Tema 1: Oscilaciones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 1: Oscilaciones"

Transcripción

1 1/42 Fátima Masot Conde Ing. Industrial 2006/07 2/42 Índice: 1.. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple. Péndulo Físico. Masa+Muelle 4. Oscilaciones Amortiguadas. 5. Oscilaciones Forzadas.

2 3/42 Cuándo ocurre? Cuando un sistema estable pierde su posición de equilibrio. Ejemplos Cuerdas instrumentos musicales Oscilación de barcos sobre el agua Relojes de péndulo 4/42 Es el más básico del Movimiento Oscilatorio Sistemas Ideales (sin rozamiento) Sistemas Reales Oscilador perfecto sin pérdidas Movimiento amortiguado Movimiento forzado

3 5/42 Características Este sistema estable responde con esta fuerza de recuperación cuando se separa de su posición de equilibrio: Cte del muelle (rigidez) F x = Kx Ley de Hooke Fuerza restauradora desplazamiento 2º grado d 2 x dt 2 Kx = ma x = m d2 x dt 2 = K m x = ω2 x (Newton) Ecuación diferencial, característica del M.A.S. 6/42 Su solución: x(t) = A cos(ωt + δ) Amplitud donde A, δ = son ctes a determinar K ω = = m y es la frecuencia angular Fase (inicial) (ésta se saca directamente de la ecuación dif.-es el factor multiplicativo de x-.) verifica la ecuación del MAS. Comprobémoslo

4 7/42 Comprobación: v(t) = dx dt = Aω sin(ωt + δ) a(t) = x(t) d 2 x = Aω 2 cos(ωt + δ) = ω 2 x dt 2 A, δ, se determinan por las condiciones iniciales Qué son las condiciones iniciales? Las condiciones que se tienen de veloc. y desplazamiento en el instante t=0 8/42 t =0 Cómo se determinan A y δ de las condiciones iniciales? x 0 = x(t =0)= A cos(ωt + δ) = A cos δ t=0 v 0 = dx = Aω sin(ωt + δ) = Aω sin δ dt t=0 t=0 v x 0 0 -Aωsinδ = = ωtanδ Acosδ v A= x + ω Dos ecuaciones con dos incógnitas, A y δ, que se despejan, conocidas v 0 y x 0 Cuidado: A sólo es condición inicial (= x 0 ) si v 0 = 0

5 9/42 El MAS es un movimiento periódico: x(t) =x(t + T ) Período de repetición El movimiento se repite en las mismas condiciones de desplazamiento y velocidad x(t)= x(t +T) x(t)= x(t +T) x(t)= [ ] ( ) A cos( ωt + δ ) = A cos ω( t + T) + δ = A cos ωt + ωt + δ = x(t +T) x(t)= -A ω sin( ωt + δ ) = = - Aωsin( ωt + ωt + δ) = x(t +T) Ambas se verifican si ω T = 2 π T = 2π ω 10/42 T = 2π ω (s) rad/s Relación entre el período y la frecuencia angular La frecuencia lineal: f = 1 T = ω 2π Hz = ciclos s Si sólo tenemos un MAS, siempre podemos tomar D=0 δ = 0, eligiendo adecuadamente nuestro origen de tiempos. En ese caso: x(t) =A cos ωt

6 11/42 Desplazamiento MAS 12/42

7 13/42 x(t) v(t) = dx dt = Aω sin(ωt + δ) a(t) = d 2 x dt 2 = Aω 2 cos(ωt + δ) MAS y Movimiento Circular 14/42 Partícula que se mueve sobre una circunferencia, con velocidad cte. θ = ωt + δ La La proyección sobre el el eje eje x: x: x(t) =A cos(ωt + δ) Es un MAS

8 Energía del MAS 15/42 Kx Para: F = - K x Energía potencial: Energía cinética: U = 1 2 Kx2 = 1 2 KA2 cos 2 (ωt + δ) E c = 1 2 mv2 = 1 2 ma2 ω 2 sin 2 (ωt + δ) E TOTAL = U + E c = 1 2 KA2 [cos 2 (ωt + δ)+sin 2 (ωt + δ)] = 1 2 KA2 =Cte =1 16/42 Energía del MAS En función del tiempo En función del espacio

