria está acotada por las amplitudes B φ=π/6 A Si Si Si Polarización lineal Polarización elíptica

61 coplamiento entre movimientos oscilatorios armónicos (MAS) Sean dos MAS representados por Si el resultado son las llamadas figuras de Lissajous Aparecen tipicamente en un osciloscopio Aparecen típicamente en un osciloscopio ' = 1 2 ' = 3 2 ' = 3 4 ' = 5 4 ' = 5 6 ' = 9 8

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas

Grupo A B C D E Docente: Fís. Dudbil Olvasada Pabon Riaño Materia: Oscilaciones y Ondas Ondas mecánicas Definición: Una onda mecánica es la propagación de una perturbación a través de un medio. Donde. Así, la función de onda se puede escribir de la siguiente manera, Ondas transversales: Son

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

CONCEPTOS CLAVE DE LA UNIDAD 3

CONCEPTOS CLAVE DE LA UNIDAD 3 CONCEPTOS CLAVE DE LA UNIDAD 3 1. Razón trigonométrica seno. Si θ es la medida de algún ángulo interior agudo en cualquier triángulo rectángulo, entonces a la razón que hay de la longitud del cateto opuesto

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO

PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Javier Junquera. Equilibrio estático

Javier Junquera. Equilibrio estático Javier Junquera Equilibrio estático Bibliografía Física, Volumen 1, 6 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 12 Definición de equilibrio El término equilibrio

Más detalles

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.

Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r

Junio Pregunta 3B.- Una espira circular de 10 cm de radio, situada inicialmente en el plano r r Junio 2013. Pregunta 2A.- Una bobina circular de 20 cm de radio y 10 espiras se encuentra, en el instante inicial, en el interior de un campo magnético uniforme de 0,04 T, que es perpendicular al plano

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. FÍSICA 2º BACHILLERATO BLOQUE TEMÁTICO: VIBRACIONES Y ONDAS MOVIMIENTOS VIBRATORIOS. MOVIMIENTO ARMÓNICO SIMPLE. Contenidos: 1) Movimiento periódico. Movimiento oscilatorio. Movimiento vibratorio. 2) Movimiento

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final Enero de 01 Problemas (Dos puntos por problema) Problem (Primer parcial): Un pescador desea cruzar un río de 1 km de ancho el cual tiene una corriente

Más detalles

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si

10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si Las pesas de la figura ruedan sin deslizar y sin 6 cm rozamiento por un plano inclinado 30 y de 10 cm longitud 30 m. Calcular: (a) la velocidad en el pie del plano inclinado si 100 cm las pesas parten

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.

Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones. Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( )

Las ecuaciones que nos dan la posición (x) de la partícula en función del tiempo son las siguientes: ( ) DESARROLLO DE LA PARTE TEÓRICA DE LA UNIDAD DIDÁCTICA. 1. Cinemática del movimiento armónico simple. Dinámica del movimiento armónico simple 3. Energía del movimiento armónico simple 4. Aplicaciones: resorte

Más detalles

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011

Instituto de Profesores Artigas. Segundo parcial Física 1 1º A 1º B 27 de octubre 2011 Instituto de Profesores rtigas Segundo parcial Física 1 1º 1º 7 de octubre 0 1. Dos meteoritos y chocan en el espacio. El meteorito tiene masa 1,5 10 1 Kg y el meteorito tiene masa, 10 1 Kg. ntes del impacto,

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo

Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Movimientos vibratorio y ondulatorio.-

Movimientos vibratorio y ondulatorio.- Movimientos vibratorio y ondulatorio.- 1. Una onda armónica, en un hilo tiene una amplitud de 0,015 m. una longitud de onda de 2,4 m. y una velocidad de 3,5 m/s. Determine: a) El período, la frecuencia

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

Examen de TEORIA DE MAQUINAS Junio 07 Nombre...

Examen de TEORIA DE MAQUINAS Junio 07 Nombre... Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

P2.- El escape de áncora

P2.- El escape de áncora P.- El escape de áncora. Como es bien sabido desde hace tiempo, las oscilaciones de un péndulo son isócronas, por lo que son idóneas como referencia para la medida del tiempo en los relojes. Sin embargo,

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa?

Unidad II - Ondas. 2 Ondas. 2.1 Vibración. Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? Unidad II Ondas Unidad II - Ondas 2 Ondas Te has preguntado: o Cómo escuchamos? o Cómo llega la señal de televisión o de radio a nuestra casa? o Cómo es posible que nos comuniquemos por celular? o Cómo

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU FÍSICA ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com DINÁMICA Y ENERGÍA 1- Un bloque de 5 kg se encuentra inicialmente en reposo en la parte superior de un plano inclinado de 10 m de longitud, que presenta un coeficiente de rozamiento µ=0,2 (ignore la diferencia

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

I. Objetivos. II. Introducción.

I. Objetivos. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #: Dinámica rotacional: Cálculo del Momento de Inercia I. Objetivos. Medir el momento

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016 Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia

Más detalles

GUIA Nº5: Cuerpo Rígido

GUIA Nº5: Cuerpo Rígido GUIA Nº5: Cuerpo Rígido Problema 1. La figura muestra una placa que para el instante representado se mueve de manera que la aceleración del punto C es de 5 cm/seg2 respecto de un sistema de referencia

Más detalles

Guía de Materia Movimiento circular

Guía de Materia Movimiento circular Física Guía de Materia Movimiento circular Módulo Electivo III Medio www.puntajenacional.cl Nicolás Melgarejo, Verónica Saldaña Licenciados en Ciencias Exactas, U. de Chile Estudiantes de Licenciatura

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Tema 1. Movimiento armónico simple (m.a.s.)

Tema 1. Movimiento armónico simple (m.a.s.) Tema 1. Movimiento armónico simple (m.a.s.) Si observas los movimientos que suceden alrededor tuyo, es muy probable que encuentres algunos de ellos en los que un objeto se mueve de tal forma que su posición

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

GUÍA Nº4: Sistema de partículas

GUÍA Nº4: Sistema de partículas Junio - 014 GUÍA Nº4: Sistema de partículas PROBLEMA 1: Tres partículas inicialmente ocupan las posiciones determinadas por los extremos de un triángulo equilátero, tal como se muestra en la figura. a)

Más detalles

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS

FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS FÍSICA de 2º de BACHILLERATO VIBRACIONES Y ONDAS EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I

Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común. Ondas I Preuniversitario Esperanza Joven Curso Física Intensivo, Módulo Común Guía 9 Ondas I Nombre: Fecha Onda Es una perturbación que viaja a través del espacio o en un medio elástico, transportando energía

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Objetos en equilibrio - Ejemplo

Objetos en equilibrio - Ejemplo Objetos en equilibrio - Ejemplo Una escalera de 5 m que pesa 60 N está apoyada sobre una pared sin roce. El extremo de la escalera que apoya en el piso está a 3 m de la pared, ver figura. Cuál es el mínimo

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

CAPITULO 11. MOVIMIENTO OSCILATORIO.

CAPITULO 11. MOVIMIENTO OSCILATORIO. CAPITULO 11. MOVIMIENTO OSCILATORIO. Los principales objetivos de los capítulos anteriores estaban orientados a describir el movimiento de un cuerpo que se puede predecir si se conocen las condiciones

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS

FÍSICA 2º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS FÍSICA º BACHILLERATO EL OSCILADOR ARMÓNICO. PROBLEMAS RESUELTOS TIMONMATE 1. Las características conocidas de una partícula que vibra armónicamente son la amplitud, A= 10 cm, y la frecuencia, f= 50 Hz.

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés

Problemas Resueltos de Física 2. Alumno. Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés Problemas Resueltos de Física 2 Alumno Titular: Ing. Daniel Omar Valdivia Adjunto: Lic. Auliel María Inés 25 de Abril de 2013 Índice general 1. Movimientos Periódicos 2 1.1. Superposición de Movimientos

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

La Hoja de Cálculo en la resolución de problemas de Física.

La Hoja de Cálculo en la resolución de problemas de Física. a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de Albacete.jesusruiz@sociedadelainformacion.com

Más detalles

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso

PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

EXPRESION MATEMATICA

EXPRESION MATEMATICA TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales

Más detalles

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE

SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE INSTITUTO TECNOLÓGICO DE MATAMOROS SIMULACIÓN DE UN SISMO MEDIANTE EL MOVIMIENTO DE UN PÉNDULO DOBLE PROYECTO SEMESTRAL MATERIA HORARIO ASESOR EQUIPO 2 Análisis de vibraciones Lunes a Viernes, 17:00-18:00hrs.

Más detalles