TEMA 7: CINEMÁTICA (I): DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 7: CINEMÁTICA (I): DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA"

Transcripción

1 Física y Química 1º Bachillerato Tema7. Cinemática(I) TEMA 7: CINEMÁTICA (I): DESCRIPCIÓN DEL MOVIMIENTO DE UNA PARTÍCULA 1 Concepto de moimiento. Sistema de referencia. Vector de posición de una partícula. Vector desplazamiento. 2 Velocidad media e instantánea. 3 Aceleración. Componentes intrínsecas de la aceleración. 4 Clasificación de moimientos según los alores de aceleración y sus componentes 5 Moimiento rectilíneo uniforme (MRU) 6 Relatiidad del moimiento. Principio de relatiidad de Galileo. 1. CONCEPTO DE MOVIMIENTO. SISTEMA DE REFERENCIA. VECTOR DE POSICIÓN DE UNA PARTÍCULA. VECTOR DESPLAZAMIENTO. 1.1 Concepto de moimiento. Supongamos que iajamos en un aión, sentados en nuestra plaza. Creemos que estamos en reposo y no dudaríamos en afirmar que la azafata que se pasea por el pasillo está en moimiento. Pero, Estamos realmente en reposo, o nos moemos junto con el aión? Está realmente en reposo la mesa sobre la que apoyas estos apuntes? En definitia, la pregunta que nos planteamos es: cuándo podemos afirmar que un objeto se muee? Un cuerpo se muee cuando cambia de posición respecto a un sistema de referencia que consideramos fijo. Así, según donde esté situado el sistema de referencia (donde esté el obserador que estudia el moimiento) mediremos un moimiento u otro, o no mediremos moimiento alguno. Los moimientos, entonces, son siempre relatios, pues para un obserador en la Tierra un edificio sería un objeto carente de moimiento, mientras que para un obserador en el espacio, dicho edificio tendrá un moimiento de rotación y otro de traslación. Por eso hablamos de moimiento relatio, dependiendo de la ubicación del sistema de referencia. El sistema de referencia (punto O, ejes coordenados, criterio de signos) es elegido por el obserador, la persona que estudia el moimiento. Una ez elegido, debe mantenerse. No puede cambiarse durante la resolución del problema. Punto material: En nuestro estudio del moimiento consideraremos que el objeto móil es una partícula, un punto material que representa al objeto (bola, coche, aión, electrón ) y que concentra toda su masa. 1.2 Posición. Trayectoria. Ecuación de moimiento. Vector desplazamiento. Posición ( r ): Lugar que ocupa el móil en un instante determinado. - La posición se indica con las coordenadas del punto en el que está situado el móil, medidas respecto al sistema de referencia escogido. O lo que es lo mismo, con las componentes del ector r, que a desde el punto O hasta el punto en que está la partícula. - Lógicamente, la posición de un móil dependerá del sistema de referencia escogido. - En el Sistema Internacional de unidades (S.I.), las coordenadas están dadas en metros (m). En este curso estudiaremos moimientos en dos dimensiones. Nuestro sistema de referencia está formado por los ejes coordenados x e y, a los que corresponden los ectores unitarios i y j. En todos los problemas es obligatorio dibujar claramente el sistema de referencia con el criterio de signos. Así, el ector de posición r se expresará r x i y j Nota: (En el espacio (3 dimensiones), existiría una componente más, de modo que r x i y j z k. Todas las magnitudes ectoriales tendrían tres componentes) Ojo!! La posición sólo indica dónde está el punto móil, pero NO nos dice nada sobre la distancia que ha recorrido. Si un coche está en el km 2 de una carretera, no significa que haya recorrido 2 km, sino a qué distancia está del km de esa carretera. j i r

2 Física y Química 1º Bachillerato Tema7. Cinemática(I) Trayectoria: Es la línea formada por la unión de los puntos que sigue el móil en su recorrido. Según la forma de la trayectoria, tendremos moimientos: - Rectilíneos. - Curilíneos (puede ser parabólico, circular o cualquiera). Ecuación de moimiento: r Al transcurrir el tiempo, el móil a pasando por los distintos puntos de la trayectoria. A cada alor de t, corresponde una posición. Es decir, la posición r r del móil depende del tiempo. A la expresión de la posición en función del tiempo r (t) se le denomina ecuación de moimiento de la partícula. Al sustituir en ella un alor de tiempo, obtenemos las coordenadas del punto en el que se encuentra el móil en ese instante. Cada moimiento tiene su propia ecuación de moimiento. Por ejemplo: Un pájaro que uela a 2 m de altura sobre el suelo aanzando 4 m en cada segundo: r( 3) 12 i 2 j ( m r(t ) 4t i 2 j ( m) Al cabo de 3 s su posición será ) Ecuaciones paramétricas: Si en la ecuación de moimiento, escribimos las coordenadas x e y por separado, obtenemos las ecuaciones paramétricas. x 4t m r(t ) y 2 m Posición inicial: r ( t ) r Posición en el instante en que empezamos a contar el moimiento. Normalmente consideraremos t = s., pero puede ser cualquier otro alor de tiempo. Vector desplazamiento ( r ): Vector que une dos puntos de la trayectoria. Va desde la posición considerada inicial hasta la posición final. Se calcula como el incremento, la diferencia, entre las dos posiciones (siempre la final menos la inicial). Para ello, restamos las coordenadas x e y por separado. r r r ( x x) i ( y y) j Diferencia entre desplazamiento y distancia recorrida: Vemos que r mide el desplazamiento en línea recta. El módulo del desplazamiento ( r ) sólo nos r r r indica la distancia en línea recta desde el punto inicial hasta el punto final. La distancia recorrida ( s ) se mide sobre la trayectoria. Los alores de r y s sólo coinciden cuando la trayectoria es rectilínea. 2. VELOCIDAD MEDIA E INSTANTÁNEA. Todo moimiento supone un cambio en la posición del móil. Pero este cambio puede ser más rápido o más lento. La elocidad mide la rapidez de ese cambio. Es decir, la elocidad mide cómo cambia la posición de un móil con el tiempo. 2.1 Velocidad media: Mide el cambio de posición en un interalo de tiempo. m r r r t t t Unidades: En el S.I. [ m ]= m/s = m s -1 Otras unidades: km/h, nudos (millas marinas/h) Del mismo modo que el ector desplazamiento, la elocidad media sólo tiene en cuenta los instantes inicial y final, independientemente de cómo haya sido el moimiento entre ambos instantes. Sólo nos da información sobre el promedio de elocidad en el interalo. NO nos dice cómo se muee en un instante concreto. r m r r