9 Algunos sistemas oscilantes 17/42 Los sistemas oscilantes que vamos a ver: Péndulo simple Péndulo físico Objeto + Muelle vertical En clase de problemas Péndulo simple 18/42 En qué consiste Sistema IDEAL Cuerda longitud L Masa m Fuerzas que actúan: mg y T mg sin φ = m d2 s dt 2 Ángulo desplazado Longitud del arco recorrido casi MAS Como s = Lφ d 2 s dt = φ 2 Ld2 dt 2

10 Péndulo simple 19/42 d 2 φ dt 2 = g L sin φ Tampoco es un M.A.S. Sin embargo, para ángulos pequeños, sinφ φ (infinitésimos equivalentes) d 2 φ dt 2 = g L φ M.A.S. Conclusión: El movimiento de un péndulo es aproximadamente armónico simple para pequeños desplazamientos angulares. Péndulo simple 20/42 Reescribiendo de la forma habitual d 2 φ dt 2 = ω2 φ Ecuación de este sistema r g Con: ω = L s T = 2π ω =2π L g Período del péndulo T no depende de la masa Esto también sale por análisis dimensional: [T ]=s, s [L] [g] = s

11 Péndulo simple 21/42 Solución: φ = φ 0 cos(ωt + δ) (para φ) Amplitud angular, [rd] ó grados Fuera de esa aproximación, (oscilaciones de gran amplitud): T = T 0 " = sin2 1 2 φ µ sin φ 0 + # 2π p L/g T = T (φ 0 ) M.A.S. Péndulo físico 22/42 Qué es? Cuerpo rígido que gira alrededor de un eje que no pase por su C.M. El momento de la fuerza (Mg) alrededor de ese eje: τ = Iα d 2 φ dt 2 = MgD I MgDsin φ = I d2 φ dt 2 sin φ MgD I φ = ω 2 φ M.A.S.

12 Péndulo físico 23/42 Para este sistema: r MgD ω = I s T = 2π ω =2π I MgD Comprobar que el péndulo simple también lo verifica, con I = ML D = L 2 Para oscilaciones de gran amplitud, vale la misma fórmula que dimos en el péndulo simple, con: T 0 =2π s I MgD Oscilaciones amortiguadas 24/42 Pierde energía por rozamiento. No mantiene su amplitud. Ejemplo: Columpio que se para (subamortiguamiento) Casos: Subamortiguamiento (amortiguamiento débil). Sobreamortiguamiento (amortiguamiento fuerte). Amortiguamiento crítico.

13 Oscilaciones amortiguadas Subamortiguamiento 25/42 La fuerza de amortiguación se modela con una fuerza proporcional a la velocidad. F a = bv (sistema con amortiguación lineal) Cte > 0 Kx b dx dt = x md2 dt 2 Ecuación diferencial del movimiento subamortiguado. Oscilaciones amortiguadas Subamortiguamiento 26/42 A(t) Solución: τ = m b x(t) =A 0 e ( b 2m)t cos(ω 0 t + δ) donde: ω 0 = ω 0 s1 A(t) =A 0 e t/2τ amplitud instante inicial µ b 2mω 0 2 frecuencia del caso no amortiguado= K / m τ = m b cte de tiempo

14 Oscilaciones amortiguadas 27/42 ω 0 =0cuandob =2mω 0 b c = constante de amortiguamiento crítico Si b<bc ω ' ω0 Si b b c Si b=b c DÉBILMENTE AMORTIGUADO El sistema oscila, con una frecuencia algo menor que la natural, ω 0 El sistema no oscila. (sistema sobreamortiguado) El sistema vuelve a su posición de equilibrio, sin oscilar, en el tiempo más breve posible. AMORT. CRÍTICO 28/42 Energía del oscilador amortiguado E 0 = E = 1 2 KA2 = 1 2 mω2 A 2 = 1 2 mω2 A 2 0 e t/τ = E 0 e t/τ A = A 0 e t 2τ Cuando t = τ, A 2 = A2 0 e La energía disminuye en un factor 1/e La La Energía de de un un oscilador amortiguado disminuye exponencialmente con el el tiempo

15 Oscilaciones amortiguadas Factor de calidad del oscilador amortiguado 29/42 El factor de calidad: Q = ω 0 τ (adimensional) interviene en la nueva frecuencia amortiguada: ω 0 = ω 0 s1 µ 2 1 2Q Y se puede relacionar con la pérdida de energía por ciclo: de = 1 τ E 0e t/τ dt = 1 τ E dt Oscilaciones amortiguadas Factor de calidad del oscilador amortiguado 30/42 En un ciclo: µ E E ciclo = T τ ' 2π ω 0 τ = 2π Q O sea: amortiguamiento débil 2π Q = ( E/E) ciclo Q es es inversamente proporcional a la la pérdida relativa de de energía por ciclo

16 31/42 El sistema oscilante tiende naturalmente a detenerse debido a las pérdidas Ejemplo: Un columpio Si no se le suministra energía al mismo ritmo que la pierde, su amplitud disminuye. Si se le suministra más energía de la que pierde, su amplitud aumenta. 32/42 Si se suministra la misma energía que pierde (al mismo ritmo), la amplitud se mantiene constante (estado estacionario) Una forma de suministrar la la energía

17 33/42 Podemos modelar la fuerza impulsora como: F (t) =F 0 sen(ωt) Ecuación del movimiento oscilatorio forzado: Opuestas al desplazamiento A favor del desplazamiento F(t) Kx b dx dt + F 0 sen(ωt) =m d2 x dt 2 (Newton) X F = ma Fuerza recuperadora Amortiguamiento Fuerza impulsora 34/42 Comparativa de movimientos F (t) bv Kx = ma Oscilación ideal No No tiene amortiguación y no no necesita ser ser forzada Su Su frecuencia es es la la frecuencia 'natural' ω 0 = p K/m Su Su amplitud es es constante

18 35/42 Comparativa de movimientos F (t) bv Kx = ma Oscilación amortiguada Tiende a pararse, debido al amortiguamiento Frecuencia depende de la frecuencia natural 2 µ b ω 0 6= ω 0 ; ω 0 = ω 0 s1 2mω 0 Su amplitud disminuye exponencialmente 36/42 Comparativa de movimientos F (t) bv Kx = ma Oscilación forzada Sigue oscilando, mientras actúe F(t) Frecuencia, igual a la de la fuerza impulsora Su amplitud depende de ω 0 y de ω ω

19 37/42 Solución a este sistema (régimen estacionario): Su amplitud: A = x(t) =A cos(ωt δ) menos F 0 p m2 (ω 2 0 ω2 ) 2 + b 2 ω 2 El El sistema oscila con con la la misma frecuencia que que la la fuerza impulsora ω Su cte. de fase tan δ = cte. amortiguación bω m(ω 2 0 ω2 ) masa del oscilador frecuencia natural frecuencia impulsora Amplitud de la fuerza impulsora 38/42 Interpretación de la solución. Curvas de resonancia Diagrama de la amplitud en función de la frecuencia de la fuerza impulsora. ω/ω 0 Parámetro: Constante de amortiguación, b. Cuanto más grande es el amort. b, el pico viene a ensancharse, se hace menos agudo y se desplaza hacia frecuencias más bajas. Si desaparece completamente

20 39/42 Interpretación de la solución. Curvas de resonancia Diagrama de la potencia media transmitida en función de la frecuencia de la fuerza. Parámetro: Factor de calidad, Q. Q À (amort. pequeño) Resonancia alta y aguda Q (amort. grande) Resonancia ancha y pequeña 40/42 Interpretación de la solución. Curvas de resonancia ω: Anchura de la curva de resonancia, a la mitad de la altura máxima. Para Q À ω ω 0 = 1 Q medida de la agudeza de la resonancia

21 41/42 Ejemplos de resonancia Caminar con un recipiente de agua Columpio Puentes (marchas marciales sobre puentes) Cuando Q (sistema ideal), P max Esto no ocurre en la práctica, pero puede llegar a tener un valor suficientemente grande como para que el sistema 7 se deteriore, 10 P 0 Potencia del oscilador sin forzar Ejemplo histórico: Puente de Angres (1880) 42/42 Bibliografía Tipler & Mosca Física para la ciencia y tecnología Ed. Reverté (vol. II) Serway & Jewett, Física, Ed. Thomson (vol. II) Halliday, Resnick & Walter, Física, Ed. Addison- Wesley. Sears, Zemansky, Young & Freedman, Física Universitaria, Ed. Pearson Education (vol. II) Fotografías y Figuras, cortesía de Tipler & Mosca Física para la ciencia y tecnología Ed. Reverté Sears, Zemansky, Young & Freedman, Física Universitaria, Ed. Pearson Education

