Soluciones a los ejercicios propuestos: Matemáticas III. Curso Universidad de Las Palmas de Gran Canaria

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Soluciones a los ejercicios propuestos: Matemáticas III. Curso Universidad de Las Palmas de Gran Canaria"

Transcripción

1 Soluciones a los ejercicios propuestos: Matemáticas III. Curso Universidad de Las Palmas de Gran Canaria Departamento de Métodos Cuantitativos en Economía y Gestión Matemáticas III Ejercicios propuestos y Soluciones Curso 2010/2011

2 Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 1 1. Determinar el interior, el exterior y la frontera de los siguientes conjuntos: (a) A = { (x, y) IR 2 /1 < (x 4) 2 + (y 4) 2 < 4 }. A es la corona circular de radio interior 1 y exterior 2, centrada en el punto (4, 4). La frontera la forman las dos circunferencias, el interior es todo A (por tanto A es abierto) y el exterior, el resto de puntos de IR 2. Gráficamente : (b) B = { (x, y) IR 2 /1 < (x 4) 2 + (y 4) 2 < 4 } {( 4 + 1, ), ( 4 + 2, )}. 2 2 Se trata de la misma corona circular anterior, aadiendo los dos puntos de la frontera. Ambos puntos no son aislados, y el resto es igual que el anterior. (c) C = { (x, y, z) IR 3 /0 < x + 1 < 2, 0 < y + 1 < 2 }. Ahora se trata de una región en IR 3 que es el producto cartesiano de las regiones x ( 3, 1), y ( 3, 1) es decir, el rectángulo que excluye las rectas interiores definidas por x = 3, x = 1 e y = 3, y = 1. Es inmediato entonces que Int(B) = B. La frontera de B está formada las aristas exteriores y las rectas interiores.

3 Soluciones a los ejercicios propuestos: Matemáticas III. Curso (d) D = { (x, y, z) IR 3 /2 x 1 < 4, 1 < y 2 < 3, 2 < z 1 6 }. Ahora se trata del producto cartesiano de cada uno de los intervalos que definen las variables x, y y z. Como tenemos algunas desigualdades del tipo y otras <, tenemos que el conjunto no es abierto ni cerrado. El interior es Int(D) = { (x, y, z) IR 3 /2 < x 1 < 4, 1 < y 2 < 3, 2 < z 1 < 6 } y la frontera cada una de las aristas del cubo. (e) E = { (x, y) IR 2 /(x 1) 3 < y }. La representación gráfica del conjunto E corresponde a:

4 Soluciones a los ejercicios propuestos: Matemáticas III. Curso F r(d) = {(x, y)/(x 1) 3 = y = x 2 }, Int(D) = D (por tanto, E es abierto) (f) F = { (x, y) IR 2 / x 1 2 < (y + 1) 3}. Tenemos: Es inmediato deducir que F es abierto ya que la desigualdad es estricta. La frontera es la curva obtenida con la expresión en igualdad. (g) G = { (x, y) IR 2 /1 x 4, 0 y 3 }. Trivialmente, nos encontramos ante un rectángulo de base el intervalo [1, 4] y de altura el intervalo [0, 3]. Luego: Int(G) = {(x, y)/1 < x < 4, 0 < y < 3} F r(g) = L 1 L 2 L 3 L 4 Observamos que L 2 = {(x, y)/x = 4, 0 y 3} F.

5 Soluciones a los ejercicios propuestos: Matemáticas III. Curso (h) H = { (x, y) IR 2 /1 < x y z }. Teniendo en cuenta que para cualquier número real u se cumple que: u 2 = u 2, se tiene que H es justamente la corona circular en el espacio IR 3 de radio 1 y 5, y centro ( 1, 1, 1), incluyendo la frontera externa. H no es abierto ni cerrado, pero si acotado. (i) I = { (x, y) IR 2 /x 0, y 0, x y, x y 2}. Análogo a los anteriores. Gráficamente: { } (j) J = (x, y) IR 2 /x 2 + y2 2 = 1. Recuerda que la ecuación genérica de una elipse tiene una expresión del tipo: x2 a 2 + y2 b 2 = 1. Se trata de una elipse con a = 1, b = 1 :

6 Soluciones a los ejercicios propuestos: Matemáticas III. Curso F r(j) = I Int(J) =, (J es cerrado) (k) K = { (x, y) IR 2 /(x + 1) 2 (y 4) 2 < 1 }. Recuerda que la ecuación genérica de una hipérbola tiene una expresión del tipo: x2 a 2 y2 b 2 = 1. En este caso, tenemos una hipérbola con a = b = 1 con centro ( 1, 4). El conjunto J es gráficamente: Todos los puntos son interiores, Int(K) = K. La frontera es justamente la hipérbola F r(k) = {(x, y)/(x + 1) 2 (y 4) 2 = 1} (l) Tomando exponenciales en la desigualdad que se mantiene pues la función exponencial es creciente, tenemos que para pertenecer al conjunto L, observamos que se trata de la corona circular: 1 (x 1) 2 +(y 3) 2 4. Dicha corona incluye a las fronteras, por tanto es cerrado y acotado (es decir, compacto). 2. ( ) Indicar la opción correcta. El conjunto es: A = { (x, y, z, t) IR 4 /4 (x 1) 2 + y 2 + z 2 + (t 1) 2 9 },

7 Soluciones a los ejercicios propuestos: Matemáticas III. Curso (a) compacto. (b) acotado pero no cerrado. (c) cerrado pero no acotado. A es la corona circular de IR 4 de centro (1, 0, 0, 1) y radios 2 y 3, respectivamente, incluyendo las fronteras, por tanto se trata de un conjunto cerrado y obviamente acotado (es decir, compacto). La respuesta correcta es (a). 3. Probar que el conjunto A = { (x, y, z) IR 3 /4 < x 2 + y 2 + (z 1) 2 9 }, no es cerrado ni abierto. A es la generalización de la corona circular de centro (0, 0, 1) y radios 2 y 3. Obviamente, no es cerrado pues no incluye la parte de la esfera interior. F r(a) = {(x, y, z) /x 2 + y 2 + (z 1) 2 = 4} {(x, y) /x 2 + y 2 + (z 1) 2 = 9} Y tampoco es abierto pues A tiene más puntos que sólo su interior: Int(A) = {(x, y, z) /4 < x 2 + (y 2) 2 + (z 1) 2 < 9} 4. Probar si la intersección y unión finita de conjuntos abiertos en IR n es o no un abierto. Decidir si ocurre lo mismo para conjuntos cerrados. Veamos la intersección. Se trata de ver si la intersección de dos abiertos de IR n es también abierto. En efecto, sean A y B IR n abiertos y consideremos x A B = x A y x B, ahora bien como A es abierto se tiene que: Análogamente para B: ε > 0 : B( x, ε) A. δ > 0 : B( x, δ) B Pues bien, supongamos que ε < δ entonces B( x, ε) A pero también se cumplirá que B( x, ε) B luego B( x, ε) A B y por tanto A B es abierto pues todos sus puntos son interiores. Análogamente se procedería si δ < ε sin más que intercambiar un radio con el otro. Veamos qué ocurre para la unión de conjuntos abiertos. Se trata de probar por tanto que dado cualquier x A B, éste es un punto interior de A B (o equivalentemente, que δ > 0 : B( x, δ) A B).

8 Soluciones a los ejercicios propuestos: Matemáticas III. Curso En efecto, sea x A B, entonces x A ó x B. Supongamos que x A. Como A es abierto, δ > 0 : B( x, δ) A. Pero A siempre está incluido en A B, luego: B( x, δ) A B, y por tanto x es un punto interior de A B. Análogamente se probaría si suponemos x B. Luego A B es también abierto. 5. Probar las siguientes propiedades topológicas para subconjuntos de IR n : Nota: en general cuando se quiere probar la inclusión de un conjunto en otro, se trata de tomar un elemento arbitrario del primer conjunto y ver que también está en el segundo. (a) A B = Int(A) Int(B). Si A B, entonces dado x A x B. Veamos si Int(A) Int(B). En efecto, sea x Int(A) ε > 0 : B(x, ε) A, pero como A B, entonces ε > 0 : B(x, ε) A B, es decir, ε > 0 : B(x, ε) B, luego: x Int(B). (b) Int(A B) = Int(A) Int(B). Veamos que Int(A B) = Int(A) Int(B). Procedermos por doble inclusión. Sea x Int(A B) ε > 0 : B(x, ε) A B ε > 0 : B(x, ε) A ɛ > 0 : B(x, ε) B luego x Int(A) y x Int(B), es decir: x Int(A) Int(B) Con esto hemos probado la inclusión: Int(A B) Int(A) Int(B). (1) Veamos ahora la otra inclusión. Sea x Int(A) Int(B) x Int(A) ε 1 > 0 : B(x, ε 1 ) A x Int(B) ε 2 > 0 : B(x, ε 2 ) B. Sea ε = min(ε 1, ε 2 ) se tiene entonces que: B(x, ε) A y B(x, ε) B B(x, ε) A B x Int(A B). Luego hemos probado que: Int(A) Int(B) Int(A B) (2) De (1) y (2) se deduce que: Int(A B) = Int(A) Int(B) (c) Int(A) Int(B) Int(A B). Sea x Int(A) Int(B) x Int(A), entonces puede ocurrir: ε > 0 : B(x, ε) A x Int(B) δ > 0 : B(x, δ) B

9 Soluciones a los ejercicios propuestos: Matemáticas III. Curso Sea ρ = max(ε, δ), se tiene que B(x, ρ) A ó B(x, ρ) B luego B(x, ρ) A B x Int(A B). Y por tanto hemos probado que: Int(A) Int(B) Int(A B). (d) Proponer un ejemplo en el que no se cumpla la inclusión anterior pero en sentido contrario. Es decir, dar un ejemplo de A y B donde Int(A B) Int(A) Int(B). Qué podemos decir de la siguiente igualdad: Int(A B) = Int(A) Int(B)? ( ) En efecto el recíproco del apartado anterior no es cierto en general. Para ello, utilizaremos un contraejemplo. Sean A = ( 1, 0], B = (0, 1], entonces A B = ( 1, 1] luego: Int(A B) = ( 1, 1).Y sin embargo, para cada conjunto se tiene: Int(A) = ( 1, 0), Int(B) = (0, 1) Int(A) Int(B) = ( 1, 1) {0} y por tanto: Int(A B) Int(A) Int(B). Es decir, en general no se cumple la igualdad: Int(A B) = Int(A) Int(B).

Topología en R n. Continuidad de funciones de varias variables

Topología en R n. Continuidad de funciones de varias variables . Continuidad de funciones de varias variables María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I (1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Continuidad

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio.1.- Relación. Espacios topológicos. Operadores Sea X un conjunto y x 0 X. Queremos probar que la familia T x0 = {X} {A X;x 0 / A} es una topología

Más detalles

Continuidad de funciones reales y vectoriales de variable vectorial

Continuidad de funciones reales y vectoriales de variable vectorial Capítulo 6 Continuidad de funciones reales y vectoriales de variable vectorial 6.1. Introducción Hasta el momento hemos estudiado funciones reales de variable real, es decir, funciones de la forma f :

Más detalles

Problemas de TOPOLOGÍA Hoja 2

Problemas de TOPOLOGÍA Hoja 2 Problemas de TOPOLOGÍA Hoja 2 1. Sea X un conjunto, (Y, T Y ) un espacio topológico y f : X Y una aplicación. Probar que T = {f 1 (G) : G T Y } es una topología sobre X. Esta topología se llama topología

Más detalles

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 1 Geometría. Dados x, y Ê N, su producto interno canónico (o producto punto) es x

Más detalles

TOPOLOGÍA. Resumen Curso 2011/2012

TOPOLOGÍA. Resumen Curso 2011/2012 TOPOLOGÍA Resumen Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia

Más detalles

Primeras nociones topológicas

Primeras nociones topológicas Lección 5 Primeras nociones topológicas Vamos a estudiar ahora algunas nociones topológicas elementales, trabajando en un espacio métrico arbitrario. Empezamos estudiando el interior de un conjunto y los

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

Tarea N 2. Análisis I. MAT-223

Tarea N 2. Análisis I. MAT-223 Tarea N 2. Análisis I. MAT-223 Mauricio Godoy Molina 18/03/2005 1. Sea A n el conjunto de todos los números naturales divisibles por n. Determine: A n y A n 2. Sea τ la topología del conjunto N formada

Más detalles

RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO

RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO 2008-09 En este resumen no se puede escribir o añadir nada, ni por delante, ni por detrás. En todo caso, sólo se permite subrayar lo que se

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 3.1.- Relación 3. Continuidad Sea G un abierto arbitrario de la recta euclídea. La continuidad de la aplicación X A equivale a ver que H = X

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

TOPOLOGIA I Hoja 7 Soluciones

TOPOLOGIA I Hoja 7 Soluciones UNIVERSIDAD DE ZARAGOZA FAULTAD DE IENIAS Sección de Matemáticas urso 003/004 TOPOLOGIA I Hoja 7 Soluciones [1] a) En primer lugar, si B πb, entonces B = B 1 B donde B 1 B X y B B Y, es decir, ambos son

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 4.1.- Relación 4. Compacidad. Conexión Supongamos que A es compacto y sea A α Λ B α un recubrimiento de A por bolas abiertas. Entonces, como

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

Conjuntos Abiertos y Conjuntos Cerrados

Conjuntos Abiertos y Conjuntos Cerrados El espacio R n 1 Conjuntos Abiertos y Conjuntos Cerrados Definición. Un conjunto V R n se dice que es abierto si para cada x V existe una bola abierta B( x, r) contenida en V. Es decir si para cada x V

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA

ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA Curso 2008/2009 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición

Más detalles

Dificultad [2] Solución 1. Sean A y B disjuntos y cerrados. Entonces A = adh(a) y B = adh(b), y por tanto, A adh(b) = adh(a) B = A B =.

Dificultad [2] Solución 1. Sean A y B disjuntos y cerrados. Entonces A = adh(a) y B = adh(b), y por tanto, A adh(b) = adh(a) B = A B =. 5.1 Sea (E, d) un espació métrico y A y B subconjuntos de E. Demuéstrese que 1. si A y B son disjuntos y ambos cerrados, entonces están separados. 2. si A y B son disjuntos y ambos abiertos, entonces están

Más detalles

1 Introducción a las funciones de varias variables

1 Introducción a las funciones de varias variables Contenidos Primeras nociones Topología del espacio euclídeo Limites y Continuidad Derivación Teorema de la función inversa Ejercicios resueltos Ejercicios propuestos 1 Introducción a las funciones de varias

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Cambio de Variables en la Integral Múltiple

Cambio de Variables en la Integral Múltiple Capítulo 27 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se

Más detalles

Capítulo VI. Diferenciabilidad de funciones de varias variables

Capítulo VI. Diferenciabilidad de funciones de varias variables Capítulo VI Diferenciabilidad de funciones de varias variables La definición de diferenciabilidad para funciones el cociente no tiene sentido, puesto que no está definido, porque el cociente entre el vector

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Cambio de Variables en la Integral Múltiple

Cambio de Variables en la Integral Múltiple Capítulo 24 Cambio de Variables en la Integral Múltiple n la demostración del teorema del cambio de variable utilizaremos con frecuencia que el carácter medible de los conjuntos es una propiedad que se

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Parte III. Medida e Integración en R n

Parte III. Medida e Integración en R n Parte III Medida e Integración en R n Capítulo 17 La Medida Exterior de Lebesgue en R n El cálculo de longitudes, áreas y volúmenes es uno de los asuntos matemáticos con más larga tradición histórica,

Más detalles

1) Identifique el número que NO es racional: a) 2 8 b) c) 15 d) 2 7

1) Identifique el número que NO es racional: a) 2 8 b) c) 15 d) 2 7 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS EXAMEN DE INGRESO DE MATEMÁTICAS PARA INGENIERÍAS Y EDUCACIÓN COMERCIAL GUAYAQUIL, 03 DE

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

De intervalos a conjuntos abiertos

De intervalos a conjuntos abiertos De intervalos a conjuntos abiertos Genaro Luna Carreto 1 19 de Agosto 2017, 5pm. 1 Profesor de la Benemérita Universidad Autónoma de Puebla, México. 0.1. Intervalo abierto en la definición de límite de

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

Límites y Continuidad de funciones de dos variables

Límites y Continuidad de funciones de dos variables Límites y Continuidad de funciones de dos variables 1.- Si en un cierto punto ( a, b) R existe el lim f = L R a,b, entonces: f es continua en (a, b). b) Existen los límites reiterados de f en (a, b) y

Más detalles

PROBLEMAS DE TOPOLOGÍA Licenciatura de Matemáticas, curso Espacios topológicos

PROBLEMAS DE TOPOLOGÍA Licenciatura de Matemáticas, curso Espacios topológicos PROBLEMAS DE TOPOLOGÍA Licenciatura de Matemáticas, curso 2006-07 Espacios topológicos 1.- Determinar el número de topologías distintas en un conjunto de tres elementos. 2.- Sobre un conjunto X, consideremos

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

TOPOLOGÍA. Curso 2011/2012

TOPOLOGÍA. Curso 2011/2012 TOPOLOGÍA Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia sobre

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro.

Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Cónicas 1.- Circunferencia Definición 1 (Definición geométrica) Se llama Circunferencia al lugar geométrico de los puntos del plano equidistantes de un punto fijo llamado centro. Analíticamente la circunferencia

Más detalles

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]

GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos] Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo

Más detalles

1. Caracterización de compacidad en espacios métricos

1. Caracterización de compacidad en espacios métricos Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS TEÓRICO-PRÁCTICAS 10: COMPACIDAD II 1. Caracterización de compacidad en espacios métricos

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencial e integral 4 http://academicos.fciencias.unam.mx/nataliajonard/calculo-4 menos que indiquemos lo contrario, R siempre denotará un rectángulo de la forma con a i < b i. R = [a 1, b 1

Más detalles

Construcción de topologías

Construcción de topologías CAPíTULO 7 Construcción de topologías Por construir topologías queremos decir lo siguiente. Supongamos que un conjunto A (no espacio topológico) está relacionado de alguna manera con un espacio topológico

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

Funciones continuas e inyectivas

Funciones continuas e inyectivas Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2 MATEMÁTICA APLICADA CÁLCULO E.T.S.I. INFORMÁTICOS UPM o G.I.I. SOLUCIONES EXAMEN FINAL 6/6/04 er EXAMEN PARCIAL. Calcule los siguientes ites, si existen: a n + n 3n. b n n + 3 n +n a El ite presenta una

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Conexión Motivación. Lección 10

Conexión Motivación. Lección 10 Lección 10 Conexión Estudiamos la propiedad topológica que nos va a permitir obtener una versión general para espacios métricos del teorema del valor intermedio que conocemos para funciones reales de variable

Más detalles

1.- Álgebra de números complejos.

1.- Álgebra de números complejos. .- Álgebra de números complejos. a) Definición y representación geométrica. b) Sumas y productos de números complejos. c) Vectores y módulos en el plano complejo. d) Representación en forma exponencial.

Más detalles

3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa

3er Concurso Unversitario de Matemáticas Galois-Noether 2013 Segunda Etapa 3er Concurso Unversitario de Matemáticas Galois-Noether 013 Segunda Etapa Sábado 17 de agosto 013 Bienvenido a la Segunda Etapa del Concurso Universitario de Matemáticas Galois-Noether Responde a las preguntas

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Topología de un espacio métrico

Topología de un espacio métrico Tema 2 Topología de un espacio métrico uestro próximo objetivo es estudiar ciertas propiedades topológicas de un espacio métrico, así llamadas porque sólo dependen de una familia de subconjuntos del espacio

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 85 a 99

SOLUCIONES DE LAS ACTIVIDADES Págs. 85 a 99 TEMA. INECUACIONES SOLUCIONES DE LAS ACTIVIDADES Págs. 8 a 99 Página 8 1. a) x > / 2 x < 2 / x > 6 / 3 = 2 d) x 4 e) x < 3 f) x 2. a) 1ª ecuación x 2ª ecuación x Son equivalentes. 1ª ecuación x 1 2ª ecuación

Más detalles

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema

x +3y 2t = 1 2x +y +z +t = 2 3x y +z t = 7 2x +6y +z +t = a (a) Realizamos transformaciones elementales sobre la matriz ampliada del sistema UCM Matemáticas II Examen Final, 8/05/014 Soluciones 1 Dado el parámetro a R, se considera el sistema lineal x +y t = 1 x +y +z +t = x y +z t = 7 x +6y +z +t = a (a (6 puntos Discutir el sistema según

Más detalles

Producto cartesiano y relaciones.

Producto cartesiano y relaciones. CAPÍTULO 1. Producto cartesiano y relaciones. Este primer capítulo trata sobre producto cartesiano y relaciones. Muchos subconjuntos del plano definen relaciones, las cuales tienen cada una distintas propiedades.

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

Funciones integrables en R n

Funciones integrables en R n Capítulo 1 Funciones integrables en R n Sean un subconjunto acotado de R n, y f : R una función acotada. Sea R = [a 1, b 1 ]... [a n, b n ] un rectángulo que contenga a. Siempre puede suponerse que f está

Más detalles

Examen PARCIAL M2 FIB-UPC 8 de gener de 2018

Examen PARCIAL M2 FIB-UPC 8 de gener de 2018 Examen PARCIAL M FIB-UPC 8 de gener de 018 1. (.5 punts) Volem calcular amb el mètode dels trapezis el valor aproximat de la integral amb un error més petit que 0,05. 1 0 e x dx (a) Determineu el nombre

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone

Facultad de Ingeniería Facultad de Tecnología Informática. Matemática Números reales Elementos de geometría analítica. Profesora: Silvia Mamone Facultad de Ingeniería Facultad de Tecnología Informática Matemática Números reales Elementos de geometría analítica 0 03936 Profesora: Silvia Mamone UB Facultad de Ingeniería Facultad de Tecnología Informática

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V :

si existe un entorno V de a contenido en A, tal que la diferencia f(x) f(a) no cambia de signo cuando x V : Capítulo 12 Extremos Relativos Una aplicación clásica del Teorema Local de Taylor, que vimos en el capítulo anterior, es el estudio de los extremos relativos de una función escalar. Aunque la analogía

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 5 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

El Teorema de Baire Rodrigo Vargas

El Teorema de Baire Rodrigo Vargas El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

Límite Funcional Puntos de acumulación. Tema 1

Límite Funcional Puntos de acumulación. Tema 1 Tema 1 Límite Funcional Estudiamos en este tema el concepto de límite para funciones reales de variable real, que guarda una estrecha relación con la continuidad. 1.1. Puntos de acumulación Pretendemos

Más detalles

1. Teorema de Fubini. Teorema de Fubini.

1. Teorema de Fubini. Teorema de Fubini. 1. El teorema de Fubini nos va a dar una técnica para el cálculo de integrales de funciones de varias variables mediante el cálculo de varias integrales de funciones de una variable. partir de ahí se podrán

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

El teorema de Lebesgue

El teorema de Lebesgue Capítulo 3 El teorema de Lebesgue En este capítulo estudiaremos un teorema que nos dice exactamente qué funciones son integrables y cuán grande puede ser la frontera de un conjunto para que éste tenga

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2015 2016) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 5 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa (hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

El Teorema de Fubini-Tonelli

El Teorema de Fubini-Tonelli Capítulo 26 El Teorema de Fubini-Tonelli Veremos en este capítulo que el cálculo de una integral múltiple se reduce al de integrales simples. Concretamente se va a probar que si f(x, y) es una función

Más detalles

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9

Soluciones a los ejercicios propuestos: Matemáticas III. Curso Tema 9 Soluciones a los ejercicios propuestos: Matemáticas III. Curso 10 11 9 Tema 9 1. Consideremos el problema min F x, ys.a.:gx, y = b. Siendo F y g funciones con derivadas parciales continuas en IR. Supongamos

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1

Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea 1 Universidad Nacional Autónoma de México Facultad de Ciencias Geometría Analítica II Tarea. Completa las igualdades usando el dibujo. γ β = α β = β + θ = θ + ε + ω = θ + ε = β + θ + ω = α + ε = β + δ =.

Más detalles

El teorema del valor intermedio

El teorema del valor intermedio Ya hemos tratado en un artículo anterior el problema de la continuidad de una función. Ahora nos hemos de preguntar sobre las ventajas que, en análisis matemático, nos proporciona este hecho. Existen una

Más detalles

Funciones convexas Definición de función convexa. Tema 10

Funciones convexas Definición de función convexa. Tema 10 Tema 10 Funciones convexas Los resultados obtenidos en el desarrollo del cálculo diferencial nos permiten estudiar con facilidad una importante familia de funciones reales de variable real definidas en

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

El Espacio Normado R n

El Espacio Normado R n Capítulo 1 El Espacio Normado R n 1. Conceptos básicos En este curso supondremos conocida la estructura de R y su topología, así como las propiedades de las funciones continuas o derivables de una variable.

Más detalles

1. Definiciones y propiedades básicas.

1. Definiciones y propiedades básicas. Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 2: TOPOLOGÍA. 1 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto.

Más detalles

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3

Pauta Control 1 - MA2A1 Agosto a) Estudiar si las siguientes denen una norma en R 2 : 3) (x, y) = x + 3 Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Pauta Control 1 - MA2A1 Agosto 2008 Profesor: Marcelo Leseigneur Auxiliares: Cristopher Hermosilla

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales

RESOLUCIÓN DE SISTEMAS DE ECUACIONES E INECUACIONES CON DOS INCÓGNITAS. Prof. Esther Morales 1 U N E X P O UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA ANTONIO JOSÉ DE SUCRE VICE-RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE MATEMÁTICA RESOLUCIÓN DE SISTEMAS DE ECUACIONES

Más detalles

2. Distancia entre dos puntos. Punto medio de un segmento

2. Distancia entre dos puntos. Punto medio de un segmento Geometría 1 Geometría anaĺıtica Una ecuación de primer grado con dos incógnitas x e y tiene infinitas soluciones Por ejemplo x + y = 3 tiene como soluciones (0, 3), (1, ), ( 1, 4), etc Hasta ahora se han

Más detalles