3 Física y Química 1º Bachillerato Tema7. Cinemática(I) Velocidad instantánea ( ): Indica cómo aría la posición del móil en cada instante. Hemos isto que la elocidad media no nos da información sobre cómo se muee la partícula en un instante concreto. Pero si calculamos la elocidad media en un interalo corto de tiempo, la información del moimiento resulta más precisa. Cuanto más corto sea el tiempo que dejemos pasar, más se aproximará la elocidad media a la elocidad que llea el móil en el instante que estamos estudiando (elocidad instantánea). Matemáticamente, esta operación se calcula mediante un paso al límite. lim t Esta operación se denomina deriada (en este caso deriada de la posición respecto al tiempo ). lim t m lim t r t dr dr m lim t r t d f ( t ) Nota: Deriada de una función. La deriada respecto al tiempo de una función nos indica cómo cambia esa función respecto al tiempo. Es una operación que tiene sus propias reglas de cálculo, de las que sólo amos a er breemente las que nos interesan). Función: f(t) Deriada: df(t)/ a = cte t 1 a t a a t n a n t n-1 f (t ) f(t) g(t) 2 df/ f(t) df/ dg/ Teniendo en cuenta que el ector de posición tiene dos componentes r (t) = x (t) i + y (t) j también tendrá dos componentes. dr dx i dy j x i Recordemos que la elocidad es una magnitud ectorial. - Su módulo ( ) se denomina rapidez. Se mide en m/s. Y se calcula y j, la elocidad 2 x y 2 - Su dirección y sentido nos indican hacia dónde se muee la partícula en ese momento. El ector elocidad es tangente a la trayectoria en cada punto. 3. ACELERACIÓN. COMPONENTES INTRÍNSECAS DE LA ACELERACIÓN. Introducción: Supongamos un moimiento en el que la elocidad se mantiene constante en todo momento. Eso significa - Que recorre los mismos metros en cada segundo (rapidez constante) - Que la dirección y sentido del moimiento se mantienen constantes, no cambian. Su trayectoria es recta. No podemos olidar este segundo aspecto de la elocidad. Un automóil que toma una cura manteniendo su rapidez a 6 km/h, NO llea elocidad constante, ya que hay algo que cambia en la elocidad: su dirección. Para estudiar los cambios en la elocidad (ya sea en módulo o en dirección) usamos una magnitud ectorial: la aceleración. Nota: Es importante tener en cuenta que el concepto de aceleración no tiene por qué significar que el moimiento sea más rápido. Puede ser también un frenado, o puede que la rapidez sea constante y cambie la dirección.

4 Física y Química 1º Bachillerato Tema7. Cinemática(I) Aceleración media: ( a m ) Mide el cambio de elocidad en un interalo de tiempo, calculando cuánto ha cambiado la elocidad ( ), y diidiéndolo entre el tiempo transcurrido ( t ) Unidades: En el S.I. [a m ]= m/s 2 = m s -2 a m t t t Al igual que en el caso de la elocidad, la aceleración media sólo tiene en cuenta los instantes inicial y final, independientemente de cómo haya sido el moimiento entre ambos instantes. 3.2 Aceleración instantánea ( a ): Indica cómo cambia la elocidad del móil en un instante determinado. Al igual que en el caso de la elocidad instantánea, se calcula como una deriada. a d Es decir, la aceleración mide cómo cambia la elocidad de móil en cada instante, ya sea porque cambia: - El módulo de la elocidad (su rapidez), es decir, a más rápido o más lento. - La dirección del moimiento (hace una trayectoria cura). Se mide en las mismas unidades que la aceleración media. [a m ]= m/s 2 = m s -2 Por ejemplo, si el módulo de una aceleración es de 2 m/s 2, significa que su rapidez cambia en 2 m/s por cada segundo de tiempo que pasa. La aceleración NO nos dice nada sobre distancia recorrida Importante: Es preciso tener muy claro que la aceleración NO nos dice cómo se muee la partícula ni hacia dónde se muee. Eso nos lo indica la elocidad. La aceleración nos informa de si la elocidad cambia, de qué modo y hacia dónde está cambiando. El ector aceleración tiene componentes cartesianas x e y. a d dx a x y a y nos indican cómo acelera el móil en cada una de las direcciones del espacio. d i y j a x i a Cuestión. Cómo sabemos si un móil a cada ez más rápido o cada ez más lento? Debemos tener en cuenta no sólo cómo acelera, sino también cómo se moía preiamente. Vamos a estudiarlo con un ejemplo. Supongamos cuatro moimientos. La única diferencia entre ellos será el signo de la elocidad inicial y de la aceleración. Rellena las cuatro tablas siguientes. A qué conclusión llegas? _ + a A) = 1 m/s ; a = 2 m/s 2 B) = 1 m/s ; a = - 2 m/s 2 t (s) t (s) _ + a y j a _ + C) = - 1 m/s ; a = 2 m/s 2 D) = - 1 m/s ; a = - 2 m/s 2 a _ + t (s) t (s)

5 Física y Química 1º Bachillerato Tema7. Cinemática(I) Cuestión: Se muee siempre el móil hacia donde indica la aceleración? NO. Es la elocidad la que indica hacia dónde se muee en cada instante. Ahora bien, si existe aceleración, la elocidad irá cambiando progresiamente hacia donde indica la aceleración. Por ejemplo: Lanzamos un cuerpo hacia arriba. Una ez que lo hemos soltado, sólo sufre la aceleración de la graedad, que tira de él hacia abajo. El ector elocidad a hacia arriba y la aceleración hacia abajo. Pero el objeto no se muee inmediatamente hacia abajo, sino que poco a poco a frenando hasta que su elocidad se hace cero y comienza a caer. Desde ese momento sí se muee en el mismo sentido que la aceleración. a Otro ejemplo: Lanzamos un cuerpo en dirección horizontal. Aunque la aceleración a en ertical, inicialmente el objeto se muee en horizontal, y progresiamente la elocidad se a desiando hacia abajo, aunque nunca caerá totalmente en ertical, siempre seguirá aanzando en horizontal al mismo tiempo que cae. De hecho, es posible incluso que se muea permanentemente en una dirección distinta de la de la aceleración, sin ir ni más rápido ni más lento. Esto ocurre cuando la aceleración es perpendicular (forma 9º) con la elocidad. Entonces el móil sigue una trayectoria circular a ritmo constante. Lo explicamos en el siguiente apartado. 3.3 Componentes intrínsecas de la aceleración: aceleraciones tangencial ( a t ) y normal ( a n ) Cuando en un moimiento cambia la elocidad, puede ser que cambie su rapidez, su dirección, o ambas cosas. Podemos estudiar estos cambios por separado, descomponiendo la aceleración como la suma de dos componentes distintas de las cartesianas, denominadas componentes intrínsecas : - Aceleración tangencial ( a t ): - Llea la misma dirección del ector elocidad (puede ir en el mismo sentido o en el opuesto). NO modifica la dirección del moimiento. - Modifica la rapidez (el módulo de la elocidad). Hace que el moimiento sea más rápido o más lento. Si el sentido de a coincide con el de aumenta la rapidez Si el sentido de En módulo, se calcula con t a t es el opuesto al de d a t disminuye la rapidez Por ejemplo, al pisar el acelerador o el freno de un coche originamos una aceleración tangencial. Varía la rapidez, pero no cambia la dirección. - Aceleración normal (o centrípeta) ( a n ): - Llea dirección perpendicular (=normal) a la elocidad. Modifica la dirección del moimiento, indicando hacia dónde se desía. Apunta hacia el centro de la cura. - NO modifica la rapidez (el módulo de la elocidad). 2 En módulo, se calcula con an donde R es el radio de la cura que describe en ese momento R Por ejemplo, al girar el olante del coche originamos una aceleración normal, que hace ariar la dirección del moimiento. La suma de ambas componentes es, lógicamente, el ector aceleración: a a t a n en módulo a a a t n

6 Física y Química 1º Bachillerato Tema7. Cinemática(I) CLASIFICACIÓN DE MOVIMIENTOS: Existen múltiples clasificaciones posibles para los moimientos. Veremos dos de ellas. Según los alores de a y : - a = = cte=. Estado de reposo. = cte. Moimiento rectilíneo uniforme (MRU): - a =cte Moimiento uniformemente acelerado (MUA) y a an en la misma dirección - Si - Si y a tienen direcciones distintas Trayectoria recta (MRUA) Trayectoria cura. Moimiento parabólico - a cte Moimiento ariado. Según los alores de - a t = - n - a t = y a t y a n : Rapidez constante. Moimiento uniforme (no tiene por qué ser rectilíneo) a 2 n = cte = cte, R cte a n Moimiento circular uniforme (MCU) a = Trayectoria recta Moimiento rectilíneo (no tiene por qué ser uniforme). - a t y a n ariables Moimiento ariado. 5. MOVIMIENTO RECTILÍNEO UNIFORME (MRU): Este tipo de moimiento se caracteriza por una elocidad constante en módulo, dirección y sentido. Por tanto: Su aceleración es nula ( a = ). Como consecuencia: Su elocidad es constante ( = cte ). Y esto significa - Su rapidez es constante (recorre la misma distancia en cada segundo) - Su trayectoria es rectilínea (al ser constante la dirección de la elocidad en todo momento). Ecuación del MRU: Sabiendo que el ector elocidad se mantiene constante ( =cte) r r r r (t t ) r r (t t ) Si t = r r t t t Gráficas del moimiento uniforme. Teniendo en cuenta las características del moimiento uniforme (elocidad constante, se recorre la misma distancia en el mismo tiempo) y de la ecuación de moimiento resultante, es fácil saber qué forma tendrán las gráficas posición-tiempo y elocidad-tiempo. r(m) (m/s) r(m) (m/s) r(m) 3 2 > > r t(s) t(s) r < t(s) < t(s) r > > t(s)

7 Física y Química 1º Bachillerato Tema7. Cinemática(I) RESOLUCIÓN DE PROBLEMAS SOBRE MOVIMIENTO: Pasos a seguir. 1º- Esquema del problema, indicando claramente el sistema de referencia y criterio de signos. (Esto es fundamental, ya que todos los datos y magnitudes del problema los calcularemos según ese sistema de referencia. No se puede cambiar durante el problema). 2º- Datos del problema (tipo de moimiento, posición inicial, elocidad, inicial, aceleración). Todas esas son magnitudes ectoriales, deben llear ectores unitarios según el sistema de referencia escogido, además de sus unidades. 3º- Ecuación del moimiento y ecuación de elocidad: sustituir los datos. Descomponer en los ejes x e y. 4º- A partir de estas ecuaciones, calculamos lo que nos pide el problema (en muchas ocasiones, un dato serirá para calcular el alor del tiempo en una de las ecuaciones, y sustituirlo luego en otra ecuación). Ejemplo: Resolución de un moimiento rectilíneo uniforme en una dimensión (eje x): Un tren se aproxima a la estación con una elocidad constante de 72 km/h. Inicialmente se encuentra a 5 km de la estación. Calcule: a) Ecuación de moimiento del tren. b) Posición al cabo de 1 minuto c) Desplazamiento en ese tiempo d) Tiempo que tarda en llegar a la estación, suponiendo que mantiene constante la elocidad. a) Ecuación de moimiento: r r t r y+ _ O + En este caso, hemos colocado el sistema de referencia en la estación. Datos iniciales (en unidades S.I.): (72 km/h = 2 m/s) r = - 5 i m, = 2 i m/s = cte, t = Se trata de un moimiento rectilíneo uniforme (MRU), ya que la elocidad se mantiene constante en módulo y dirección. r = - 5 i + 2 t i (m) x = t (m) b) Para t = 1 min = 6 s x (6) = - 38 m Se encuentra a 38 m de la estación. c) x x x = (- 5) m = 12 m. Se ha desplazado 12 m en sentido positio. d) Cuando llega a la estación: x = t = t = 25 s tarda en llegar a la estación. X Ejemplo: Resolución de un moimiento rectilíneo uniforme en dos dimensiones: Un cochecito de juguete se muee a elocidad constante por una y mesa horizontal de 3 m de largo y 1,5 m de ancho. Parte de un,1m punto situado a 2 cm del borde izquierdo y a 1 cm del borde superior. Vemos que, al cabo de 6 s, cae al suelo justo por la esquina inferior derecha. Calcule la elocidad del cochecito y la ecuación del moimiento. 1,4 m Colocamos el S.R. (O) en la esquina inferior izquierda. Datos iniciales (en unidades S.I.): r =,1 i +1,4 j m, = x i + O 3m y j m/s (la elocidad tendrá dos componentes, que no conocemos), t = Se trata de un moimiento rectilíneo uniforme (MRU), ya que la elocidad se mantiene constante en módulo y dirección. Ecuación de moimiento: x,1 x t ( m ) r r t r,1 i 1,4 j x t i y t j ( m ) y 1,4 y t ( m ) Sabemos que, pasados 6 s, llega a la esquina inferior derecha (coordenadas x= 3 m, y = m). Sustituimos. 3,1 x 6 x,48 m / s 1,4 y 6 y 2,33 m / s,48 i 2,33 j m / s Ecuación de moimiento: r (,1,48t ) i (1,4 2,33t ) j m x

8 Física y Química 1º Bachillerato Tema7. Cinemática(I) RELATIVIDAD DEL MOVIMIENTO. PRINCIPIO DE RELATIVIDAD DE GALILEO. Comenzábamos el tema preguntándonos cuándo consideramos que algo está en moimiento. El principio de relatiidad galileana es el reconocimiento del carácter relatio del moimiento, fue formulado de modo más o menos explícito por Galieo Galilei en 1632, que él mismo explicaba muy descriptiamente del siguiente modo: Encerraos con un amigo en la cabina principal bajo la cubierta de un barco grande, y llead con osotros moscas, mariposas, y otros pequeños animales oladores... colgad una botella que se acíe gota a gota en un amplio recipiente colocado por debajo de la misma... haced que el barco aya con la elocidad que queráis, siempre que el moimiento sea uniforme y no haya fluctuaciones en un sentido u otro... Las gotas caerán... en el recipiente inferior sin desiarse a la popa, aunque el barco haya aanzado mientras las gotas están en el aire... las mariposas y las moscas seguirán su uelo por igual hacia cada lado, y no sucederá que se concentren en la popa, como si se cansaran de seguir el curso del barco... Galileo Galilei "Diálogo sobre los dos máximos sistemas del mundo". Es decir, si iajamos dentro de un sistema de referencia en moimiento uniforme, no somos capaces de distinguir si nos moemos o no. Cualquier experimento que realicemos, obtendrá el mismo resultado que si estuiéramos en reposo. Ambas formas de explicar lo que le ocurre a los cuerpos del interior del barco son álidas. Algo parecido pasa cuando amos en coche a 1 km/h y hay una mosca en el interior, que se posa sobre un asiento. Un obserador que iaje en el coche no tiene inconeniente en decir que la mosca está en reposo, y llea razón, porque respecto a su sistema de referencia así es. Sin embargo, para un obserador que esté en la carretera, obsera que la mosca iaja a 1 km/h junto con el coche. Es decir, la elocidad que mida un obserador depende del cómo se muea su sistema de referencia. Si dos coches circulan por la misma carretera a 1 km/h, pero en sentido contrarios, acercándose, cada uno erá que el otro coche se acerca a 2 km/h. Existe alguna relación entre las posiciones y elocidades que miden dos obseradores, O y O'? Sí, y podemos conocerla si sabemos la posición y la elocidad de un obserador respecto a otro. Así. r rr r' donde r es la posición del móil medida por O, r ' la posición del móil medida por O', r R la elocidad relatia, es decir, la elocidad a la que se muee O' respecto a O. Del mismo modo, con las elocidades R ' r r ' O r R O'