Tema 1: Oscilaciones

Tema 1: Oscilaciones 1/45 Fátima Masot Conde Ing. Industrial 2007/08 2/45 Índice: 1. Movimiento Armónico Simple. Características. Representación Matemática. 2. Energía del M.A.S. 3. Algunos Sistemas Oscilantes. Péndulo Simple.

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

Bases Físicas del Medio Ambiente. Oscilaciones

Bases Físicas del Medio Ambiente. Oscilaciones Bases Físicas del Medio Ambiente Oscilaciones Programa V. OSCILACIONES. (3h) Introducción. Movimiento armónico simple. Energía del oscilador armónico. Aplicaciones del movimiento armónico. Péndulos. Movimiento

Más detalles

1. Introducción: Movimiento Circular Uniforme

1. Introducción: Movimiento Circular Uniforme FI1A2 - SISTEMAS NEWTONIANOS GUIA TEORICA Departamento de Física Unidad 5A: Oscilaciones Facultad de Ciencias Físicas y Matemáticas Profs: H. Arellano, D. Mardones, N. Mujica Universidad de Chile Semestre

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

(Lógico si la amplitud disminuyó a la mitad en 2.4 minutos tardará otros 2.4 minutos en reducirse de nuevo a la mitad)

(Lógico si la amplitud disminuyó a la mitad en 2.4 minutos tardará otros 2.4 minutos en reducirse de nuevo a la mitad) M.A.S. AMORTIGUADO Un bloque suspendido de un muelle se pone a oscilar con una amplitud inicial de 120 mm. Después de 2.4 minutos la amplitud ha disminuido hasta 60 mm. a) Cuándo será la amplitud de 30

Más detalles

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA

AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA AMORTIGUAMIENTO, OSCILACIONES FORZADAS Y RESONANCIA Las vibraciones forzadas son aquellas que se originan y mantienen mediante fuerzas aplicadas exteriormente y que no dependen de la posición ni del movimiento

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Movimiento oscilatorios: libre, amortiguado, forzado.

Movimiento oscilatorios: libre, amortiguado, forzado. Movimiento oscilatorios: libre, amortiguado, forzado. Masa sujeta a un resorte Ley de Hooke: F = kx Segunda Ley de Newton: ma = kx; a = ω x; ω = k m Conservación de la energía: E = 1 m ẋ + 1 mω x ẋ = E

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

TEMA 1 Parte I Vibraciones libres y amortiguadas

TEMA 1 Parte I Vibraciones libres y amortiguadas TEMA 1 Parte I Vibraciones libres y aortiguadas 1.1. Introducción: grados de libertad y agnitudes características VIBRACIÓN MECÁNICA: Oscilación repetida en torno a una posición de equilibrio - Vibraciones

Más detalles

Movimiento armónico simple

Movimiento armónico simple Física Grado en Biotecnología Movimiento armónico simple ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Dpto. Física y Mecánica de la Ingeniería Agroforestal Prof. Mª Victoria Carbonell Programa Generalidades:

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Capítulo 13 Ondas 1 Movimiento oscilatorio El movimiento armónico simple ocurre cuando la fuerza recuperadora es proporcional al desplazamiento con respecto del equilibrio x: F = kx k se denomina constante

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio a ma t v a K U θ ma 0 A 0 ωω 2 A 0 1 2 ka2 v ma T/4 0 ωaω 0 1 0 2 ka2 a ma θ ma T/2 A 0 ω 2 A 0 1 2 ka2 v ma 1 3T/4 0 ωaω 0 0 2 ka2 a ma θ ma T A 0 ωω 2 A 0 1 2 ka2 Javier Junquera

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas

Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Universidad de Chile Facultad de Ciencias Departamento de Física Mecánica II Ciencias Exactas Profesor : Eduardo Menéndez Ayudantes : Patricio Figueroa Carolina Gálvez Gabriel Paredes Guía N 5. Movimiento

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Clase 2-1 Clase 2-2 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Cinemática de la Partícula - 1 Clase 2-3 MOVIMIENTOS PERIÓDICOS En la naturaleza hay ciertos movimientos que se producen con asiduidad. Entre ellos

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Ejemplos de los capítulos I, II, III y IV

Ejemplos de los capítulos I, II, III y IV 1. Considere el péndulo compuesto mostrado a continuación. Dicho péndulo consiste de una barra esbelta de longitud L, masa m, pivotada en el punto O. Utilizando el desplazamiento angular de la barra θ

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

MOVIMIENTO OSCILATORIO. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

MOVIMIENTO OSCILATORIO. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física MOVIMIENTO OSCILATORIO BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física 2017 Índice general 5. Movimiento oscilatorio 1 5.1. Introducción..........................................

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos.

Promover la reflexión crítica desarrollando el pensamiento científico en sus aspectos operativos, formativos y fenomenológicos. Programas de Actividades Curriculares Plan 94A Carrera: Ingeniería Mecánica FISICA I Área: Bloque: Nivel: 1º. Ciencias Básicas Formación Básica Homogénea Tipo: Obligatoria. Modalidad: Anual Carga Horaria

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Introducción a la Física Experimental Guía de la experiencia Oscilaciones libres, amortiguadas y forzadas. Péndulo de Pohl.

Introducción a la Física Experimental Guía de la experiencia Oscilaciones libres, amortiguadas y forzadas. Péndulo de Pohl. Introducción a la Física Experimental Guía de la experiencia Oscilaciones libres, amortiguadas y forzadas. Péndulo de Pohl. Departamento de Física Aplicada. Universidad de Cantabria. Febrero 28, 2005 Tenga

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

OSCILACIONES.-TEMA 3

OSCILACIONES.-TEMA 3 OSCILACIONES.-TEMA 3 CURSO 9- Bases Físicas del Medio Ambiente º de Ciencias Ambientales Profesor: Juan Antonio Antequera Barroso Una oscilación ocurre cuando un sistema es perturbado de su posición de

Más detalles

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A Problemas de Ondas.- Una onda transversal sinusoidal, que se propaga de derecha a izquierda, tiene una longitud de onda de 0 m, una amplitud de 4 m y una velocidad de propagación de 00 m/s. Si el foco

Más detalles

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 )

OSCILADOR ARMONICO: partícula con M.A.S. ECUACION DEL M.A.S: x = A sen (ω t+ φ 0 ) ONDAS. M.A.S: Tipo de movimiento oscilatorio que tienen los cuerpos que se mueven por acción de una fuerza restauradora: F=-k x OSCILADOR ARMONICO: partícula con M.A.S ECUACION DEL M.A.S: x = A sen (ω

Más detalles

Movimiento Armónico Simple (M.A.S.)

Movimiento Armónico Simple (M.A.S.) Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios.

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

CAPITULO 11. MOVIMIENTO OSCILATORIO.

CAPITULO 11. MOVIMIENTO OSCILATORIO. CAPITULO 11. MOVIMIENTO OSCILATORIO. Los principales objetivos de los capítulos anteriores estaban orientados a describir el movimiento de un cuerpo que se puede predecir si se conocen las condiciones

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Slide 1 / 71 Slide 2 / 71 MS y Movimiento ircular Movimiento rmónico Simple Hay una profunda conexión entre el Movimiento armónico simple (MS) y el Movimiento ircular Uniforme (MU). Movimiento armónico

Más detalles

Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz

Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz Laboratorio dé Estática y Dinámica. Péndulo Simple Fis. Martín Pérez Díaz PENDULO SIMPLE: OBJETIVOS: 1) El alumno podrá representar gráficamente el Movimiento de un Péndulo. 2) Comprobará el principio

Más detalles

1. MOVIMIENTO OSCILATORIO

1. MOVIMIENTO OSCILATORIO . Movimiento armónico. MOVIMIENTO OSCILATORIO Uno de los movimientos más importantes observados en la naturaleza es el movimiento oscilatorio. Una partícula oscila cuando se mueve periódicamente con respecto

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

El oscilador armónico (I): Ecuación de oscilador Armónico

El oscilador armónico (I): Ecuación de oscilador Armónico Un movimiento que responde a la ecuación x=asen(ωt+ϕ) X es la elongación A= amplitud de la oscilación; es la elongación Máxima ω=pulsación t=tiempo ϕ=fase inicial. El movimiento vibratorio Armónico simple

Más detalles

GUIA N o 1: ONDAS Física II

GUIA N o 1: ONDAS Física II GUIA N o 1: ONDAS Física II Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros

Más detalles

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s

ECUACIÓN DEL M.A.S. v( t) = dx. a( t) = dv. x( 0) = 0.26 m v( 0) = 0.3 m / s ECUACIÓN DEL M.A.S. Una partícula tiene un desplazamiento x dado por: x ( t ) = 0.3cos t + π 6 en donde x se mide en metros y t en segundos. a) Cuáles son la frecuencia, el periodo, la amplitud, la frecuencia

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: a) Se dibujan las fuerzas que actúan sobre el sistema. b) Se calcula cada fuerza. c) Se calcula la resultante

Más detalles

Determinación de la aceleración de la gravedad en la UNAH utilizando el péndulo simple

Determinación de la aceleración de la gravedad en la UNAH utilizando el péndulo simple Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Determinación de la aceleración de la gravedad en la UNAH utilizando el péndulo simple Objetivos. Obtener el valor de la

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Movimiento armónico simple M.A.S. y movimiento circular Slide 2 / 53 Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4

Mecánica de Sistemas y Fenómenos Ondulatorios Práctico 4 Práctico 4 Ejercicio 1 Considere el sistema de la figura, formado por masas puntuales m unidas entre sí por resortes de constante K y longitud natural a. lamemos y n al desplazamiento de la n-ésima masa

Más detalles

Oscilaciones forzadas y Resonancia

Oscilaciones forzadas y Resonancia Oscilaciones forzadas y Resonancia Ignacio Arata Diego Croceri Santiago Folie ignacioarata@hotmail.com pulicipo@ciudad.com.ar sfolie@alwaysgolfing.com Universidad Favaloro - Julio 2001 Resumen En este

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

VIBRACIONES AMORTIGUADAS

VIBRACIONES AMORTIGUADAS VIBRACIONES AMORTIGUADAS OBJETIVOS: Al finalizar el tema el estudiante ha de estar en capacidad de determinar la solución de movimiento vibratorios libres que presentan amortiguación viscosa. Para ello

Más detalles

1. La capacidad límite del hábitat de un rebaño en vida salvaje es L. El ritmo de crecimiento dn dt

1. La capacidad límite del hábitat de un rebaño en vida salvaje es L. El ritmo de crecimiento dn dt AMPLIACIÓN DE MATEMÁTICAS Relación 3 005/006 1. La capacidad límite del hábitat de un rebaño en vida salvaje es L. El ritmo de crecimiento dn dt del rebaño, es proporcional a las oportunidades de crecimiento

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN.

1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN. 1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN. Movimientos oscilatorios: M.A.S. Cuando una partícula material se separa ligeramente de una posición

Más detalles

Mecánica y Ondas. Planteamiento y resolución de problemas tipo

Mecánica y Ondas. Planteamiento y resolución de problemas tipo Mecánica y Ondas. Planteamiento y resolución de problemas tipo Alvaro Perea Covarrubias Doctor en Ciencias Físicas Universidad Nacional de Educación a Distancia Madrid, Enero 2005 Capítulo 1. Leyes de

Más detalles

Momento de Torsión Magnética

Momento de Torsión Magnética Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento

Más detalles

Función de onda: f x, t

Función de onda: f x, t DE LAS OSCILACIONES A LAS ONDAS CÁTEDRA DE FÍSICA FFyB - UBA Los fenómenos ondulatorios están relacionados con innumerables fenómenos físicos: -Hablar -Escuchar la radio -Tocar un instrumento -Tirar una

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado

Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden en

Más detalles

Tema 7. Movimientos oscilatorio y ondulatorio

Tema 7. Movimientos oscilatorio y ondulatorio Física I. Curso 2010/11 Departamento de Física Aplicada. ETSII de Béjar. Universidad de Salamanca Profs. Alejandro Medina Domínguez y Jesús Ovejero Sánchez Tema 7. Movimientos oscilatorio y ondulatorio

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles