EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos."

Transcripción

1 EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs. por impreso. El estudiante lleva dos bolsas: una para los impresos A, en la que caben 120 y otra para los impresos B, en la que caben 100. Ha calculado que cada día es capaz de repartir 150 impresos como máximo. Lo que se pregunta el estudiante es: Cuántos impresos habrá que repartir de cada clase para que su beneficio diario sea máximo? Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. La función objetivo es: f(x, y)=5x+7y Las restricciones: La zona de soluciones factibles es:

2 Vértices: A(0, 100) B intersección de s,t: C intersección de r,t: D (120, 0) Siendo los valores de la función objetivo:

3 EJERCICIO 1 PROBLEMA DE AUTOEVALUACION: El director de servicio de agua de una ciudad encuentra una forma de proporcionar al menos 10 millones de litros de agua potable al dia (10mld). El suministro puede ser proporcionado por el deposito local o por medio de unas tuberías desde una ciudad vecina (por bombeo). El deposito local tiene un rendimiento diario de 5 millones de litros de agua diarios (5mld), que no puede ser sobrepasado. La tubería no puede abastecer mas de 10 millones de litros diarios (10mld), debido a su diámetro. Por otra parte. Por acuerdo contractual, se bombearía como mínimo 6 millones de litros diarios (6mld). Finalmente el agua del deposito cuesta $ 300 por millón de litros de agua (ml) y $ 500 por tubería (por bombeo). cómo podrá el director minimizar los costos de suministro diario de agua?. SOLUCION: I).- Formular el Problema (Fase I). a).- Determinar el objetivo del Problema : minimizar los costos. b).- Definir las variables del Problema: Z = Costos X 1 = Cantidad de litros de agua abastecidos por el deposito local: C 1 = $300 / millón de litros X 2 = Cantidad de litros de agua abastecidos por tubería (bombeo): C 2 = $ 500/ Millon de litros. c).- Establecer restricciones del problema: 1).- Requerimiento mínimo de abastecimiento de 10 millones de litros de agua diarios. 2).- Capacidad máxima del deposito local de 5 millones de litros de agua diarios. 3).- Capacidad máxima de tubería de 10 millones de litro de agua diarios. 4).- Requerimiento mínimo por contrato de la tubería de 6 millones de litros de agua diarios. II).- Construir el modelo del problema (Fase II). a).- Función Objetivo : Min Z = 300X X 2. b).- Sujeta a las Restricciones: 1. X 1 + X 2 10 mld (Para satisfacer el requerimiento mínimo de litros de agua de la ciudad). 2. X 1 5 mld ( Capacidad del deposito). 3. X 2 10 mld ( Capacidad de la tubería) 4. X 2 6 mld (Requerimiento de suministro de la tubería). c).- No negatividad: X 1 0 ; X 2 0. III).- Convertir el sistema de restricciones a un sistema de ecuaciones (en forma directa). SISTEMA DE RESTRICCIONES SISTEMA DE ECUACIONES 1. X 1 + X X 1 + X 2 = 10

4 2. X X 1 = 5 3. X X 2 = X X 2 = 6 5. X 1 0 ; X 2 0 IV).- Encontrar los puntos vértices P( X 1, X 2 ), de cada ecuación. 1. X 1 + X 2 = 10 Si X 1 = 0 por lo tanto X 2 = 10 : P 1 (0, 10). Si X 2 = 0 por lo tanto X 1 = 10 : P 2 (10, 0). 2. X 1 = 5 por lo tanto X 2 = 0 : P 3 (5, 0) 3. X 2 = 10 por lo tanto X 1 = 0 : P 4 (0, 10) 4. X 2 = 6 por lo tanto X 1 = 0 : P 5 (0, 6). V) Eligiendo una escala, trazar cada una de las restricciones (1/2 CMS =1 unidad) X2>=0 X1<=5 X2>= P4 P5 P1 P8 P10 P9 P7 P3 P2 0 P X2>=6 X1 + X2>=10 X1>=0 Coordenadas (gráficamente) P1 (0,10) P7 (5,5) P2 (10,0) P8 (4,6) P3 (5,0) P9 (5,6) P4 (0,10) P10 (5,10) P5 (6,10) P6 (0,0) VI) Limitar de acuerdo al tipo de restricción.

5 X2>=0 ( ) X1<=5 ( ) X2>=0 ( ) P4 P5 P1 P8 P10 P9 P7 P3 P2 0 P X2>=6 ( ) X1 + X2>=10 ( ) X1>=0 ( ) VII) Encontrar el área de solución, definida por el conjunto convexo. Como podemos observar en las graficas, el área 1, es en la que es en la que converge todas las flechas (conjunto convexo). P1 (0,10) P10 (5,10) AREA DE SOLUCION P8 (4,6) P9 (5,6) VIII) Sustituir los puntos vértices del área de solución en la función objetivo. De acuerdo a la grafica, los puntos vértices del área de solución son: P 1 (0, 10) ; P 8 (4, 6) ; P 9 (5, 6) y P 10 (5, 10) P(X 1, X 2 ) ; Min Z = 300 X X 2

6 P 1 (0, 10) ; Z 1 = 300(0)+500(10) = Z 1 =$5000 P 8 (4, 6) ; Z 8 = 300(4)+500(6) = Z 8 =$4200 P 9 (5, 6) ; Z 9 = 300(5)+500(6) = Z 9 =$4500 P 10 (5, 10) ; Z 10 = 300(5)+500(10) = Z 1 =$6500 Optimo mínimo Como podemos observar el punto P 8 (4, 6), arroja el valor mínimo de Z = $4200 Solución optima: X 1 = 4 mld ; X 2 = 6 mld y Z Min= $4200 IX)Probar factibilidad: Si X 1 =4 y X 2 =6 1.- X 1 +X X X 1 0 y X (Cumple) 4 0 y 6 0 (Cumple) (Cumple) 2.- X X (Cumple) 6 6 (Cumple) X)Conclusión: El director deberá suministrar 4 millones de litros de agua diarios a través del deposito local y 6 millones de litros de agua diarios a través de las tuberías (Por bombeo); para satisfacer el requerimiento mínimo de 10 millones de litros de agua diarios a un costo mínimo de $4200.

7 EJERCICIO 2 Resolver mediante el método gráfico el siguiente problema: Maximizar Z = f(x,y) = 3x + 2y sujeto a: 2x + y 18 2x + 3y 42 3x + y 24 x 0, y 0 1. Inicialmente dibujamos el sistema de coordenadas asociando a un eje la variable x, y al otro la y, como se puede ver en la figura. 2. Marcamos en ellos una escala numérica apropiada de acuerdo con los recorridos de las variables en relación con las restricciones del problema. A continuación dibujamos las restricciones. Comenzando con la primera, dibujamos la recta que se obtiene al considerar la restricción como igualdad. Aparece representada como el segmento que une A con B y la región que delimita ésta restricción viene indicada por el color AMARILLO. Se repite el proceso de la misma forma con la segunda y tercera restricción, y delimitan la región de color AZUL y ROJO respectivamente. La región factible es la intersección de las regiones delimitadas por la terna de restricciones y por las condiciones de no negatividad de las variables, es decir, por la región de valores admisibles limitada por ambos ejes coordenados. La región factible está representada por el polígono convexo O-F-H-G-C, que aparece de color VIOLETA.

8 3. Ya que la región factible es no vacía (problema factible), procedemos a determinar sus puntos extremos, candidatos a soluciones óptimas, que son los puntos O-F-H-G-C de la figura. Finalmente, evaluamos la función objetivo (3x + 2y) en esos puntos, resultado que se recoge en la tabla siguiente. Como el punto G proporciona el mayor valor al objetivo Z, tal punto constituye la solución óptima, que indicaremos x = 3 y = 12, con valor óptimo Z = 33. Punto extremo Coordenadas (x,y) Valor bjetivo (Z) O (0,0) 0 C (0,14) 28 G (3,12) 33 H (6,6) 30 F (8,0) 24

9 COMPARACION DEL MÉTODO GRÁFICO CON EL MÉTODO SIMPLEX Las sucesivas tablas que hemos construido durante el método simplex van proporcionando el valor de la función objetivo en los distintos vértices, ajustándose, a la vez, los coeficientes de las variables iniciales y de holgura. En la primera iteración (Tabla I) han permanecido todos los coeficientes iguales, se ha calculado el valor de la función objetivo en el vértice (0,0) que es el valor que contienen las variables básicas, siendo el resultado 0. Tabla I. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P P P Z

10 A continuación se desplaza por la arista (0,0) F, calculando el valor de la función Z, hasta llegar a F. éste paso se traduce como la segunda iteración en el Método Simplex, aportando la Tabla II, en la que se ha calculado el valor que corresponde al vértice F(8,0): Z = f(8,0) = 24. Tabla II. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P / /3 P / /3 P / /3 Z

11 Sigue por la arista FH, hasta llegar a H, donde se para y despliega los datos de la Tabla III. En ésta tercera iteración se ha calculado el valor que corresponde al vértice H(6,6): Z = f(6,6) = 30. Tabla III. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P P P Z

12 Se Continúa haciendo cálculos a través de la arista HG, hasta llegar al vértice G. Los datos que se reflejan son los de la Tabla IV, concluyendo con la misma y advirtiendo que ha terminado (comprobando antes que la solución no mejora al desplazarse por la arista GC). Tabla IV. Iteración nº Base Cb P0 P1 P2 P3 P4 P5 P /2 0 0 P /4 0 1 P /4 0 0 Z /4 0 0

13 El valor máximo de la función objetivo es 33, y corresponde a x = 3 e y = 12 (vértice G). Además, se puede comprobar que el valor de la función en el vértice C (0,14), no supera el valor 33.

14 EJERCICIO 2 Una compañía de auditores se especializa en preparar liquidaciones y auditorías de empresas pequeñas. Tienen interés en saber cuantas auditorías y liquidaciones pueden realizar mensualmente para maximizar sus ingresos. Se dispone de 800 horas de trabajo directo y 320 horas para revisión. Una auditoría en promedio requiere de 40 horas de trabajo directo y 10 horas de revisión, además aporta un ingreso de 300 dls. Una liquidación de impuesto requiere de 8 horas de trabajo directo y de 5 horas de revisión, produce un ingreso de 100 dls. El máximo de liquidaciones mensuales disponibles es de 60. OBJETIVO : Maximizar el ingreso total. VARIABLE DE DECISION: Cantidad de auditorías (X 1 ). Cantidad de liquidaciones (X 2). RESTRICCIONES : Tiempo disponible de trabajo directo Tiempo disponible de revisión Número máximo de liquidaciones. Maximizar Sujeto a:

15 La solución óptima siempre se encuentra en uno de los vértices del conjunto de soluciones factibles. Se analizan estos valores en la función objetivo. El vértice que representa el mejor valor de la función objetivo será la solución óptima.

16 EJERCICIO 3 Un herrero con 80 kgs. de acero y 120 kgs. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente a y Bolívares cada una para sacar el máximo beneficio. Para la de paseo empleará 1 kg. De acero y 3 kgs de aluminio, y para la de montaña 2 kgs. de ambos metales. Cuántas bicicletas de paseo y de montaña venderá? Sean las variables de decisión: x= n: de bicicletas de paseo vendidas. y= n: de bicicletas de montaña vendidas. Tabla de material empleado: Acero Aluminio Paseo 1 3 Montaña 2 2 Función objetivo: f(x, y)= x y máxima. Restricciones:

17 soluciones factibles: Zona de Vértices del recinto (soluciones básicas): A(0, 40) B intersección de r y s: C(40,0) Valores de la función objetivo en los vértices: Ha de vender 20 bicicletas de paseo y 30 de montaña para obtener un beneficio máximo de Bolívares.

18 EJERCICIO 3 Una compañía posee dos minas: la mina A produce cada día 1 tonelada de hierro de alta calidad, 3 toneladas de calidad media y 5 de baja calidad. La mina B produce cada día 2 toneladas de cada una de las tres calidades. La compañía necesita al menos 80 toneladas de mineral de alta calidad, 160 toneladas de calidad media y 200 de baja calidad. Sabiendo que el coste diario de la operación es de 2000 euros en cada mina cuántos días debe trabajar cada mina para que el coste sea mínimo?. Solución Organizamos los datos en una tabla: días Alta Calidad Baja calidad Coste diario calidad media Mina A x 1x 3x 5x 2000x Mina B y 2y 2y 2y 2000y La función objetivo C(x, y)=2000x y Las restricciones son: La región factible la obtenemos dibujando las rectas auxiliares: r 1 x + 2y=80, r 2 3x + 2y= 160 y r 3 5x + 2y=200 en el primer cuadrante y considerando la región no acotada que determina el sistema de restricciones:

19 Los vértices son los puntos A(0, 100), B(20, 50), C(40, 20), D(80, 0), que se encuentran al resolver el sistema que determinan dos a dos las rectas auxiliares y (y que estén dentro de la región factible). r 1 r 2 que nos da el punto (40, 20) (comprobarlo) r 2 r 3 que nos da el punto (20, 50) r 1 r 3 no hace falta calcularlo pues queda fuera de la región factible. En la gráfica se aprecia que el primer punto que se alcanza al desplazar la recta C(x, y)=0 es el (40, 20). Luego la solución es trabajar 40 días en la mina A y 20 en la B. (método gráfico) Lo comprobamos aplicando el método analítico: C(0, 100)= = C(20, 50)= = = C(40, 20)= = = coste mínimo C(80, 0)= =160000

20 EJERCICIO 4 En una pastelería se hacen dos tipos de tartas: Vienesa y Real. Cada tarta Vienesa necesita un cuarto de relleno por cada Kg. de bizcocho y produce un beneficio de 250 Pts, mientras que una tarta Real necesita medio Kg. de relleno por cada Kg. de bizcocho y produce 400 Ptas. de beneficio. En la pastelería se pueden hacer diariamente hasta 150 Kg. de bizcocho y 50 Kg. de relleno, aunque por problemas de maquinaria no pueden hacer mas de 125 tartas de cada tipo. Cuántas tartas Vienesas y cuantas Reales deben vender al día para que sea máximo el beneficio? Solución En primer lugar hacemos una tabla para organizar los datos: Tipo Nº Bizcocho Relleno Beneficio T. Vienesa x 1.x 0,250x 250x T. Real y 1.y 0,500y 400y Función objetivo (hay que obtener su máximo): f(x, y)=250x+ 400y Sujeta a las siguientes condiciones (restricciones del problema): Consideramos las rectas auxiliares a las restricciones y dibujamos la región factible: Para 0.25x+0.50y=50, ó x + 2y=200 x Y Para x + y =150 x Y La otras dos son paralelas a los ejes Al eje OY x=125 Al eje Ox y =125 Y las otras restricciones (x e y mayor o igual a cero) nos indican que las soluciones deben estar en el primer cuadrante La región factible la hemos coloreado de amarillo:

21 Encontremos los vértices: El O (0,0), el A (125, 0) y el D (0, 100) se encuentran directamente (son las intersecciones con los ejes coordenados) Se observa que la restricción y Resolviendo el sistema: es redundante (es decir sobra ), por reducción obtenemos y=50, x=100 Otro vértice es el punto C(100, 50) Y el último vértice que nos falta se obtiene resolviendo el sistema: X+y=150 X=125 Cuya solución es: X=125, Y=25 B(125, 25) Los vértices de la región son O(0,0), A(125,0), B(125,25) y C(100,50) y D(0,100), Si dibujamos el vector de dirección de la función objetivo f(x, y)=250x+ 400y Haciendo 250x+ 400y =0, y=-(250/400)x=-125x/200 x Y

22 Se ve gráficamente que la solución es el punto (100, 50), ya que es el vértice mas alejado (el último que nos encontramos al desplazar la rectas 250x+400y=0 ) Lo comprobamos con el método analítico, es decir usando el teorema que dice que si existe solución única debe hallarse en uno de los vértices La unción objetivo era: f(x, y)=250x+400y, sustituyendo en los vértices obtenemos f(125,0)= f(125,25)= = f(100,50)= = f(0,100)= El máximo beneficio es y se obtiene en el punto (100, 50) Conclusión: se tienen que vender 100 tartas vienesas y 50 tartas reales

23 EJERCICIO 4 Se va a organizar una planta de un taller de automóviles donde van a trabajar electricistas y mecánicos. Por necesidades de mercado, es necesario que haya mayor o igual número de mecánicos que de electricistas y que el número de mecánicos no supere al doble que el de electricistas. En total hay disponibles 30 electricistas y 20 mecánicos. El beneficio de la empresa por jornada es de 250 euros por electricista y 200 euros por mecánico. Cuántos trabajadores de cada clase deben elegirse para obtener el máximo beneficio y cual es este? Sea x = nº electricistas y = nº mecánicos La función objetivo f (x, y)=250x+ 200y, las restricciones La región factible sería para estas restricciones: Se aprecia gráficamente (línea en rojo) que la solución óptima está en el punto (20, 20). Por tanto:

24 20 electricistas y 20 mecánicos dan el máximo beneficio, y este es 9000 euros, ya que f(x, y) = =9000

25 EJERCICIO 6 Disponemos de euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos invertir un máximo de euros en las del tipo A y como mínimo en las del tipo B. Además queremos que la inversión en las del tipo A sea menor que el doble de la inversión en B. Cuál tiene que ser la distribución de la inversión para obtener el máximo interés anual? Solución Es un problema de programación lineal. Llamamos x a la cantidad que invertimos en acciones de tipo A Llamamos y a la cantidad que invertimos en acciones de tipo B inversión rendimiento Tipo A x 0,1x Tipo B y 0,08y ,1x+0,08y Condiciones que deben cumplirse (restricciones): R 1 R 2 R 3 R 4 Dibujamos las rectas auxiliares asociadas a las restricciones para conseguir la región factible (conjunto de puntos que cumplen esas condiciones) r 1 r 2 (paralela a OY ) r 3(paralela a OX) r 4 x y x y x y x y

26 La región factible es la pintada de amarillo, de vértices A, B, C, D y E A (0, 60000), B (120000, 60000), C (130000, 65000), D (130000, 80000) y E (0, ) La función objetivo es; F(x, y)= 0,1x+0,08y Si dibujamos la curva F(x, y) =0 (en rojo) y la desplazamos se puede comprobar gráficamente que el vértice mas alejado es el D, y por tanto es la solución óptima. Comprobarlo analíticamente (es decir comprobar que el valor máximo de la función objetivo, F, se alcanza en el vértice D)

27 EJERCICIO 6 Cierta persona dispone de 10 millones como máximo para repartir entre dos tipos de inversión (A y B). En la opción A desea invertir entre 2 y 7 millones. Además, quiere destinar a esa opción, como mínimo, tanta cantidad de dinero como a la B. a) Qué cantidades debe invertir en cada una de las dos opciones? Plantear el problema y representar gráficamente el conjunto de soluciones. b) Sabiendo que el rendimiento de la inversión será del 9 % en la opción A y del 12 % en la B, Qué cantidad debe invertir en cada una para optimizar el rendimiento global??a cuánto ascenderá a) Sean las variables de decisión: x= cantidad invertida en acciones tipo A y= cantidad invertida en acciones tipo B Las restricciones son: Puede invertir en cada una de las dos opciones las cantidades correspondientes a cada uno de los puntos de la zona sombreada de la siguiente gráfica:

28 b) La función de beneficios es: Y los vértices de la zona sombreada son: A intersección de r,t: B intersección de t,u: C intersección de s,u, o sea C(7, 3) D(7, 0) E(2, 0) Los valores de f en esos puntos son: Ha de invertir, pues 5 millones de bolívares en A y 5 millones en B para obtener un beneficio máximo de 1,05 millones, o sea bolívares

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución:

Programación Lineal. f(x,y) = 2 x + y. Cuántas soluciones hay? Solución: Programación Lineal 2 x + y 2 1.- alcula los puntos del recinto 2x y 2 que hacen mínima o máxima la función y 2 f(x,y) = 2 x + y. uántas soluciones hay? Solución: Representemos el sistema de inecuaciones

Más detalles

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones:

11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 11.1. Diferentes situaciones sobre regiones factibles y óptimos. 1. Maximizar la función F(x,y) = 40x + 50y sujeta a las restricciones: 0 0 (1) 2x + 5y 50 (3) 3x + 5y 55 (5) x (2) 5x + 2y 60 (4) x + y

Más detalles

-Teoría y Problemas resueltos de Programación Lineal

-Teoría y Problemas resueltos de Programación Lineal -Teoría y Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables.

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones:

PROGRAMACIÓN LINEAL. Ejemplo a) Dibuja el recinto formado por los puntos que cumplen las siguientes condiciones: PROGRAMACIÓN LINEAL CONTENIDOS: Desigualdades e inecuaciones. Sistemas lineales de inecuaciones. Recintos convexos. Problemas de programación lineal. Terminología básica. Resolución analítica. Resolución

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL

EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL 1.- Un estudiante reparte propaganda publicitaria en su tiempo libre. La empresa A le paga 0,05 por impreso repartido y la empresa B, con folletos más grandes,

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A

CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A CANTABRIA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / ÁLGEBRA / BLOQUE 1 / OPCIÓN A BLOQUE 1 OPCIÓN A Un fabricante de coches lanza una oferta especial en dos de sus modelos, ofreciendo

Más detalles

Programación lineal. 1º) En la región del plano determinada por, hallar las

Programación lineal. 1º) En la región del plano determinada por, hallar las Programación lineal 1º) En la región del plano determinada por, hallar las coordenadas de los puntos en los que la función alcanza su valor mínimo y máximo. Máximo en el punto y mínimo en el punto. 2º)

Más detalles

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0

x + y 4 2x + 3y 10 4x + 2y 12 x 0, y 0 PRUEBAS DE ACCESO A LA UNIVERSIDAD PROBLEMAS DE PROGRAMACIÓN LINEAL JUNIO 2000. OPCIÓN B. Una empresa especializada en la fabricación de mobiliario para casas de muñecas, produce cierto tipo de mesas y

Más detalles

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100

PROGRAMACIÓN LINEAL. Solución: Sea: x = cantidad invertida en acciones A y = cantidad invertida en acciones B. La función objetivo es: x y + 100 100 PROGRAMACIÓN LINEAL 1. A una persona le tocan 10 millones de pesos en una lotería y le aconsejan que las invierta en dos tipos de acciones, A y B. Las de tipo A tienen más riesgo pero producen un beneficio

Más detalles

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013

MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 MATEMÁTICAS PARA LA ECONOMIA II G.E.C.O. Curso 2012/2013 Relación de Ejercicios N o 3 1. Resolver los siguientes programas lineales primero gráficamente y después por el método del simplex. (a) Z = x +

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

PROGRAMACIÓN LINEAL. Página 102. Página 103

PROGRAMACIÓN LINEAL. Página 102. Página 103 4 PROGRAMACIÓN LINEAL Página 0 Problema Para representar y x, representa la recta y x =. Después, para decidir a cuál de los dos semiplanos corresponde la inecuación, toma un punto cualquiera exterior

Más detalles

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad

Programación lineal. Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1 Observación: La mayoría de estos problemas se han propuesto en exámenes de selectividad 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4 Representando las

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

Problemas resueltos de Programación Lineal

Problemas resueltos de Programación Lineal Problemas resueltos de Programación Lineal Objetivos: Entender la idea de la Programación lineal y sus aplicaciones a problemas prácticos. Plantear problemas de programación lineal en dos variables. Conocer

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS PROGRAMACIÓN LINEAL x + y 1 Dada la región del plano definida por las inecuaciones 0 x 3 0 y 2 a) Para qué valores (x, y) de dicha región es máxima

Más detalles

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3

Programación Lineal. Ejercicio nº 1.- a) Representa gráficamente las soluciones de la inecuación: 2x y 3 Programación Lineal Ejercicio nº.- a) Representa gráficamente las soluciones de la inecuación: b) Averigua cuál es la inecuación cuas soluciones corresponden al siguiente semiplano: Ejercicio nº.- a) Representa

Más detalles

Unidad 2 Método gráfico de solución

Unidad 2 Método gráfico de solución Unidad 2 Método gráfico de solución Los problemas de programación lineal (pl) que sólo tengan dos variables de decisión pueden resolverse gráficamente, ya que, como se ha visto en los Antecedentes, una

Más detalles

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Una de las aplicaciones más comunes de los conceptos relacionados con la derivada de una función son los problemas de optimización.

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en

5. [2012] [EXT-A] Se estima que el beneficio anual B(t), en %, que produce cierta inversión viene determinado por el tiempo t en . [204] [ET-A] Dada la función f(x) = x2-8x+6 x 2-8x+5 a) Su dominio y puntos de corte con los ejes. -x+5, 0 x 2. [204] [JUN-A] En una sesión, el valor de cierta acción, en euros, vino dado por la función:

Más detalles

Selectividad Septiembre 2008 SEPTIEMBRE 2008

Selectividad Septiembre 2008 SEPTIEMBRE 2008 Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable

Más detalles

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE

ÁLGEBRA 2º Ciencias Sociales PAU- LOGSE . (Jun. 205 Opción A) Dadas las matrices A = ( a 2 + 2 2 ), B = ( ) y C = (c 0 0 b 0 c ) Calcula las matrices A B y B C. Calcula los valores de a, b y c que cumplen A B B C. Sol.- 2. (Jun. 205 Opción B)

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones

Restricciones. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones Modelo 2014. Problema 2A.- (Calificación máxima: 2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas.

Más detalles

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20.

PROGRAMACIÓN LINEAL. y x Ì 2. Representa, de forma análoga, las siguientes inecuaciones: a) x +5y > 10 b) x + 2y Ì 16 c) 2x + y Ì 20. PROGRAMACIÓN LINEAL Página 99 REFLEXIONA Y RESUELVE Resolución de inecuaciones lineales Para representar y x Ì 2, representa la recta y x = 2. Después, para decidir a cuál de los dos semiplanos corresponde

Más detalles

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.

ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal. ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

FICHERO MUESTRA Pág. 1

FICHERO MUESTRA Pág. 1 FICHERO MUESTRA Pág. 1 Fichero muestra que comprende parte del Tema 3 del libro Gestión Financiera, Teoría y 800 ejercicios, y algunas de sus actividades propuestas. TEMA 3 - CAPITALIZACIÓN COMPUESTA 3.15.

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL

ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II ÁLGEBRA Tema 2) PROGRAMACIÓN LINEAL Orientaciones para la PRUEBA DE ACCESO A LA UNIVERSIDAD en relación con este tema: Inecuaciones lineales con una o dos

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1

Programación Lineal Continua/ Investigación Operativa. EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja 1 1. Una empresa que fabrica vehículos quiere determinar un plan de producción semanal. Esta empresa dispone de 5 fábricas que producen distintos elementos del

Más detalles

Ejercicios de Programación Lineal

Ejercicios de Programación Lineal Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de

Más detalles

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD

4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD 4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

02 Ejercicios de Selectividad Programación Lineal

02 Ejercicios de Selectividad Programación Lineal Ejercicios propuestos en 009 1.- [009-1-B-1] En un examen se propone el siguiente problema: F x, y = 6x+ 3y en la región Indique dónde se alcanza el mínimo de la función determinada por las restricciones

Más detalles

www.aulamatematica.com

www.aulamatematica.com www.aulamatematica.com APLIICACIIÓN DE DERIIVADAS:: PROBLEMAS DE OPTIIMIIZACIIÓN CON 1 VARIIABLE.. 004 Los costes de fabricación C(x) en euros de cierta variedad de galletas dependen de la cantidad elaborada

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 1 de agosto de 2003 1. Introducción Cualquier modelo de una situación es una simplificación de la situación real. Por lo tanto,

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior.

PROGRAMACIÓN LINEAL. a) Dibuja dicha región y determina sus vértices. b) Calcula el mínimo de la función objetivo z = 4x + 5y, en el recinto anterior. PROGRAMACIÓN LINEAL 1. La región factible de un problema de programación lineal es la intersección de primer cuadrante con los tres semiplanos definidos por las siguientes inecuaciones: x y x y x y + 1

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO 2.1 ANÁLISIS DE EQUILIBRIO 2.2. DISCRIMINACIÓN DE PRECIOS Y REGULACIÓN SOLUCIÓN A LOS PROBLEMAS PROPUESTOS

Más detalles

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150

Tipo de máquina Tiempo disponible. (h/maq. Por semana) Fresadora 500 Torno 350 Rectificadora 150 Ejercicios Tema 1. 1.- Utilizar el procedimiento gráfico para resolver los siguientes P.L. a) Max z = 10x 1 + 20x 2 s.a x 1 + 2x 2 15 x 1 + x 2 12 5x 1 + 3x 2 45 x 1,x 2 0 b) Max z = 2x 1 + x 2 s.a. x

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución

Colegio Portocarrero. Curso 2014-2015. Departamento de matemáticas. Repaso de todo. Con solución Repaso de todo Con solución Gauss, matrices, programación lineal, límites, continuidad, asíntotas, cálculo de derivadas. Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados,

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A a) (1 punto) Dada la matriz a 1 A, calcule el valor de a para que A a 0 sea la matriz nula. 1 1 t b) ( puntos) Dada la matriz M, calcule la matriz M M. 1 1 x 1 Sea la función f definida mediante f ( x).

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal

OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica

Más detalles

LAS FUNCIONES ELEMENTALES

LAS FUNCIONES ELEMENTALES UNIDAD LAS FUNCIONES ELEMENTALES Página 98. Las siguientes gráficas corresponden a funciones, algunas de las cuales conoces y otras no. En cualquier caso, vas a trabajar con ellas. Las ecuaciones correspondientes

Más detalles

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1

Página 123 EJERCICIOS Y PROBLEMAS PROPUESTOS. Dominio de definición PARA PRACTICAR UNIDAD. 1 Halla el dominio de definición de estas funciones: 2x + 1 Página 3 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Dominio de definición Halla el dominio de definición de estas funciones: 3 x a) y = y = x + x (x ) c) y = d) y = e) y = x + x + 3 5x x f) y = x x

Más detalles

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página.

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página. APLICACIÓN AL PROCESO PRODUCTIVO DE LA EMPRESA "F. G. / DISEÑO GRÁFICO". AÑO 2004 Rescala, Carmen Según lo explicado en el Informe del presente trabajo, la variación en la producción de páginas web de

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A

Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES,

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15

PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15 PROGRAMACIÓN LINEAL BTO 2ºA NOMBRE.27-11-15 1) (2,5 puntos)una empresa que fabrica motos y coches en dos factorías F1 y F2, ha recibido un pedido de 300 coches y 500 motos. En la factoría F1 se producen

Más detalles

5Soluciones a los ejercicios y problemas PÁGINA 114

5Soluciones a los ejercicios y problemas PÁGINA 114 5Soluciones a los ejercicios y problemas PÁGINA 4 Pág. P RACTICA Ecuaciones: soluciones por tanteo Es o solución de alguna de las siguientes ecuaciones? Compruébalo. a) 5 b) 4 c) ( ) d) 4 4 a)? 0? 5 no

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE TRABAJO DE VERANO 2014 1º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES ALUMNO: ARITMÉTICA Y ÁLGEBRA CONTENIDOS PARA LA RECUPERACION DE ÁREA EN SEPTIEMBRE Números: reales, irracionales, racionales.

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Programación lineal -1-

Programación lineal -1- Programación lineal 1. (j99) Los alumnos de un instituto pretenden vender dos tipos de lotes, A y B, para sufragarse los gastos del viaje de estudios. Cada lote de tipo A consta de una caja de mantecados

Más detalles

PRÁ CTICÁS DE IO CON POM-QM

PRÁ CTICÁS DE IO CON POM-QM Contenido INVESTIGACIÓN DE OPERACIONES Modelos y aplicaciones de programación lineal(página 3) Modelos de Transporte y transbordo(página 40) Modelos de Asignación(página 60) Modelos de gestión de proyectos

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

2 3º) Representar gráficamente la función: y (Junio 1996)

2 3º) Representar gráficamente la función: y (Junio 1996) 4 1º) Dada la función y. Calcula a) Dominio y punto de corte. b) Regiones y simetría. c) Monotonía y etremos. d) Asíntotas y gráfica. e) Recorrido y continuidad. http://www.youtube.com/watch?v=iazce_pvedq

Más detalles

Tema 5: Dualidad y sensibilidad de los modelos lineales.

Tema 5: Dualidad y sensibilidad de los modelos lineales. ema 5: Dualidad y sensibilidad de los modelos lineales. Objetivos del tema: Introducir el concepto de Sensibilidad en la Programación Lineal Introducir el concepto de Dualidad en la Programación Lineal

Más detalles

Para resolver estos problemas podemos seguir tres pasos:

Para resolver estos problemas podemos seguir tres pasos: RESOLUCIÓN DE PROBLEMAS Algunos problemas pueden resolverse empleando sistemas de dos ecuaciones de primer grado con dos incógnitas. Muchas veces se pueden resolver utilizando una sola ecuación con una

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0

GUIA DE EJERCICIOS. d) 12x - 9y + 2 = 0 e) 2x+ y - 6 = 0 ECUACIÓN DE LA RECTA Y PENDIENTE GUIA DE EJERCICIOS ) Encontrar la pendiente de la recta determinada por cada uno de los guientes pares de números: a) (, ) y (5, ) b) (, -3) y (-, ) c) (, 6) y (8, 56)

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Máximo o mínimo de una función

Máximo o mínimo de una función Análisis: Máimos, mínimos, optimización 1 MAJ00 Máimo o mínimo de una función 1. Dados tres números reales cualesquiera r 1, r y r, hallar el número real que minimiza la función D( ) ( r ) ( r ) ( r 1

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

Traslaciones, Homotecias, Giros y Simetrías

Traslaciones, Homotecias, Giros y Simetrías Traslaciones, Homotecias, Giros y Simetrías Traslaciones Nombre e indicación Comando equivalente Vector entre Dos puntos Vector [A, B] Seleccionamos el icono correspondiente a la herramienta Vector entre

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles