Ecuaciones en Derivadas Parciales.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ecuaciones en Derivadas Parciales."

Transcripción

1 Ecuaciones en Derivadas Parciales. 1. Introducción. Una ecuación diferencial en derivadas parciales (PDE), por su semejanza con las ODE, es una ecuación donde una cierta función incógnita u viene definida por una relación entre sus derivadas parciales con respecto a las variales independientes. Si u u(x,y,z), una ecuación diferencial en derivadas parciales sería F x y z u u,,,, u u u u u x y z x z,... Se denomina orden de la PDE al más alto grado de derivación parcial que aparece en la expresión. Así + (1) es una PDE de orden, mientras que es una PDE de primer orden. u u u + () La ecuación (1) es lineal ya que u y sus derivadas aparecen sin multiplicarse y no aparecen elevadas a potencias. La ecuación () es, en camio, no lineal. Se podrían hacer algunas consideraciones acerca de las PDE. Mientras que el número de constantes que hay que eliminar en una familia de curvas definen el orden de la ecuación diferencial ordinaria de la que es solución, aquí la génesis se puede considerar vista de otro modo. Sea una función de (x,y) que verifica que es de la forma u(x,y) f(x + y) g(x - y) donde f y g son funciones aritrarias. Entonces a su vez f g + g f f g g f f g + f g + f g

2 de donde se deduce que Pero f g f g + f g u f g f g f g + f g f g f g 4 f g + f g f g f g u 4 u Se ha llegado a una ecuación diferencial de orden en derivadas parciales cuya solución tiene la forma Considérese otro ejemplo: u(x,y) f(x + y) g(x - y) u x f(y) f ( x) u u x es la ecuación diferencial de primer orden cuya solución tiene la forma u x f(y) donde f es una función aritraria. Otro ejemplo es el siguiente: ( ) u f x + y

3 x f y f y x Otro ejemplo: u f(x + y) + g(x - y) f + g f g u f + g f + g Repárese que según los resutados otenidos existen infinitas soluciones posiles de la PDE. Pero ahora la aritrariedad de la solución general viene dada en términos de funciones, apareciendo tantas como el orden de la ecuación. Desde el punto de vista de la Matemática puede parecer más preciso otener en cualquier caso la solución general, sin emargo, se van a uscar soluciones dentro del campo de la Física por lo que sólo interesará una solución particular concreta. Estas soluciones particulares van a satisfacer unas determinadas condiciones de contorno y de valor inicial. Es decir, se va a tratar de otener la solución de una cierta PDE que verifique unas condiciones en el contorno del dominio en que está definida (condiciones de contorno), y si además una variale es el tiempo "t" las condiciones en t se darán como dato (condiciones iniciales). Por último, y por lo que respecta a la clasificación, cuando cada término de la ecuación diferencial contiene la función o sus derivadas esta ecuación se dice homogénea. Algunos ejemplos típicos de ecuaciones en derivadas parciales son: Ecuación de difusión: t c 3

4 Es la clásica ecuación unidimensional de difusión del calor, de segundo orden, lineal, homogénea y de coeficientes constantes. Ecuación de onda: c t Es la clásica ecuación de onda unidimensional, que descrie fenómenos de tipo oscilatorios y es tamién de segundo orden, lineal, homogénea y de coeficientes constantes. Ecuación de Laplace: + 0 Esta es una ecuación idimensional, de segundo orden, lineal, homogénea y de coeficientes constantes, descriiendo potenciales eléctricos o gravitatorios o procesos de difusión en los que se ha alcanzado un equilirio térmico. Ecuación de Poisson: + f( x, y) Es tamién una ecuación idimensional, de segundo orden, lineal, de coeficientes constantes, pero no homogénea. Este curso se va a centrar exclusivamente en el estudio de las ecuaciones diferenciales de orden lineales con coeficientes constantes, que son las más haituales en distintos campos de la física.. ECUACIONES DE SEGUNDO ORDEN LINEALES HOMOGÉNEAS DE COEFICIENTES CONSTANTES Una ecuación de orden en derivadas parciales lineal, homogénea, con coeficientes constantes tiene la forma (supuesto dos variales independientes): donde u u a u u u h f g x x y y x c u a,h,,f,g,c son constantes. Por comparación con una cónica ( x y 1) a h f x h g y 0 f g c 1 4