9 Física y Química 1º Bachillerato Tema7. Cinemática(I) CUESTIONES TEÓRICAS: C.1. Cómo será la trayectoria de un moimiento con las siguientes características?: a) a = b) a n = c) a t =, a n = cte d) a t =, a n aumentando e) a = cte y paralela a, f) a = cte y no paralela a. C.2 Dibuja la trayectoria aproximada que seguiría en cada caso el punto móil de la figura, atendiendo a los datos de elocidad inicial y aceleración. Explica qué tipo de moimiento lleará (la aceleración se supone constante). a a a a a PROBLEMAS NUMÉRICOS: 1.- La ecuación de moimiento de un móil es r = 3t i + (2t 2 + 3) j (m). Calcular: a) Vector de posición inicial. b) Posición a los 5 segundos. c) Vector desplazamiento en el interalo t= y t=5 s, y su módulo. d) Ecuaciones paramétricas. e) Ecuación de la trayectoria. 2.-Las ecuaciones paramétricas para el moimiento de una partícula son, en unidades del S.I.: x = t + 1; y = t 2. Escribe la expresión del ector de posición y halla la ecuación de la trayectoria. 3.-La Ecuación del moimiento de un objeto iene dada por: r = 3 i + 2t j (m). Calcula: a) la ecuación de la Trayectoria b) Vector de posición en t= y en t=4 s. c) Vector desplazamiento para ese interalo. Coincide el módulo del ector desplazamiento con la distancia recorrida? Razona por qué. 4.-El ector de posición de una partícula en cualquier instante iene dado por r = 5t 2 i + 6t j, donde r se expresa en metros y t en segundos. Calcula la elocidad con que se muee la partícula en cualquier instante y su módulo en el instante t=2 s. 5. El moimiento de una partícula iene dado por r = 2 t i + (5- t 2 ) j (m). Calcula: a) Ecuaciones paramétricas. b) Dibuja aproximadamente la trayectoria que describe el moimiento. c) Desplazamiento durante el tercer segundo de su moimiento. 6.-La ecuación del moimiento de un objeto es: r = 3t 2 i + 2t j (m). Calcula: a) Velocidad media entre t=2 s y t=5 s. b) Módulo del ector elocidad media entre t=2 s y t=5 s. c) Velocidad instantánea y su módulo. d) Velocidad en t=3 s y su módulo. 7.- La ecuación de moimiento de un móil es r = (2 t 4) i + (t 2 3t) j (m). Calcular: a) Vector de posición inicial. b) Ídem a los 3 segundos. c) Vector desplazamiento en el interalo t= y t=3 s, y su módulo. e) Ecuación de la trayectoria.

10 Física y Química 1º Bachillerato Tema7. Cinemática(I) Las posiciones que ocupa un móil ienen dadas por: x = 1/2t 2 3 ; a) Vector de posición del móil a los dos segundos. b) Ecuación de la trayectoria. c) Velocidad a los dos segundos y el alor del módulo en ese instante. y = t 2 (m). Aeriguar: 9.-La ecuación del moimiento de un móil es: r = (6t 3 + 8t 2 + 2t 5) i (m). Calcular: a) El alor del ector de posición, el ector elocidad y el ector aceleración para t=3 s. b) Módulo de cada uno de los ectores. 1.- Un móil se muee sobre un plano, las componentes de la elocidad son, x = t 2 (m/s); y = 2 m/s. Calcular: a) Aceleración media durante el primer segundo. b) Vector aceleración y su módulo para t = 1 s. c) El módulo de las aceleraciones tangencial y normal para t=1 s. d) El radio de curatura de la trayectoria para t = 1 s. 11.-Un punto en su moimiento tiene la siguiente ecuación de moimiento r = t 3 i + 2t 2 j (m). Si la aceleración normal del punto al cabo de 2 s es de 16,2 m/s 2. Cuál es el radio de curatura de la trayectoria en ese punto? 12.-La posición de un punto que se muee en línea recta a lo largo del eje de abscisas (eje horizontal aría con el tiempo, según la ecuación: x = 4t 2 3t + 11, donde x se expresa en metros y t en segundos. a) Calcula la elocidad y la aceleración con que se muee el punto en cualquier instante. b) Valor de la elocidad y aceleración para t=2 s y t= 3 s. 13.-Calcular la elocidad y la aceleración de un móil conociendo la ecuación del moimiento del mismo: r = (t 5) i + (2t 3 3t) j (m). 14.-La posición de una partícula, iene dada por las siguientes ecuaciones paramétricas (S.I.): x = t 2 ; y = 3t; z=5 Hallar la posición, elocidad y aceleración de la partícula a los 2 s. 15.-El ector de posición de un punto es r = (t + 1) i + t 2 j + (t 4 4t 2 ) k (m). Calcular: a) Posición, elocidad y aceleración en t=2 s (ector y módulo). b) Velocidad media entre t=2 s y t=5 s y su modulo. 16. Un tren que marcha por una ía recta a una elocidad de 72 km/h se encuentra, cuando comenzamos a estudiar su moimiento, a 3 km de la estación, alejándose de ésta. Calcula: a) Ecuación de moimiento del tren. b) Tiempo que hace que pasó por la estación, suponiendo que siempre llea moimiento uniforme. 17. En una etapa contrarreloj, un ciclista circula a 3 km/h. A 1 km por delante de él marcha otro ciclista a 2 km/h. a) Calcular el tiempo que tardan en encontrarse y su posición en ese instante. b) Resoler el problema suponiendo que los dos ciclistas circulan en sentidos opuestos. 18. Un guepardo e a una gacela a 15 m de distancia, y emprende una rápida carrera para cazarla. En ese mismo instante la gacela se da cuenta y huye hacia unos matorrales, situados a 28 m de la gacela, que pueden serirle de refugio. Suponiendo ambos moimientos como uniformes (elocidad del guepardo: 18 km/h, elocidad de la gacela: 72 km/h) Quién sale ganando en esta lucha por la superiencia? (La gacela) 19. Una barca cruza un río de 1 m de ancho naegando siempre perpendicular a la orilla. Si la elocidad media que imprime el motor a la barca es de 25 km/h y el río fluye a 1,5 m/s. a) Qué distancia a lo largo del río habrá recorrido la barca cuando llegue al otro lado? ( 216,14 m) b) Con qué orientación debería naegar para llegar a la otra orilla justo enfrente de donde salió? ( Con una = - 1,5 i + 6,94 j m/s)

11 Física y Química 1º Bachillerato Tema7. Cinemática(I) Jugando al billar, golpeamos la bola, que se encuentra inicialmente en el punto que indica la figura, imprimiéndole una elocidad de 1 m/s en la dirección dibujada. Despreciamos el rozamiento. a) Calcule razonadamente la ecuación de moimiento de la bola. ( r =(,5 +,87 t ) i + (,5 +,5 t ) j m) b) Calcule en qué punto de la banda rebota la bola. (Rebota a 2,24 m de la banda izquierda),5m 3m,5m 3º 1,5 m SOLUCIONES: 1. a) r = 3 j m ; b) r (5) = 15 i + 53 j m ; c) r = 15 i + 5 j m, r = 52,2 m; d) x = 3 t (m), y = 2 t (m) e). y = 2/9 x r (t) = (t + 1) i + t 2 j ; y = x 2 2 x a) x = 3 ; b) r =3 i m, r (4)= 3 i + 8 j (m) ; c) r = 8 j m, r = 8 m. Coinciden 4. = 1 t i + 6 j m s -1 ; (2)= 2 i + 6 j m s -1 ; = 2,88 m s a) x = 2t (m), y = 5 - t 2 (m) ; b) La cura es una parábola ; c) r = r (3) - r (2)= 2 i - 5 j m. 6. a) m = 21 i + 2 j m s -1 ; b) = 21,1 m s -1 ; c) (t)= 6 t i + 2 j m s -1 36t 2 4 m s -1 d) (3)= 18 i + 2 j m s -1, (3) = 18,11 m s a) r = -4 i m ; b) r (3)= 2 i m ; c) e) y = ¼ x 2 + ½ x 2 (m) r = 6 i m, 8. a) r (2)= - i m; b) y 2x 6 2 ; o también x = ½ y 2 + 2y - 1 c) (2)= 2 i + j m s -1 ; (2) = 2,24 m s -1 r = 6 m. ; d) x = 2 t 4 m, y = t 2 3 t m 9. a) r (3)= 235 i m, (3)= 212 i m s -1, a (3)= 124 i m s -2 ; b) r(3)= 235 m, (3)= 212 m s -1, a(3)= 124 m s a) a m = i ms -2 ; b) a (t)= 2 t i ms -2, a(1) = 2 ms -2 ; c) a t (1)=,894 ms -2, a n (1)=1,789 ms -2 d) R(1)=2,79 m. 11. R = 12,84 m. 12. a) r (t) = 4t 2 3t + 11 (m) ; b) (t) = (8t 3) i m s -1, a = 8 i m s -2 ; c) (2) = 13 i m s -1, (2) = 21 i m s -1 ; a (2)= a (3) = 8 i m s -2 = cte. 13. (t)= i + (6 t 2-3) j m s -1, a (t)= 12 t j m s r (2)= 4 i + 6 j + 5 k m ; (2)= 4 i + 3 j m s -1 ; a = 2 i m s a) r (2)= 3 i + 4 j m, r(2)= 5 m ; (2)= i + 4 j + 16 k m s -1, (2)= 16,52 m s -1 ; a (2)= 2 j + 4 k m s -2, a(2)= 4,5 m s -2 ; b) m = i + 7 j k m s -1, m = 175,14 m/s 16. a) r = (3 + 2 t ) i m b) 2 min y 3 s. 17. a) 361 s, 37 i m b) 72 s., 6 i m 18. La gacela se escapa. 19. a) 216,14 m b) Con una = - 1,5 i + 6,94 j m/s 2. a) r =(,5 +,87 t ) i + (,5 +,5 t ) j m b) Rebota a 2,24 m de la banda izquierda

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal.

Depende, en consecuencia, de la velocidad inicial del móvil y del ángulo α de lanzamiento con la horizontal. IES Menéndez Tolosa (La Línea) Física Química - 1º Bach - Composición de moimientos 1 Indica, considerando constante el alor de la aceleración de la graedad, de qué factores depende el alcance máimo en

Más detalles

4. Aceleración media y aceleración instantánea 4.1. Componentes intrínsecas de la aceleración

4. Aceleración media y aceleración instantánea 4.1. Componentes intrínsecas de la aceleración Tema 2: MOVIMIENTO 1. Concepto de moimiento 1.1 Relatiidad del moimiento 2. Trayectoria, posición, desplazamiento 3. Velocidad media y elocidad instantánea 4. Aceleración media y aceleración instantánea

Más detalles

SISTEMAS DE REFERENCIA

SISTEMAS DE REFERENCIA CINEMÁTICA DE LA PARTÍCULA: SISTEMAS DE REFERENCIA 1.- Cinemática de la partícula 2.- Coordenadas intrínsecas y polares 3.- Algunos casos particulares de especial interés 1.- Cinemática de la partícula

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? Física y Química CINEMÁTICA 4º ESO La CINEMÁTICA es la parte de la Física que estudia el moimiento de los cuerpos sin atender a la causa que los produce y sin considerar, tampoco, la masa del objeto móil,

Más detalles

UNIDAD 6 F U E R Z A Y M O V I M I E N T O

UNIDAD 6 F U E R Z A Y M O V I M I E N T O UNIDAD 6 F U E R Z A Y M O V I M I E N T O 1. EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si su posición cambia a medida que pasa el tiempo. No basta con decir que un cuerpo se mueve, sino

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

TEMA 2: EL MOVIMIENTO

TEMA 2: EL MOVIMIENTO TEMA 2: EL MOVIMIENTO 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.- Aceleración. 1.- INTRODUCCIÓN La Cinemática es

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 9 -

IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 9 - IES Al-Ándalus. Dpto. Física y Química. F.Q. 1º Bachillerato. Tema 6: Descripción del movimiento - 9 - EJERCICIOS: 1.-Un móvil se mueve con r r = 3t i r + (2t 2 + 3) j r (m). Calcular: a) Vector de posición

Más detalles

s(m) t(s) TEMA 1: EL MOVIMIENTO CARACTERÍSTICAS DEL MOVIMIENTO

s(m) t(s) TEMA 1: EL MOVIMIENTO CARACTERÍSTICAS DEL MOVIMIENTO TEMA 1: EL MOVIMIENTO CARACTERÍSTICAS DEL MOVIMIENTO 1. Por qué se dice que todos los movimientos son relativos?. Responde de forma razonada las siguientes cuestiones: a. Cómo se clasifican los movimientos

Más detalles

Boletín de Problemas de Cinemática I. Resueltos

Boletín de Problemas de Cinemática I. Resueltos Boletín de Problemas de Cinemática I. Resueltos Nota: Solo están resueltos los problemas numéricos los de teoría los hemos isto en clase. Moimiento Rectilíneo Uniforme (MRU): Recuerda las ecuaciones del

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

TEMA 2: El movimiento. T_m[ 2: El movimi_nto 1

TEMA 2: El movimiento. T_m[ 2: El movimi_nto 1 TEMA 2: El movimiento T_m[ 2: El movimi_nto 1 ESQUEMA DE LA UNIDAD 1.- Introducción. 2.- Características del movimiento. 2.1.- Posición. 2.2.- Trayectoria. 2.3.- Desplazamiento. 2.4.- Velocidad. 2.5.-

Más detalles

COMPOSICIÓN DE MOVIMIENTOS. v N = velocidad del nadador v R = velocidad de la corriente. v N v R

COMPOSICIÓN DE MOVIMIENTOS. v N = velocidad del nadador v R = velocidad de la corriente. v N v R COMPOSICIÓN DE MOVIMIENTOS IES La Magdalena. Ailés. Asturias Puede ocurrir que un cuerpo esté sometido, simultáneamente, a dos moimientos. Un ejemplo típico de esto es el nadador que trata de alcanzar

Más detalles

CINEMÁTICA: CONCEPTOS BÁSICOS

CINEMÁTICA: CONCEPTOS BÁSICOS CINEMÁTICA: CONCEPTOS BÁSICOS 1. MOVIMIENTO Y SISTEMA DE REFERENCIA. Sistema de referencia. Para decidir si algo o no está en movimiento necesitamos definir con respecto a qué, es decir, se necesita especificar

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

= velocidad del nadador. = velocidad de la corriente

= velocidad del nadador. = velocidad de la corriente COMPOSICIÓN DE MOVIMIENTOS Se basan en dos principios: Principio de Independencia: Cuando un móil está sometido por causas diferentes a dos moimientos simultáneamente, su cambio de posición es independiente

Más detalles

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2

B El campo se anula en un punto intermedio P. Para cualquier punto intermedio: INT 2 2 01. Dos cargas puntuales de 3 y 1, están situadas en los puntos y ue distan 0 cm. a) ómo aría el campo entre los puntos y y representarlo gráficamente. b) Hay algún punto de la recta en el ue el campo

Más detalles

1. Características del movimiento

1. Características del movimiento CINEMÁTICA TEMA 1 1. Características del movimiento En el universo todo está en continuo movimiento. Movimiento es el cambio de posición de un cuerpo a lo largo del tiempo respecto a un sistema de referencia

Más detalles

UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA

UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA UNIDAD: 1 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA ÍNDICE 1. La percepción del tiempo y el espacio 2. Descripción del movimiento 2.1. Instante e intervalo de tiempo 2.2. Posición

Más detalles

3. MOVIMIENTO EN DOS Y TRES DIMENSIONES

3. MOVIMIENTO EN DOS Y TRES DIMENSIONES 3. MOVIMIENTO EN DOS Y TRES DIMENSIONES hora etenderemos las ideas de la sección anterior a dos tres dimensiones. La magnitud que epresa la dirección la distancia en línea recta comprendida entre dos puntos

Más detalles

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y

Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y CINEMÁTICA CINEMÁTICA (MRU) CONCEPTO DE CINEMÁTICA Estudia las propiedades geométricas de las trayectorias que describen los cuerpos en movimiento mecánico, independientemente de la masa del cuerpo y de

Más detalles

1 Las gráficas siguientes representan a un móvil que se mueve con movimiento uniformemente acelerado. Explica su significado.

1 Las gráficas siguientes representan a un móvil que se mueve con movimiento uniformemente acelerado. Explica su significado. 1 Las gráficas siguientes representan a un móvil que se mueve con movimiento uniformemente acelerado. Explica su significado. Gráfica A. Representa la variación de la posición con el tiempo, como en tiempos

Más detalles

1. Respecto a las características del movimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que

1. Respecto a las características del movimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que Conenio Nº Guía práctica Moimientos erticales Ejercicios PSU 1. Respecto a las características del moimiento que experimenta un cuerpo en caída libre, es INCORRECTO afirmar que A) la elocidad del cuerpo

Más detalles

Ejercicios de Cinemática en una Dimensión y dos Dimensiones

Ejercicios de Cinemática en una Dimensión y dos Dimensiones M.R.U Ejercicios de Cinemática en una Dimensión y dos Dimensiones 1. Dos automóviles que marchan en el mismo sentido, se encuentran a una distancia de 126km. Si el más lento va a 42 km/h, calcular la velocidad

Más detalles

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

EL MOVIMIENTO CIENCIAS: FÍSICA PLAN GENERAL SISTEMA DE REFERENCIA DESPLAZAMIENTO PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES EL MOVIMIENTO El movimiento siempre nos ha interesado. Por ejemplo, en el mundo de hoy consideramos el movimiento cuando describimos la rapidez de un auto nuevo o el poder de aceleración que tiene. La

Más detalles

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática

FÍSICA 1-2 TEMA 1 Resumen teórico. Cinemática Cinemática INTRODUCCIÓN La cinemática es la ciencia que estudia el movimiento de los cuerpos. Sistemas de referencia y móviles Desplazamiento, rapidez, velocidad y aceleración Pero un movimiento (un cambio

Más detalles

TEMA 2: MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO.

TEMA 2: MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO. Física y Química 4 ESO M.R.U.A. Pág. 1 TEMA : MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO. Un móvil posee aceleración cuando su velocidad cambia con el tiempo, o dicho de otra manera, cuando su velocidad

Más detalles

CINEMÁTICA. Vector de Posición. Vector Desplazamiento = Movimiento

CINEMÁTICA. Vector de Posición. Vector Desplazamiento = Movimiento CINEMÁTICA Se denomina Cinemática, a la parte de la Mecánica, que se encarga de estudiar, el movimiento de los cuerpos, sin considerar las causas que lo producen, ni la masa del cuerpo que se mueve. Partícula.-

Más detalles

Física y Química 4ºESO

Física y Química 4ºESO CINEMÁTICA 1. Generalidades La Cinemática es el estudio del movimiento sin atender a las causas que lo producen. Para estudiar el movimiento es necesario emplear un determinado tipo de magnitudes, por

Más detalles

Colegio Diocesano San José de Carolinas Privado Concertado

Colegio Diocesano San José de Carolinas Privado Concertado Problemas MRU 1) A cuántos m/s equivale la velocidad de un móvil que se desplaza a 72 km/h? Solución: 20 m/s 2) En el gráfico, se representa un movimiento rectilíneo uniforme, averigüe gráfica y analíticamente

Más detalles

TEMA 1: MOVIMIENTO RECTILÍNEO UNIFORME.

TEMA 1: MOVIMIENTO RECTILÍNEO UNIFORME. Física y Química 4 ESO M.R.U. Pág. 1 TEMA 1: MOVIMIENTO RECTILÍNEO UNIFORME. La cinemática es la parte de la física que estudia el movimiento de los cuerpos. Cuando un cuerpo cambia de posición a lo largo

Más detalles

2. Movimiento Relativo: Sistemas de Coordenadas en Traslación (SCT)

2. Movimiento Relativo: Sistemas de Coordenadas en Traslación (SCT) 2. Moimiento Relatio: Sistemas de Coordenadas en Traslación (SCT) Ultima reisión 26/05/2005 En este documento se presentan uno de los conceptos más importantes de la cinemática, como lo es el del moimiento

Más detalles

Movimiento curvilíneo. Magnitudes cinemáticas

Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo. Magnitudes cinemáticas Movimiento curvilíneo Supongamos que el movimiento tiene lugar en el plano XY, Situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es

Más detalles

MAGNITUDES DE MOVIMIENTO TEMA 2

MAGNITUDES DE MOVIMIENTO TEMA 2 MAGNITUDES DE MOVIMIENTO TEMA 2 QUÉ ES EL MOVIMIENTO? Para saber si está en movimiento un cuerpo fijamos su posición respecto a un punto*, y: si varía en el transcurso del tiempo, el cuerpo está en movimiento

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Prof. Jorge Rojo Carrascosa CINEMÁTICA

Prof. Jorge Rojo Carrascosa CINEMÁTICA CINEMÁTICA La cinemática estudia el movimiento de los cuerpos sin tener en cuenta las causas que los producen. Por tanto, tan sólo se ocupa de los aspectos externos como son el desplazamiento, el espacio

Más detalles

Movimiento. Cinemática

Movimiento. Cinemática Movimiento. Cinemática Magnitudes físicas Cinemática (conceptos básicos) Desplazamiento y espacio recorrido Velocidad Gráficas espacio-tiempo Gráficas posición-tiempo Gráficas velocidad-tiempo Movimiento

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO MOVIMIENTO RECTILINEO UNIFORMEMENTE ACELERADO Unidades: [v] = [ ] = L/T m/s o ft/s RAPIDEZ Y VELOCIDAD La RAPIDEZ es una cantidad escalar, únicamente indica la magnitud de la velocidad La VELOCIDAD e

Más detalles

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF.

LICEO BRICEÑO MÉNDEZ S0120D0320 DEPARTAMENTO DE CONTROL Y EVALUACIÓN CATEDRA: FISICA PROF. GRUPO # 4 to Cs PRACTICA DE LABORATORIO # 3 Movimientos horizontales OBJETIVO GENERAL: Analizar mediante graficas los diferentes Tipos de Movimientos horizontales OBJETIVOS ESPECIFICOS: Estudiar los conceptos

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia.

Decimos que un objeto se mueve con un movimiento circular si su trayectoria es una circunferencia. Movimiento circular La trayectoria de un móvil sabemos que puede tener formas muy diversas. Hasta ahora hemos estudiado el caso más simple de trayectoria, la rectilínea. Ahora vamos a dar un paso más y

Más detalles

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan.

CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 1. CINEMÁTICA. CONCEPTO. CINEMÁTICA: se encarga del estudio de los movimientos de los cuerpos sin atender a las causas que lo originan. 2. MOVIMIENTO. 2.1. CONCEPTO Es el cambio de lugar o de posición

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1

RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 RECUPERACIÓN DE LA ASIGNATURA : FÍSICA Y QUÍMICA 1º BACHILLERATO CUADERNILLO 1 Para recuperar la asignatura Física y Química 1º de bachillerato debes: Realizar en un cuaderno las actividades de refuerzo

Más detalles

TEMA 3: El movimiento rectilíneo

TEMA 3: El movimiento rectilíneo Física y Química Curso 2011/12 4º E.S.O. TEMA 3: El movimiento rectilíneo 1.- Las ecuaciones de los movimientos de dos móviles que se mueven por la misma trayectoria, en las unidades del S.I. son respectivamente:

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD 1. El observador A está pescando en la orilla de un río el observador B está sobre una balsa que es arrastrada por la corriente del

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador.

MOVIMIENTO. El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Ciencias Naturales 2º ESO página 1 MOVIMIENTO El movimiento es el cambio de posición de un objeto respecto a un sistema de referencia u observador. Las diferentes posiciones que posee el objeto forman

Más detalles

C O N C E P T O S B Á S I C O S D E M O V I M I E N T O

C O N C E P T O S B Á S I C O S D E M O V I M I E N T O DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. GUÍA DE REPASO: CINEMÁTICA NOMBRE alumno(a): CURSO: III medio C O N C E P T O S B Á S I C O S D E M O V I M I E N T O En física, se dice que un

Más detalles

FUERZAS Y MOVIMIENTO. Descripción del movimiento Fuerza y movimiento Fuerza gravitatoria

FUERZAS Y MOVIMIENTO. Descripción del movimiento Fuerza y movimiento Fuerza gravitatoria Fuerza y movimiento Fuerza gravitatoria FUERZAS Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 Calcula

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

PROBLEMAS MOVIMIENTOS EN EL PLANO

PROBLEMAS MOVIMIENTOS EN EL PLANO 1 PROBLEMAS MOVIMIENTOS EN EL PLANO 1- Dados los puntos del plano XY: P 1 (2,3), P 2 (-4,1), P 3 (1,-3). Determina: a) el vector de posición y su módulo para cada uno; b) el vector desplazamiento para

Más detalles

FICHA 2: Ejercicios ecuación MU y gráficas

FICHA 2: Ejercicios ecuación MU y gráficas FICHA 2: Ejercicios ecuación MU y gráficas 1. Escribe la ecuación del movimiento en los casos: a) S 0 = 0 m con v = 2 m/s b) S 0 = 2 m con v = 5 m/s c) S 0 = -5 m con v = -3 5 m/s d) S 0 = 0 5 m con v

Más detalles

Física y Química 4º E.S.O. 2016/17

Física y Química 4º E.S.O. 2016/17 Física y Química 4º E.S.O. 2016/17 TEMA 3: El movimiento rectilíneo Ficha número 8 1.- Partiendo del reposo, un bólido de fórmula 1 puede alcanzar una velocidad de 158,4 km/h en 11 s. Calcula: a) La aceleración

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación.

CINEMATICA. es la letra griega delta y se utiliza para expresar la variación. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: FISICA NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL-EJERCITACION PERIODO

Más detalles

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,

Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición, Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de

Más detalles

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos)

CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) CINEMÁTICA ESTUDIO DEL MOVIMIENTO DE LOS CUERPOS 1.- Movimiento y desplazamiento (Conceptos previos) Para poder definir el movimiento, se necesitan tres factores: - El SISTEMA DE REFERENCIA es el punto

Más detalles

EJERCICIOS DE CINEMÁTICA 4º E.S.O.

EJERCICIOS DE CINEMÁTICA 4º E.S.O. EJERCICIOS DE CINEMÁTICA 4º E.S.O. Tema 1 del libro: Conceptos:. Sistema de referencia..trayectoria, desplazamiento, velocidad, aceleración. Movimiento rectilíneo uniforme.. Movimiento rectilíneo uniformemente

Más detalles

Física 4º E.S.O. 2015/16

Física 4º E.S.O. 2015/16 Física 4º E.S.O. 2015/16 TEMA 3: El movimiento rectilíneo Ficha número 6 1.- Las ecuaciones de los movimientos de dos móviles que se mueven por la misma trayectoria, en las unidades del S.I. son respectivamente:

Más detalles

UNIDAD II El movimiento

UNIDAD II El movimiento UNIDAD II El movimiento UNIDAD 2 MOVIMIENTO RECTILÍNEO 2.1 CONCEPTOS GENERALES MECÁNICA CINEMÁTICA DINÁMICA ESTÁTICA Mecánica: Es la rama de la física que estudia el movimiento de los cuerpos. Cinemática:

Más detalles

d 0,42 0,42cos 1,26 10 m

d 0,42 0,42cos 1,26 10 m 0. Una partícula con carga y masa m penetra con una elocidad en una zona donde hay un campo magnético uniforme. Calcular: a) la fuerza ue actúa sobre la partícula y el trabajo efectuado por dicha fuerza.

Más detalles

TEMA 2. CINEMÁTICA OBJETIVOS

TEMA 2. CINEMÁTICA OBJETIVOS OBJETIVOS Definir y relacionar las variables que describen el movimiento de una partícula (desplazamiento, velocidad y aceleración). Justificar la necesidad del carácter vectorial de las variables cinemáticas.

Más detalles

La velocidad del paquete es: sustituimos los datos del enunciado

La velocidad del paquete es: sustituimos los datos del enunciado Movimiento rectilíneo. 01. Desde un globo que se eleva a velocidad constante de 3,5 m/s se suelta un paquete cuando se encuentra a 900 m de altura sobre el suelo. Calcula: a) La altura máxima del paquete

Más detalles

1. Conceptos básicos para estudiar el movimiento.

1. Conceptos básicos para estudiar el movimiento. Contenidos Tema 4: EL MOVIMIENTO 1. CONCEPTOS BÁSICOS PARA ESTUDIAR EL MOVIMIENTO. 2. LA VELOCIDAD 3. ECUACIÓN DEL MOVIMIENTO 4. MOVIMIENTO RECTILÍNEO Y UNIFORME (M.R.U.) 5. LA ACELERACIÓN 6. MOVIMIENTO

Más detalles

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS

BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS Curso 2011-2012 BOLETÍN EJERCICIOS TEMA 1 MOVIMIENTOS 1. Un automóvil circula con una velocidad media de 72 km/h. Calcula qué distancia recorre cada minuto. 2. Un ciclista recorre una distancia de 10 km

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA

Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA 1 Tema 1: CINEMÁTICA 1.1. MECÁNICA Y CINEMÁTICA La parte de la Física que estudia el movimiento se denomina Mecánica, y está constituida por dos disciplinas: - Cinemática: estudia el movimiento sin atender

Más detalles

FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I)

FÍSICA Y QUÍMICA 1º BACHILLERATO. Problemas sobre Cinemática (I) FÍSICA Y QUÍMICA 1º BACHILLERATO Problemas sobre Cinemática (I) 1) Un móvil describe un movimiento rectilíneo en el cual la posición en cada instante está dada por la ecuación: x( t) = t 2 4t. a) Construir

Más detalles

Fuerzas centrípetas mantienen la trayectoria circular de estos niños.

Fuerzas centrípetas mantienen la trayectoria circular de estos niños. 2012 Fuerzas centrípetas mantienen la trayectoria circular de estos niños. Aplicar sus conocimientos sobre aceleración y fuerza centrípeta en la solución de problemas de moimiento circular. Definir y aplicar

Más detalles

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN 1. Una partícula se mueve a lo largo del eje x de tal forma que su posición en cualquier instante está dada por la ecuación x( t) 6t,

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N

IES La Magdalena. Avilés. Asturias DINÁMICA F= 2 N DIÁMICA IES La Magdalena. Ailés. Asturias La Dinámica es una parte de la Física que estudia las acciones que se ejercen sobre los cuerpos y la manera en que estas acciones influyen sobre el moimiento de

Más detalles

Ejercicios de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Ejercicios de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Ejercicios de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. Cinemática Movimiento rectilíneo 1. Un ciclista marcha por una región donde hay muchas subidas y bajadas. En las cuestas arriba lleva una

Más detalles

Capítulo 10. Movimiento circular uniforme Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University

Capítulo 10. Movimiento circular uniforme Presentación PowerPoint de Paul E. Tippens, Profesor de Física Southern Polytechnic State University Capítulo 10. Moimiento circular uniforme Presentación PowerPoint de Paul E. ippens, Profesor de Física Southern Polytechnic State Uniersity 2007 Aceleración centrípeta Fuerzas centrípetas mantienen la

Más detalles

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante

Física Cinemática velocidad v = x/t (1) Movimiento rectilíneo uniforme (M.R.U.) velocidad es constante Física Cinemática La cinemática se ocupa de la descripción del movimiento sin tener en cuenta sus causas. La velocidad (la tasa de variación de la posición) se define como la razón entre el espacio recorrido

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Movimientos verticales

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Movimientos verticales SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Moimientos erticales SGUICCO011CB3-A17V1 Solucionario guía Moimientos erticales Ítem Alternatia Habilidad 1 B Comprensión C Comprensión 3 B Comprensión 4 A Comprensión

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Cinemática

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Cinemática 1.1 Ejercicio 1 La rapidez de un móvil se mide en m/s en el SI y, en la práctica en Km/h. a. Expresar en m/s la rapidez de un coche que va a 144 Km/h b. Cuál es la velocidad de un avión en Km/h cuando

Más detalles

Soluciones unidad 10: Tipos de movimientos 1CI 1

Soluciones unidad 10: Tipos de movimientos 1CI 1 Soluciones unidad 1: Tipos de moimientos 1CI 1 SOLUCIONES UNIDAD 1. TIPOS DE MOVIMIENTOS QUÉ SABES DE ESTO? 1. Comenta las siguientes afirmaciones: a) En general, la distancia recorrida por un móil es

Más detalles

Ejercicios de movimiento uniforme

Ejercicios de movimiento uniforme Ejercicios de movimiento uniforme 1) Una persona recorre tres cuartos de circunferencia de radio 10 metros. Después recorre un cuarto de circunferencia en sentido contrario. a) Determina el espacio recorrido

Más detalles

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos

CINEMÁTICA MRU 4º E.S.O. MRUA. Caída y lanzamiento de cuerpos MRU MRUA CINEMÁTICA 4º E.S.O. Caída y lanzamiento de cuerpos Movimiento Rectilíneo Uniforme 1. Un corredor hace los 400 metros lisos en 50 seg. Calcula la velocidad en la carrera. Sol: 8m/s. 2. Un automovilista

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Movimiento III: movimientos con aceleración constante Nº Ejercicios PSU 1. En un gráfi co velocidad / tiempo, el valor absoluto de la pendiente y el área entre la recta

Más detalles

t (s) t (s) t (s) Determina a partir de ellos la velocidad con que se mueve cada uno de ellos.

t (s) t (s) t (s) Determina a partir de ellos la velocidad con que se mueve cada uno de ellos. CINEMÁTICA 1- Representa en un gráfico posición - tiempo el movimiento de un tren, visto por un observador desde el andén, si: a) Inicialmente el tren se encuentra a 0m y se acerca uniformemente. b) A

Más detalles

Ejercicios de Física 4º de ESO

Ejercicios de Física 4º de ESO Ejercicios de Física 4º de ESO 1. Sobre un cuerpo actúan dos fuerzas de la misma dirección y sentidos contrarios de 36 y 12 N Qué módulo tiene la fuerza resultante? Cuál es su dirección y su sentido? R

Más detalles

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO EL MOVIMIENTO 1. MOVIMIENTO Y REPOSO. NECESIDAD DE UN SISTEMA DE REFERENCIA: El movimiento es un fenómeno físico que se define como todo cambio de lugar o posición en el espacio que experimentan los cuerpos

Más detalles

Ejercicios resueltos de MRUA

Ejercicios resueltos de MRUA Ejercicios resueltos de MRUA 1) La trayectoria de un móvil viene determinada por la expresión r = 2t 2 i + 2j - 8tk m a) Halla las ecuaciones de la velocidad y la aceleración del móvil y di qué tipo de

Más detalles

CINEMÁTICA. Introducción

CINEMÁTICA. Introducción CINEMÁTICA 1- MAGNITUDES ESCALARES Y VECTORIALES. 2- CINEMÁTICA. MAGNITUDES FUNDAMENTALES PARA EL ESTUDIO DEL MOVIMIENTO. 3- CLASIFICACIÓN DE MOVIMIENTOS. Introducción La cinemática es una parte de la

Más detalles

TEMA 2: El movimiento. 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto no existe.

TEMA 2: El movimiento. 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto no existe. Física y Química Curso 2011/12 4º E.S.O. TEMA 2: El movimiento 1.- Por qué se dice que el movimiento es relativo? 2.- Explica razonadamente el significado de la siguiente frase: el movimiento absoluto

Más detalles

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 4 : Cinemática. 1. Elementos para la descripción del movimiento

IES LEOPOLDO QUEIPO. DEPARTAMENTO DE FÍSICA Y QUÍMICA. 4º ESO. Tema 4 : Cinemática. 1. Elementos para la descripción del movimiento Tema 4 : Cinemática Esquema de trabajo: 1. Elementos para la descripción del movimiento Movimiento Trayectoria Espacio 2. Velocidad 3. Aceleración 4. Tipos de movimientos Movimiento rectilíneo uniforme

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

Velocidad. La aceleración siempre vale cero en el MRU.

Velocidad. La aceleración siempre vale cero en el MRU. 4 RESUMEN Resumo todo el libro en estas primeras páginas. Es todo lo que está dentro de los recuadros. Lo hago por si necesitás buscar rápido una fórmula o querés darle una mirada general a todo el libro.

Más detalles

Solución: Según Avogadro, 1 mol de cualquier gas, medido en condiciones normales ocupa 22,4 L. Así pues, manteniendo la relación: =1,34 mol CH 4

Solución: Según Avogadro, 1 mol de cualquier gas, medido en condiciones normales ocupa 22,4 L. Así pues, manteniendo la relación: =1,34 mol CH 4 Ejercicios Física y Química Primer Trimestre 1. Calcula los moles de gas metano CH 4 que habrá en 30 litros del mismo, medidos en condiciones normales. Según Avogadro, 1 mol de cualquier gas, medido en

Más detalles

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PERÍODO 02 DE 2016

PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PERÍODO 02 DE 2016 PRIMER TALLER DE REPASO CINEMÁTICA DE UNA PARTÍCULA EN UNA DIMENSIÓN PERÍODO 02 DE 2016 1. Un móvil describe un movimiento rectilíneo. En la figura P1.1, se representa su velocidad en función del tiempo.

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

FÍSICA Y QUÍMICA // 1º BACHILLERATO.

FÍSICA Y QUÍMICA // 1º BACHILLERATO. FÍSICA Y QUÍMICA // 1º BACHILLERATO. INTRODUCCIÓN AL MOVIMIENTO. CINEMATICA. TEMA 6 TEMARIO FÍSICA Y QUÍMICA.. I.E.S. FERNANDO DE LOS RÍOS (QUINTANAR DEL REY) Temario Física y Química. Tema 6. 2 Índice

Más detalles

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador.

Un sistema de referencia se representa mediante unos EJES DE COORDENADAS (x,y), en cuyo origen estaría situado el observador. UD6 FUERZAS Y MOVIMIENTO EL MOVIMIENTO DE LOS CUERPOS Un cuerpo está en movimiento si cambia de posición con respecto al sistema de referencia; en caso contrario, está en reposo. Sistema de referencia

Más detalles

TEMA 2: EL PLANO AFÍN

TEMA 2: EL PLANO AFÍN TEMA : EL PLANO AFÍN En la primera mitad del siglo XVIII nació una rama completamente nuea de la Matemática que surge por la necesidad de relacionar las curas del plano con las ecuaciones algebraicas de

Más detalles