5 a x + y + h x y + f x + g y + c se puede decir que estas ecuaciones se clasifican en elípticas, paraólicas e hiperólicas de igual modo que las cónicas. Esto es, si a h > 0 la ecuación es elíptica a h la ecuación es paraólica a h < 0 la ecuación es hiperólica Según esto, las clásicas ecuaciones de difusión, de ondas y de Laplace pertenecen a los tipos Ecuación de difusión: paraólica Ecuación de onda: hiperólica Ecuación de Laplace: elíptica Nota: Esta clasificación sigue siendo válida incluso cuando los coeficientes de la ecuación a,, h, f, g, c so funciones variales de x e y. En estos casos la ecuación puede camiar de tipo al pasar de un cuadrante a otro. Por ejemplo la ecuación es elíptica en la región y hiperólica en la región y y + x + y x > 0, paraólica a lo largo de las rectas y x, e x < 0. En el caso de más variales independientes la forma general de una ecuación diferencial lineal de segundo orden en derivadas parciales es: n n u n ark (x1, x,...x n ) + k (x1,x,...x n ) + c(x1,x,...x n ) u f(x1, x,...x n ) r 1 k 1 r k k 1 k Se denomina parte principal de la ecuación diferencial al primer sumando simólico. Considérese la matriz cuadrada nxn cosntituida por los coefiecientes de la parte principal de la ecuación diferencial. Por ser una matriz simétrica en el campo real, tiene autovalores reales. a) Si todos los autovalores fueran del mismo signo (ninguno nulo), la ecuación se denomina elíptica. ) Si un autovalor fuera de signo opuesto a los otros, no siendo nulo ninguno, la ecuación es hiperólica. c) Si algún autovalor es nulo, se denomina paraólica. d) En el resto de casos se denomina ultrahiperólica. 3. ECUACIONES DE EULER Se llama ecuación de Euler a una ecuación de la forma a + h + La solución general se puede otener del siguiente modo, haciendo el camio 5

6 α α α p x + q y p q β r x + s y r s donde p,q,r y s son constantes α + p + r α α α α p p r r p r α α α p + r p + r α α de igual modo q + q s + s α α por último u α + α p r q p r s α α α p q + ( q r + p s) + r s α α Sustituyendo en la ecuación diferencial a p + r p + r α α + + h p q + ( q r + p s) + r s + α α + q + q s + s α α 6

7 α ( a p + h p q + q ) + ( a r + h r s + s ) + + ( a p r + h q r + h p s + q s) α (3) Ahora se elige p r 1 de modo que q y s sean raíces de la ecuación a + h x + x es decir, de modo que los coeficientes de la u y sean cero. α Por tanto, llamando a las raíces x 1, x quedaría la ecuación: Ahora ien a + h ( x1 + x) + x1 x α x h + x y x1 x 1 por lo que la ecuación puede expresarse ( a h ) α Si a h 0, es decir la ecuación es elíptica o hiperólica α cuya solución general se reduce a u F(α) + G(β) donde F y G son funciones aritrarias, pero α x + x1 y β x + x y luego la solución general de las ecuaciones elípticas e hiperólicas es de la forma: ( 1 ) ( ) u F x + x y + G x + x y x 1 y x son reales si la ecuación es hiperólica, pero si es elíptica, son complejas. a 7

8 Si la ecuación es paraólica: a h volviendo a la ecuación (3) y haciendo sólo p 1 α ( a + h q + q ) + ( a r + h r s + s ) + + ( a r + h q r + h s + q s) α (4) Se usca q tal que Llevando este valor a (4) a + h q + q h h a c h q ± ( a r h r s s ) (raíz dole) h r a r + + h s h s α pero como h a, sustituyendo el valor de "a" despejado de esta igualdad, la ecuación queda h r u + h r s + s 0 1 ( h r + s) con tal que r y s no sean cero simultáneamente, la ecuación resultante es 0 cuya solución general es de la forma u β F( α) + G( α) con F y G funciones aritrarias, pero α x h y β r x + s y con r y s aritrarios, pero no simultáneamente ceros. 8

9 Luego, la solución general de una ecuación paraólica es u ( r x + h s y) F x y G x h + y Aunque se ha resuelto, desde el punto de vista matemático, las ecuaciones de Euler, estas soluciones tienen muy poco valor cuando se imponen unas condiciones de contorno dadas y una condición de valor inicial. Suele resultar muy difícil otener la expresión de las funciones F y G. Por ello, este procedimiento más académico que útil va a dar paso a otro más eficaz que, además, nos va a ayudar a ver el sentido físico de lo que se trata de resolver. Este método se conoce con el nomre de método de separación de variales. 9

palabra igual ya que es fundamental para todo lo se que realiza en matemática.

palabra igual ya que es fundamental para todo lo se que realiza en matemática. ECUACIONES ALGEBRAICAS. Introducción Parte de la genialidad que tuvo la humanidad fue la creación de la palara igual ya que es fundamental para todo lo se que realiza en matemática. Pero descriir tal palara

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

mediante la ecuación, Q la cantidad de radio es función del tiempo t; de modo que Q = Q(t).

mediante la ecuación, Q la cantidad de radio es función del tiempo t; de modo que Q = Q(t). Una ecuación diferencial es una ecuación en la que intervienen derivadas de una o más funciones desconocidas. Dependiendo del número de variables independientes respecto de las que se deriva, las ecuaciones

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Solución Primer Parcial Matemática

Solución Primer Parcial Matemática Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo

Más detalles

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales)

Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Examenes de Física Matemática (Ecuaciones en Derivadas Parciales e Integrales) Licenciatura en Física Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada FÍSICA MATEMÁTICA

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4.

Ejemplo.- La desigualdad: 2x + 1 > x + 5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES.- DEFINICION.- Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que solo se verifica para determinados valores de la incógnita o incógnitas.

Más detalles

Contenidos. Función cuadrática y = a x 2 + b x + c

Contenidos. Función cuadrática y = a x 2 + b x + c Contenidos Ecuaciones de º grado- Función cuadrática Ecuaciones de º grado Ecuaciones que se relacionan con las de º grado Sistemas de ecuaciones. Resolución analítica y gráfica. Inecuaciones con una y

Más detalles

Cuánto vale x si la balanza está equilibrada? Hay que resolver le ecuación x + 3 = 7 x = 7 3 x = 4. La solución es x = 4 porque = 7

Cuánto vale x si la balanza está equilibrada? Hay que resolver le ecuación x + 3 = 7 x = 7 3 x = 4. La solución es x = 4 porque = 7 TEMA 3. ECUACIONES DE PRIMER Y SEGUNDO GRADO 1. ECUACIÓN DE PRIMER GRADO 1.1 Planteamiento general Identidad: Es una expresión con una igualdad que se cumple siempre. Identidad numérica: Sólo aparecen

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es 1 Índice 1. Definiciones 3 2. Herramientas 5 2.1. Factorización de polinomios: Regla

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

Tel.: / Fax.: Página Web: ANEXO I

Tel.: / Fax.: Página Web:  ANEXO I 1 Corresponde al Anexo I de la Resolución N 204/05 ANEXO I DEPARTAMENTO DE: Matemática CARRERA/S - PLAN/ES: Licenciatura en Física, plan 1998. Profesorado en Física, plan 1998. CURSO: Segundo año. REGIMEN:

Más detalles

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones

Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Ecuaciones e inecuaciones. Sistemas de ecuaciones e inecuaciones Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Herramientas 6 1.1. Factorización

Más detalles

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables.

a n1 a n2 a nn Es decir, una forma cuadrática es un polinomio homogéneo de grado 2 y n variables. Capítulo 7 Formas cuadráticas. Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado de la norma de un vector

Más detalles

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1

Espacios Vectoriales Asturias: Red de Universidades Virtuales Iberoamericanas 1 Espacios Vectoriales 201 6Asturias: Red de Universidades Virtuales Iberoamericanas 1 Índice 1 Espacios Vectoriales... 4 1.1 Definición de espacio vectorial... 4 1.2 Definición de subespacio vectorial...

Más detalles

I IDENTIFICACION DE LA ASIGNATURA

I IDENTIFICACION DE LA ASIGNATURA UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA DEPARTAMENTO DE FISICA I IDENTIFICACION DE LA ASIGNATURA NOMBRE : ECUACIONES DIFERENCIALES CODIGO : 25010 NIVEL : 03 T-E-L : 4-4-0 CARRERA : INGENIERÍA

Más detalles

13. Ecuaciones, parte V

13. Ecuaciones, parte V Matemáticas I, 01-I Completación por cuadrados La siguiente ecuación no se puede resolver usando la factorización: Pero es posile factorizar x + 4x + 4: x + 4x + 1 = 0. (13.1) x + 4x + 4 = (x + )(x + )

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución se basa en que si

En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución se basa en que si CAPÍTULO XI ECUACIONES EXPONENCIALES E IRRACIONALES.. ECUACIONES EXPONENCIALES En este tipo de ecuaciones la incógnita se encuentra formando parte del EXPONENTE DE UNA POTENCIA. Su método de resolución

Más detalles

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I

Sistemas de Ecuaciones Lineales, Método de Gauss. Parte I Sistemas de Ecuaciones Lineales, Método de Gauss Parte I Ecuación lineal con n incógnita ES cualquier expresión del tipo: a 1 x 1 + a 2 x 2 + a 3 x 3 +... + a n x n = b, donde a i, b. Los valores a i se

Más detalles

4.4 ED lineales homogéneas con coeficientes constantes

4.4 ED lineales homogéneas con coeficientes constantes 4.4 ED lineales homogéneas con coeficientes constantes 05 a. Verifique que, si y es una segunda solución tal que f y 1 ; y g sea linealmente independiente, entonces d y D W.y 1; y / dx y 1 y1.. Verifique

Más detalles

Problemas Tema 7 El método de separación de variables

Problemas Tema 7 El método de separación de variables Ingeniero Industrial Transformadas Integrales y Ecuaciones en Derivadas Parciales Curso 21/11 J.A. Murillo) 5. Sea el siguiente problema de condiciones de contorno homogéneas para la ecuación de Klein-Gordon,

Más detalles

El Problema de Cauchy para EDPs de Primer Orden

El Problema de Cauchy para EDPs de Primer Orden Capítulo 2 El Problema de Cauchy para EDPs de Primer Orden Este capítulo está dedicado al estudio de EDPs de primer orden, esto es, ecuaciones en las que sólo aparecen derivadas parciales de a lo sumo

Más detalles

INTRODUCCIÓN. Se denomina ecuación diferencial a la relación de igualdad que contiene derivadas o diferenciales.

INTRODUCCIÓN. Se denomina ecuación diferencial a la relación de igualdad que contiene derivadas o diferenciales. INTRODUCCIÓN Definición Se denomina ecuación diferencial a la relación de igualdad que contiene derivadas o diferenciales. Para los siguientes casos indicar cuáles representan ecuaciones diferenciales:

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

De Disco a Cilindro a) Problema SL en Cilindro (apuntes) b) Oscilaciones de un gas encerrado en un tubo cilíndrico ( APL)

De Disco a Cilindro a) Problema SL en Cilindro (apuntes) b) Oscilaciones de un gas encerrado en un tubo cilíndrico ( APL) De Disco a Cilindro a) Problema SL en Cilindro (apuntes) b) Oscilaciones de un gas encerrado en un tubo cilíndrico (7.2.1. APL) Ec. de ondas [u= describe la densidad] L 0 CC si gas no puede atravesar paredes

Más detalles

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales

Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Ejemplos de Modelos en Ecuaciones Diferenciales en Derivadas Parciales Hugo Franco, PhD Principios de Modelado y Simulación CLASIFICACIÓN DE LAS ECUACIONES DIFERENCIALES PARCIALES (PDE s) Definiendo la

Más detalles

Tema 1: Sistemas de ecuaciones lineales

Tema 1: Sistemas de ecuaciones lineales Universidad de Oviedo 5 de octubre de 2009 email: mlserrano@uniovi.es Índice 1 Índice 1 2 Índice 1 2 3 Resolución geométrica Ejemplo 1.1 En R 2, vamos a calcular el punto intersección de las rectas de

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

Tema 1: Sistemas de ecuaciones lineales

Tema 1: Sistemas de ecuaciones lineales Universidad de Oviedo 5 de octubre de 2009 email: mlserrano@uniovi.es Índice 1 2 3 Resolución geométrica Ejemplo 1.1 En R 2, vamos a calcular el punto intersección de las rectas de ecuaciones 2x + y =

Más detalles

Sistemas de ecuaciones.

Sistemas de ecuaciones. 1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución

Más detalles

Tema 2.- Formas Cuadráticas.

Tema 2.- Formas Cuadráticas. Álgebra. 004 005. Ingenieros Industriales. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema.- Formas Cuadráticas. Definición y representación matricial. Clasificación de las formas

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

Parte 9. Ecuaciones en derivadas parciales

Parte 9. Ecuaciones en derivadas parciales Parte 9. Ecuaciones en derivadas parciales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a las ecuaciones

Más detalles

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales

Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación

Más detalles

Métodos Matemáticos en Física L.4. Método Fourier: Cuerda. Sobre planteamiento general del curso

Métodos Matemáticos en Física L.4. Método Fourier: Cuerda. Sobre planteamiento general del curso Sobre planteamiento general del curso CONTENIDOS TEORICOS / CONCEPTOS del CURSO Tipos BASICOS de ecuaciones en MM3 (L2- TEORIA) Origines físicos de estas ecuaciones (hoy y varios clases teóricos mas

Más detalles

Sistemas de ecuaciones.

Sistemas de ecuaciones. 1 CONOCIMIENTOS PREVIOS. 1 Sistemas de ecuaciones. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Operaciones básicas con polinomios. Resolución

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

Métodos numéricos para problemas de contorno

Métodos numéricos para problemas de contorno Métodos numéricos para problemas de contorno Damián Ginestar Peiró Departamento de Matemática Aplicada Universidad Politécnica de Valencia (UPV) Métodos numéricos para PVF 1 / 28 Programa 1 Introducción

Más detalles

Jorge Mozo Fernández Dpto. Matemática Aplicada

Jorge Mozo Fernández Dpto. Matemática Aplicada Álgebra y Ecuaciones Diferenciales Lineales y Matemáticas II E.T.S. Ingenieros de Telecomunicación I.T. Telecomunicación Esp. Telemática y Sistemas de Telecomunicación Curso 2009-2010 Tema 11: Introducción

Más detalles

Relaciones de recurrencia

Relaciones de recurrencia MATEMÁTICA DISCRETA I F. Informática. UPM MATEMÁTICA DISCRETA I () Relaciones de recurrencia F. Informática. UPM 1 / 7 Relaciones de recurrencia Relaciones de recurrencia Definición Una relación de recurrencia

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

1 EL OSCILADOR ARMONICO

1 EL OSCILADOR ARMONICO 1 EL OSCILADOR ARMONICO 1.1 Autofunciones y Autovalores El potencial del oscilador armónico en una dimensión corresponde a la siguiente expresión matemática: V = 1 kx (1) donde k es la constante de la

Más detalles

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y determinantes. Sistemas de ecuaciones lineales Tema 0 Matrices y determinantes Sistemas de ecuaciones lineales 01 Introducción Definición 011 Se llama matriz a un conjunto ordenado de números, dispuestos en filas y columnas, formando un rectángulo

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 7 de Aril de MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase 6) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Álgera Lineal y Geometría Analítica

Más detalles

Autovalores y autovectores Diagonalización y formas canónicas

Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores Diagonalización y formas canónicas Autovalores y autovectores.propiedades Sea V un espacio vectorial sobre K y f End(V ). Fijada una base de V, existirá una matriz cuadrada A,

Más detalles

Ecuaciones Diferenciales. Conceptos Generales

Ecuaciones Diferenciales. Conceptos Generales Tema 1 Ecuaciones Diferenciales. Conceptos Generales Introducción La Modelización y Simulación es una área enorme de la ciencia pura y aplicada, a la que intentamos aproximarnos en esta asignatura. Dadas

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Examenes de Ecuaciones en Derivadas Parciales

Examenes de Ecuaciones en Derivadas Parciales Examenes de Ecuaciones en Derivadas Parciales Ingeniería de Caminos, Canales y Puertos Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada Ingeniería de Caminos, Canales y

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Tema 4: Sistemas de ecuaciones e inecuaciones

Tema 4: Sistemas de ecuaciones e inecuaciones Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE

CAPÍTULO 2. SOLUCIÓN DE ECUACIONES DE UNA VARIABLE En este capítulo analizaremos uno de los problemas básicos del análisis numérico: el problema de búsqueda de raíces. Si una ecuación algebraica o trascendente es relativamente complicada, no resulta posible

Más detalles

Funciones polinomiales

Funciones polinomiales 1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-11-1-V-1-00-015 CURSO: Matemática Intermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 11 TIPO DE EXAMEN: Primer

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

Clase 3 Función lineal

Clase 3 Función lineal Clase 3 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2016 Definición Una relación de la forma f(x) = mx + n, donde m, n R, se llama función lineal Gráfica de

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones . Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal con dos incógnitas es una igualdad algebraica del tipo:

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte I) Contenido Ecuaciones en derivadas parciales Ecuaciones en derivadas parciales elípticas Ecuación de Laplace Aproximación

Más detalles

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE ECUACIONES LINEALES Método de reducción o de Gauss 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González. SISTEMAS DE DOS ECUACIONES LINEALES CON DOS INCÓGNITAS.

Más detalles

Solución de ecuaciones diferenciales por el método de elementos finitos

Solución de ecuaciones diferenciales por el método de elementos finitos Solución de ecuaciones diferenciales por el método de elementos finitos Departamento de Matemáticas Método de elemento finito Un problema del método de diferencias finitas es que al aplicarlo obtenemos

Más detalles

Selectividad Matemáticas II junio 2016, Andalucía (versión 3)

Selectividad Matemáticas II junio 2016, Andalucía (versión 3) Selectividad Matemáticas II junio 06, Andalucía (versión 3) Pedro González Ruiz 5 de junio de 06. Opción A Problema. Sabiendo que l = lím ln(x+) asenx+xcos(3x) x es finito, calcular a y el valor del límite

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG UCLM Septiembre 0 Propuesta B Matemáticas II º Bachillerato Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PROPUESTA B EJERCICIO Dada la función Matemáticas II Septiembre

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

Como el sistema es homogéneo, sabemos que es compatible ( rang(a) = rang(a ) ). Estudiemos el máximo rango posible de A,

Como el sistema es homogéneo, sabemos que es compatible ( rang(a) = rang(a ) ). Estudiemos el máximo rango posible de A, OPCIÓN A, se pide: Problema A.. Dado el sistema de ecuaciones lineales a)deducir, raonadamente, para qué valores de α el sistema sólo admite la solución (,, ) (0,0,0). (5 puntos) Solución: Estudiemos el

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.4 E lineales homogéneas con coeficientes constantes 4.4.1 E homogéneas con coeficientes constantes de orden El ojetivo de esta sección es determinar

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS. (http://profeblog.es/blog/luismiglesias)

SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS. (http://profeblog.es/blog/luismiglesias) SISTEMAS DE ECUACIONES LINEALES CON DOS INCÓGNITAS. (http://profeblog.es/blog/luismiglesias) 1. Ecuaciones con dos incógnitas. En este apartado vamos a tratar con ecuaciones con dos incógnitas. Por ejemplo,

Más detalles

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ). INTRODUCCIÓN. MATRICES Y DETERMINANTES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 3, Opción B Reserva 1, Ejercicio 3, Opción A Reserva 2, Ejercicio 3, Opción A Reserva

Más detalles

MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: EBAU 2017 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: EBAU 7 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A Sean A = ( 4 ) y B = ( 3 ), a) Estudiar si A y B tienen inversa y calcularla cuando sea posible. ( punto) Una matriz cuadrada M tiene inversa

Más detalles

Del rectángulo al cuadrado

Del rectángulo al cuadrado P á g i n a 1 P á g i n a Del rectángulo al cuadrado Resumen l traajo consiste en plantear un prolema sencillo, y a partir de éste poder deducir de manera natural una técnica muy útil en matemáticas, que

Más detalles

Álgebra Parte de las matemáticas que tiene que ver con el estudio y resolución de las ecuaciones.

Álgebra Parte de las matemáticas que tiene que ver con el estudio y resolución de las ecuaciones. Álgebra Parte de las matemáticas que tiene que ver con el estudio y resolución de las ecuaciones. Binomio Polinomio que consta de dos términos. x+3, x-5, 2x 2-4,... son binomios Clase de equivalencia Se

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Guía de aprendizaje Nº 2

Guía de aprendizaje Nº 2 Liceo Polivalente Juan Antonio Ríos Quinta Normal NIVEL : TERCERO MEDIO Guía de aprendizaje Nº 2 Unidad Temática: FUNCION CUADRATICA Objetivo General: Graficar y analizar las raices de la funcion cuadratica.

Más detalles

ECUACIONES. Las letras representan números y se llaman incógnitas.

ECUACIONES. Las letras representan números y se llaman incógnitas. ECUACIONES. Una ecuación es una expresión algebraica (un conjunto de letras y números), unidos entre sí por signos aritméticos, de radicalización y potenciación. Las letras representan números y se llaman

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier

( + )= ( ) ( ) tiene periodo si es cualquier periodo de ( ). + =cos( +2 )=cos + = ( +2 )=. cosnt+ sinnt) ( )~ Métodos con series de Fourier Métodos con series de Fourier Definición: Función periódica La función (), definida para toda, es periódica si existe un número positivo tal que (+)=() para toda. El número en un periodo de la función.

Más detalles

TEORÍA DE GRUPOS (Parte 1)

TEORÍA DE GRUPOS (Parte 1) TEORÍA DE GRUPOS (Parte 1 OPERACIONES BINARIAS Sea A un conjunto. Una relación de A A en A es una operación inaria (o ley de composición interna si es una función. La imagen del elemento (a, A A mediante

Más detalles

Ecuación unidimensional de la Onda

Ecuación unidimensional de la Onda ESPO Ing. Roberto Cabrera V. DEMOSTRACIÓN DE A SOUCIÓN DE A ECUACIÓN DE A ONDA Consideraremos ahora las vibraciones transversales de una cuerda extendida entre dos puntos, x = y x =. El movimiento se produce

Más detalles

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez.

Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Métodos Matemáticos III. Grupo 536. Prof. J.V. Álvarez. Un sonido se propaga dentro de una caja cilíndrica llena de un fluido, de una altura y un radio. El sonido se propaga como una onda de presión longitudinal,

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2014 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Extremos de funciones de varias variables

Extremos de funciones de varias variables Extremos de funciones de varias variables R. Álvarez-Nodarse Universidad de Sevilla Cuándo una función f (x) de una variable tiene extremo? Cuándo una función f (x) de una variable tiene extremo? Definición

Más detalles

MATEMATICA. Facultad Regional Trenque Lauquen

MATEMATICA. Facultad Regional Trenque Lauquen Qué es el álgebra? Es el manejo de relaciones numéricas en los que una o más cantidades son desconocidas, incógnitas, a las que se las representa por letras, por la cual el lenguaje simbólico da lugar

Más detalles

Clase 2: Gráfica de una función real. 1. Gráficas de funciones. Esbozar la gráfica de una función a partir de una tabla de datos.

Clase 2: Gráfica de una función real. 1. Gráficas de funciones. Esbozar la gráfica de una función a partir de una tabla de datos. Clase : Gráfica de una función real Esbozar la gráfica de una función a partir de una tabla de datos. Determinar el valor de una función a partir de su representación gráfica. Trazar la gráfica de una

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles