El Teorema de Baire Rodrigo Vargas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Teorema de Baire Rodrigo Vargas"

Transcripción

1 El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico. (i) Decimos que E M es denso en ninguna parte si E C es denso. (ii) Decimos que F M es de primera categoria si se puede expresar como una unión numerable de conjuntos densos en ninguna parte. (iii) Decimos que un conjunto es de segunda categoria si no es de primera categoria. Proposición 1. Sea M un espacio métrico completo. Entonces no hay ningun subconjunto abierto no vacio que sea de primera categoría. Ejercicios 1. Pruebe que E es denso en ninguna parte si y sólo si su clausura tiene interior vacio. 2. Demuestre que ningún espacio métrico completo es de primera categoría. 3. Considere un espacio métrico numerable que sólo contiene elementos que son puntos límites. Demuestre que tal espacio no es completo. (Católica, Magister, 2005) 4. Demuestre que R no es numerable. 5. Sea X espacio métrico. Decimos que E X es perfecto si E = E. i) Muestre que un conjunto perfecto no vacio no puede ser numerable en un espacio métrico completo. ii) Muestre que [0, 1] no se puede escribir como una unión infinita y disjunta de intervalos cerrados de largo positivo. 1

2 iii) Demuestre que el cuadrado X = [0, 1] [0, 1] no puede expresesarse como una unión de dos o más cuadrados cerrados de interior no vacio disjuntos. 6. Sea M un espacio métrico completo. Todo conjunto de primera categoria en M tiene interior vacio. 7. i) Mostrar que Q no es un G δ. ii) Sea f : R R. Mostrar que el conjunto de los puntos de continuidad de f es un G δ. iii) Mostrar que no existe una función continua f : R R cuyos puntos de continuidad sea Q. iv) Muestre que existe una función g : R R que es continua en R \ Q y discontinua en Q. v) Sea Y el conjunto de los números irracionales. Muestre que no existe una función continua h : R R tal que h(y ) Q y h(q) = Y. 8. Demuestre que no existe una sucesión {f n } de funciones continuas de R en R tal que inf n f n(x) = 0 si y sólo si x es racional. 9. Sea M un espacio métrico completo. Si M = (Católica, Doctorado, 2003) F n, donde cada F n es cerrado en M, entonces existe por lo menos un n tal que int F n. 10. Sean M un espacio métrico completo, E espacio vectorial normado y E un conjunto de aplicaciones continuas f : M E. Suponga que E es puntualmente acotado. Demuestre que existe un abierto no vacio U tal que E es uniformente acotado en U. 11. Sea f : R R de clase C y suponga que para todo x R existe un natural n tal que f (n) (x) = 0. Demuestre que existe un abierto no vacio U de R donde f es un polinomio. 2

3 12. Sea C el espacio de todas las funciones reales continuas en I = [0, 1] con la norma del supremo. Sea X n el subconjunto de C formado por aquellas funciones f para las que existe un t I tal que f(s) f(t) n s t para todo s I. Fijese n y demuéstrese que todo conjunto abierto en C contiene un conjunto abierto que no corta a X n. Demuestre que esto implica la existencia de un conjunto G δ denso en C formado totalmente por funciones que no son diferenciables en ningún punto. 3

4 1. Pruebe que E es denso en ninguna parte si y sólo si su clausura tiene interior vacio. Solución: Queremos probar que: E C es denso int E = o equivalentemente E C es denso int E =. En efecto, basta notar que int E = x E, ε > 0 : B(x, ε) E x E, ε > 0 : y B(x, ε) con y E C x E, ε > 0 : B(x, ε) E C E C es denso 2. Demuestre que ningún espacio métrico completo es de primera categoría. Solución: Sea X un espacio métrico completo y supongamos que X es de primera categoria entonces X = donde cada F n es cerrado con complemento denso, entonces F n ( ) C = X C = F n = Note que Fn C es abierto denso, por el Teorema de Baire en particular, no vacio lo que es una contradicción. F C n F C n es denso, 3. Considere un espacio métrico numerable que sólo contiene elementos que son puntos límites. Demuestre que tal espacio no es completo. Solución: Sea X = {x n } espacio métrico numerable y supongamos que X es completo. Sabemos que int {x} = si y sólo si x no es aislado, entonces como cada x n es punto límite tenemos que int {x n } = int {x n } =. Entonces, X es un conjunto completo de primera categoria. Por problema anterior, esto es absurdo. 4

5 4. Demuestre que R no es numerable. Solución: Supongamos que R es numerable entonces R = todo punto de R no es aislado tenemos que int{x n } = int{x n } = {x n } como luego R es un conjunto completo de primera categoria, lo que es imposible por problema Sea X espacio métrico. Decimos que E X es perfecto si E = E. i) Muestre que un conjunto perfecto no vacio no puede ser numerable en un espacio métrico completo. ii) Muestre que [0, 1] no se puede escribir como una unión infinita y disjunta de intervalos cerrados de largo positivo. iii) Demuestre que el cuadrado X = [0, 1] [0, 1] no puede expresesarse como una unión de dos o más cuadrados cerrados de interior no vacio disjuntos. Solución: i) Primero probaremos que E es completo. Sea (x n ) E una sucesión de Cauchy, entonces (x n ) es sucesión de Cauchy en X, luego existe x tal que x n x E = E. Por lo tanto, E es completo. Ahora bien, supongamos que E es numerable entonces E = {e n }, como todos sus puntos son puntos límites entonces int{e n } = int{e n } = entonces E es completo de primera categoria, lo que es imposible por problema 2. ii) Supongamos que [0, 1] = α A[a α, b α ] es una unión disjunta con b α a α > 0. Notemos que la aplicación Q [0, 1] A q α tal que q [a α, b α ] 5

6 es sobre entonces A es numerable. Por lo tanto, [0, 1] = E = [a n, b n ] y {a n, b n } es un conjunto perfecto, por parte i) no puede ser numerable. iii) Ocupando la densidad de los puntos con coordenadas racionales en X podemos concluir que tal unión es numerable, tal como se hizo en ii), entonces X = C n. Consideremos el conjunto D = donde D n = C n. Tenemos que D es cerrado, al ser complemento de un abierto (la unión de los interiores de los cuadrados), luego es completo. Afirmamos que cada D n es cerrado con interior vacio. En efecto, cada D n es cerrado en X luego en D y además si x D n entonces para todo ε > 0 se tiene que B(x, ε) Dn C lo que implica que int D n = (ver problema 1). Es decir, D es un conjunto completo de primera categoria, lo que es imposible por problema 2. D n 6. Sea M un espacio métrico completo. Todo conjunto de primera categoria en M tiene interior vacio. Solución: Sea F = interior vacio, entonces F n, donde cada F n es cerrado en M y tiene F C = donde cada Fn C es abierto denso, por el Teorema de Baire tenemos que F C es denso en M, lo que implica por el problema 1 que int F =. 7. i) Mostrar que Q no es un G δ. ii) Sea f : R R. Mostrar que el conjunto de los puntos de continuidad de f es un G δ. iii) Mostrar que no existe una función continua f : R R cuyos puntos de continuidad sea Q. iv) Muestre que existe una función g : R R que es continua en R \ Q y discontinua en Q. F C n 6

7 v) Sea Y el conjunto de los números irracionales. Muestre que no existe una función continua h : R R tal que h(y ) Q y h(q) = Y. Solución: i) Supongamos que Q = A n con A n abierto, entonces para cada n N se tiene que Q A n lo que implica que A n es denso. Sea B n = R {q n } donde Q = {q 1,..., q n,...} entonces B n es abierto denso. Luego, por el Teorema de Baire el conjunto ( ) ( ) D = A n B n es denso en R, pero por construcción D =, lo que es una contradicción. Por lo tanto, Q no es un G δ. ii) Si f es continua en x entonces para todo ε > 0, existe una vecindad Vx ε de x tal que f(vx ε ) B(f(x), ε). Entonces, O ε = tenemos que es un G δ. O = x pto de cont. de f V ε x es abierto para todo ε > 0. Por lo tanto, O 1/n = {x R f es continua en x} iii) Supongamos que existe f : R R cuyos puntos de continuidad son Q sabemos por i) que Q no es un G δ, pero por ii) los puntos de continuidad son un G δ, lo que es una contradicción. iv) Basta ( ) considerar g : R R definida por g(x) = 0 si x R \ Q y g si (p, q) = 1 y g(0) = 1. p q = 1 q v) Supongamos que existe h : R R tal que h(y ) Q y h(q) Y y considere la función ϕ = g h donde g es la función definida en iv), entonces ϕ(q) = (g h)(q) g(y ) 7

8 como g es continua en Y entonces ϕ es continua en Q y ϕ(y ) = (g h)(y ) g(q) como g es discontinua en Q luego ϕ es discontinua en Y, lo que contradice iii). 8. Demuestre que no existe una sucesión {f n } de funciones continuas de R en R tal que inf n f n(x) = 0 si y sólo si x es racional. Solución: Supongamos que existe una sucesión f n : R R de funciones continuas tal que inf n f n(x) = 0 x Q. Para cada n N definimos el conjunto { A n = x R inf f m(x) < 1 } m n entonces cada A n es abierto y A n = {x R inf m f m(x) = 0} = Q luego Q es un G δ, lo que es una contradicción según problema 7 i) 9. Sea M un espacio métrico completo. Si M = F n, donde cada F n es cerrado en M, entonces existe por lo menos un n tal que int F n. Solución: Supongamos que int F n = para todo n N entonces M es espacio métrico completo de primera categoria, lo cual es imposible por problema Sean M un espacio métrico completo, E espacio vectorial normado y E un conjunto de aplicaciones continuas f : M E. Suponga que E es puntualmente acotado. Demuestre que existe un abierto no vacio U tal que E es uniformente acotado en U. 8

9 Solución: Como E es puntualmente acotado para todo x M existe c x > 0 tal que f(x) c x para toda f E. Consideremos para cada n N el conjunto F n = {x M f(x) n para toda f E} entonces cada F n es cerrado y como E es puntualmente acotado para cada x M existe algún n tal que x F n. Es decir, M = F n. Por problema 9 existe algún n 0 tal que intf n0, sea U = intf n0. Entonces para todo x U y toda f E tenemos que f(x) n 0, luego E es uniformemente acotado en en el abierto no vacio U. 11. Sea f : R R de clase C y suponga que para todo x R existe un natural n tal que f (n) (x) = 0. Demuestre que existe un abierto no vacio U de R donde f es un polinomio. Solución: Para cada n N consideremos el conjunto F n = {x R f (n) (x) = 0}. Cada F n es cerrado y como para cada x R existe n tal que f (n) (x) = 0 entonces x F n es decir, R = F n entonces por problema 9 existe algún n tal que U = int F n. Entonces, para cada x U se tiene que f (n) (x) = 0, es decir, f es un polinomio de grado n. 12. Sea C el espacio de todas las funciones reales continuas en I = [0, 1] con la norma del supremo. Sea X n el subconjunto de C formado por aquellas funciones f para las que existe un t I tal que f(s) f(t) n s t para todo s I. Fijese n y demuéstrese que todo conjunto abierto en C contiene un conjunto abierto que no corta a X n. Demuestre que esto implica la existencia de un conjunto G δ denso en C formado totalmente por funciones que no son diferenciables en ningún punto. Solución: Para cada n N consideremos el conjunto X n = {f C s I, t : f(s) f(t) n s t }. 9

10 Consideremos el completo de este conjunto A n = C \ X n = {f C s I, t : f(s) f(t) > n s t }. Probar que todo conjunto abierto en C contiene un conjunto abierto que no corta a X n es equivalente a probar que A n es denso en C. En efecto, dados ε > 0 y f C, probaremos que existe g A n tal que g f < ε. Por la continuidad unifrome de f, existe δ > 0 tal que x y < δ f(x) f(y) < ε. Por lo tanto, si subdividimos el intervalo [0, 1] en un número finito de subintervalos I 1,..., I r de largo menor que δ, el grafico de f en cada una de estos subintervalos cabe en un rectángulo de altura menor que ε. Construimos ahora una función continua g : [0, 1] R, cumnpliendo las condiciones g f < ε y g A n, haciendo que g coindida con f en los extremos de cada intervalo I j y en el interior de cada I j, el gráfico de g tiene la forma de una sierra cuyos dientes tienen aristas con inclinación mayor que n. ε g f 0 1 Por otro lado, Se sigue inmediatamente de la definición de derivada que si f A n para todo n N entonces f no posee derivada en ningún punto del intervalo I. Como cada A n es abierto denso en C y C es un espacio métrico completo entonces por el Teorema de Baire A = es denso en C y A es un G δ formado por funciones que no son diferenciable en ningún punto. A n I j 10

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam.

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam. Notas de Análisis Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam.mx Marzo del 2005 2 Contenido 1 Topología de espacios métricos

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS EJERCICIOS DE CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas,

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n 1 +... + a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Mó duló 02: Nu merós Reales

Mó duló 02: Nu merós Reales INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 0: Nu merós Reales Objetivo: Comprender los números reales como un conjunto que está conformado por otros conjuntos numéricos, los cuales tienen

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 17 Capítulo 2.

Más detalles

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES ÍNDICE 1. Funciones de varias variables 1 2. Continuidad 2 3. Continuidad y composición de funciones 4 4. Continuidad y operaciones algebraicas 4 5. Carácter

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Programa de Topología General. Enrique Artal Bartolo. José Ignacio Cogolludo Agustín. Curso 2005/2006

Programa de Topología General. Enrique Artal Bartolo. José Ignacio Cogolludo Agustín. Curso 2005/2006 Programa de Topología General Enrique Artal Bartolo José Ignacio Cogolludo Agustín Curso 2005/2006 Departamento de Matemáticas, Universidad de Zaragoza, Campus Plaza San Francisco s/n, E-50009 Zaragoza

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Filtros en Topología y algunas aplicaciones TESIS PARA OBTENER EL TÍTULO DE:

Filtros en Topología y algunas aplicaciones TESIS PARA OBTENER EL TÍTULO DE: UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA Filtros en Topología y algunas aplicaciones TESIS PARA OBTENER EL TÍTULO DE: Licenciado en Matemáticas Aplicadas PRESENTA: Cenobio Yescas Aparicio DIRECTOR DE TESIS:

Más detalles

Teoría axiomática de conjuntos. E. Casanovas

Teoría axiomática de conjuntos. E. Casanovas Teoría axiomática de conjuntos E. Casanovas 1998 Índice general 1. Axiomas 2 2. Conjuntos bien ordenados 5 3. El axioma de elección 10 4. Ordinales 13 5. Aritmética ordinal 19 6. Forma normal de Cantor

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles

Determinación de órbitas periódicas usando el método ciclos lentos rápidos

Determinación de órbitas periódicas usando el método ciclos lentos rápidos Determinación de órbitas periódicas usando el método ciclos lentos rápidos Manuel Fidel Domínguez Azueta, Gamaliel Blé González Universidad Juárez Autónoma de Tabasco, México Recibido 6 de f ebrero 2015.

Más detalles

II. ESPACIOS NORMADOS Y ESPACIOS DE BANACH

II. ESPACIOS NORMADOS Y ESPACIOS DE BANACH II. ESPACIOS NORMADOS Y ESPACIOS DE BANACH Se pretende en este capítulo establecer los resultados generales relacionados con el concepto de norma en un espacio vectorial así como mostrar las distintas

Más detalles

Sucesiones y convergencia

Sucesiones y convergencia Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA Dentro del campo general de la teoría de la optimización, también conocida como programación matemática conviene distinguir diferentes modelos de optimización.

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

El Teorema de existencia y unicidad de Picard

El Teorema de existencia y unicidad de Picard Tema 2 El Teorema de existencia y unicidad de Picard 1 Formulación integral del Problema de Cauchy El objetivo del presente Tema, y del siguiente, es analizar el Problema de Cauchy para un SDO de primer

Más detalles

Aversión al riesgo, equivalente cierto y precios de reserva

Aversión al riesgo, equivalente cierto y precios de reserva Aversión al riesgo, equivalente cierto y precios de reserva Ricard Torres ITAM Economía Financiera, 2015 Ricard Torres (ITAM) Aversión al riesgo, equivalente cierto y precios de reserva Economía Financiera

Más detalles

FUNCIONES DE VARIABLE REAL

FUNCIONES DE VARIABLE REAL CAPÍTULO II. FUNCIONES DE VARIABLE REAL SECCIONES A. Dominio e imagen de una función. B. Representación gráfica de funciones. C. Operaciones con funciones. D. Ejercicios propuestos. 47 A. DOMINIO E IMAGEN

Más detalles

Capítulo II: Continuidad y límite funcional

Capítulo II: Continuidad y límite funcional Capítulo II: Continuidad y límite funcional En este capítulo tratamos el concepto de continuidad, una de la idea más fascinante de toda la matemática. Hablando intuitivamente, la idea se puede entender

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

ESTRUCTURAS ORDENADAS Ordenes y Retículos

ESTRUCTURAS ORDENADAS Ordenes y Retículos ESTRUCTURAS ORDENADAS Ordenes y Retículos Renato Lewin Pontificia Universidad Católica de Chile Julio de 1998 1 Conjuntos Ordenados 1.1 Definición y Ejemplos Un conjunto parcialmente ordenado, o simplemente

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

1 Sucesiones de números reales

1 Sucesiones de números reales 1 Sucesiones de números reales 1.1 Números reales En el conjunto de los números reales tenemos definidas dos operaciones binarias, suma y producto, y una relación de orden (a, b) a + b (a, b) ab a b. Ellos

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Notas del curso de Ecuaciones Diferenciales

Notas del curso de Ecuaciones Diferenciales Notas del curso de Ecuaciones Diferenciales 1 Introducción 2 2 Existencia y unicidad de las soluciones 4 3 Dependencia de las condiciones iniciales 8 4 Ecuaciones diferenciales autónomas 9 4.1 Orbitas

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

Límite y continuidad de funciones de varias variables

Límite y continuidad de funciones de varias variables Límite y continuidad de funciones de varias variables 20 de marzo de 2009 1 Subconjuntos de R n y sus propiedades De nición 1. Dado x 2 R n y r > 0; la bola de centro x y radio r es B(x; r) = fy 2 R n

Más detalles

Ejercicios de álgebra 1 Cuarto curso (2003/04)

Ejercicios de álgebra 1 Cuarto curso (2003/04) Departamento de Álgebra, Geometría y Toplogía. Universidad de Málaga Ejercicios de álgebra 1 Cuarto curso (2003/04) Relación 1. Ideales primos y maximales. Nilradical y radical de Jacobson Profesor de

Más detalles

Conjuntos, Relaciones y Funciones

Conjuntos, Relaciones y Funciones Conjuntos, Relaciones y Funciones 0.1 Conjuntos El término conjunto y elemento de un conjunto son términos primitivos y no definidos. De un punto de vista intuitivo parece ser que cualquier colección de

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

TEMA 3: CONTINUIDAD DE FUNCIONES

TEMA 3: CONTINUIDAD DE FUNCIONES TEMA 3: CONTINUIDAD DE FUNCIONES. Valor Absoluto Trabajaremos en el campo de los números reales, R. Para el estudio de las propiedades de las funciones necesitamos el concepto de valor absoluto de un número

Más detalles

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad Tema 3 Problemas de valores iniciales 3.1. Teoremas de existencia y unicidad Estudiaremos las soluciones aproximadas y su error para funciones escalares, sin que ésto no pueda extenderse para funciones

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

3. Funciones reales de una variable real. Límites. Continuidad 1

3. Funciones reales de una variable real. Límites. Continuidad 1 3. Funciones reales de una variable real. Límites. Continuidad 1 Una función real de variable real es una aplicación f : D R, donde D es un subconjunto de R denominado dominio de f. La función f hace corresponder

Más detalles

CAPITULO INTERMEDIO ENTRE II Y III SISTEMAS DINAMICOS

CAPITULO INTERMEDIO ENTRE II Y III SISTEMAS DINAMICOS TEORIA CUALITATIVA DE LAS ECUACIONES DIFERENCIALES Octubre de 1998. Eleonora Catsigeras. CAPITULO INTERMEDIO ENTRE II Y III SISTEMAS DINAMICOS En este capítulo consideraremos propiedades topológicas generales

Más detalles

Definiciones originales de la integral y medida de Lebesgue

Definiciones originales de la integral y medida de Lebesgue Miscelánea Matemática 44 (2007) 83 100 SMM Definiciones originales de la integral y medida de Lebesgue Fernando Galaz-García Department of Mathematics University of Maryland College Park MD 20742 galazg@math.umd.edu

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas.

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Boletín de la Asociación Matemática Venezolana, Vol. XV, No. 1 (2008) 131 Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Rafael Sánchez Lamoneda Introducción. El presente artículo

Más detalles

EJERCICIOS DEL CAPÍTULO I

EJERCICIOS DEL CAPÍTULO I EJERCICIOS DEL CAPÍTULO I 1. Un grupo es una tipo particular de Ω estructura cuando Ω es el tipo Ω = { } siendo una operación de aridad dos. Pero un grupo también es una Ω -estructura siendo Ω = {e, i,

Más detalles

ISSN 1851-1317. Cursos de grado. Fascículo 4. Norberto Fava Felipe Zó. Medida e integral de Lebesgue

ISSN 1851-1317. Cursos de grado. Fascículo 4. Norberto Fava Felipe Zó. Medida e integral de Lebesgue Fascículo 4 Cursos de grado ISSN 1851-1317 Norberto Fava Felipe Zó Medida e integral de Lebesgue Departamento de Matemática Facultad de Ciencias xactas y Naturales Universidad de Buenos Aires 2013 Cursos

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O.

Texto de Cálculo I Intervalos de la recta real R Versión preliminar. L. F. Reséndis O. Texto de Cálculo I Intervalos de la recta real R Versión preliminar L. F. Reséndis O. 2 Contents 1 Números reales L.F. Reséndis O. 5 1.1 Números racionales e irracionales.l.f. Reséndis O............ 5

Más detalles

n=1 2. Sea Ω un conjunto cualquiera con al menos dos puntos, x, y y sea C = P(Ω). Definimos

n=1 2. Sea Ω un conjunto cualquiera con al menos dos puntos, x, y y sea C = P(Ω). Definimos Capítulo 2 Espacios de Medida 2.1. Funciones Aditivas de Conjunto Definición 2.1 Sea µ : C R = R {, + } una función definida sobre una colección de conjuntos C. Decimos que µ es finitamente aditiva si

Más detalles

1.- Primitiva de una función (28.01.2015)

1.- Primitiva de una función (28.01.2015) 1.- Primitiva de una función (28.01.2015) 1.1. Definición. Sea f : I R. Se dice que F : I R es una primitiva de f si F es derivable y F = f en I. En ese caso escribimos F (x) = f(x)dx Si F es una primitiva

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Anillos, ideales y el espectro primo

Anillos, ideales y el espectro primo Capítulo1 Anillos, ideales y el espectro primo Un anillo (conmutativo) con uno es un grupo abeliano (A, +) con un producto A A A que es asociativo, conmutativo, distribuye a la suma y tiene neutro multiplicativo.

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

Taller de resolución de problemas de concurso Universidad de Puerto Rico Colegio Universitario de Cayey. Dr. David A. SANTOS

Taller de resolución de problemas de concurso Universidad de Puerto Rico Colegio Universitario de Cayey. Dr. David A. SANTOS Taller de resolución de problemas de concurso Universidad de Puerto Rico Colegio Universitario de Cayey Dr. David A. SANTOS ii Índice General Progresiones aritméticas 3 2 Progresiones geométricas 9 3 Cancelación

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

GEOMETRÍA DEL ESPACIO EUCLÍDEO

GEOMETRÍA DEL ESPACIO EUCLÍDEO CAPÍTULO I. GEOMETRÍA DEL ESPACIO EUCLÍDEO SECCIONES 1. Vectores. Operaciones con vectores. 2. Rectas y planos en R 3. 3. Curvas y superficies en R 3. 4. Nociones de topología métrica. 1 1. VECTORES. OPERACIONES

Más detalles

Funciones polinomiales de grados cero, uno y dos

Funciones polinomiales de grados cero, uno y dos Funciones polinomiales de grados cero, uno y dos A una función p se le llama polinomio si: p x = a n x n + a n 1 x n 1 + + a 2 x 2 + a 1x + a 0 Donde un entero no negativo y los números a 0, a 1, a 2,

Más detalles

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS.

FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN REAL, LIMITES Y FUNCIONES CONTINUAS. FUNCIÓN. Es toda aplicación entre dos conjuntos A y B formados ambos por números. f A --------> B Al conjunto A se le llama campo de existencia de la función

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

Repaso de funciones elementales, límites y continuidad

Repaso de funciones elementales, límites y continuidad Tema 3 Repaso de funciones elementales, ites y continuidad 3.1. Funciones. Definiciones básicas. Operaciones con funciones 3.1.1. Definiciones Una función real de (una) variable real es una aplicación

Más detalles

4.1 El espacio dual de un espacio vectorial

4.1 El espacio dual de un espacio vectorial Capítulo 4 Espacio dual Una de las situaciones en donde se aplica la teoría de espacios vectoriales es cuando se trabaja con espacios de funciones, como vimos al final del capítulo anterior. En este capítulo

Más detalles

Apuntes de Teoría de Conjuntos

Apuntes de Teoría de Conjuntos Apuntes de Teoría de Conjuntos por Enrique Arrondo ( ) Versión del 20 de Marzo de 2012 Estas notas están basadas en el libro Introduction to Set Theory, de Karel Hrbacek y Thomas Jech, donde el lector

Más detalles

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros

Más detalles

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t.

W =F t. 0 Trabajo y energía. W = F r= F r cos. Donde F cos es la componente de la fuerza en la dirección del desplazamiento F t. El trabajo mecánico realizado por una fuerza constante, F, que actúa sobre un cuerpo que realiza un desplazamiento r es igual al producto escalar de la fuerza por el desplazamiento. Es decir: W = F r=

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES

TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES TEMA 2 EXPERIMENTOS ALEATORIOS Y CÁLCULO DE PROBABILIDADES EXPERIMENTOS: EJEMPLOS Deterministas Calentar agua a 100ºC vapor Soltar objeto cae Aleatorios Lanzar un dado puntos Resultado fútbol quiniela

Más detalles

Notas de Probabilidades y Estadística

Notas de Probabilidades y Estadística Notas de Probabilidades y Estadística Capítulos 1 al 12 Víctor J. Yohai vyohai@dm.uba.ar Basadas en apuntes de clase tomados por Alberto Déboli, durante el año 2003 Versión corregida durante 2004 y 2005,

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo 2 Funciones de varias variables 1. Definiciones básicas En este texto consideraremos funciones f : A R m, A R n. Dichas funciones son comúnmente denominadas como funciones de varias variables,

Más detalles

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones:

1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: F. EJERCICIOS PROPUESTOS. 1.- Encontrar los intervalos de crecimiento y decrecimiento de las funciones: (a) f(x) =x 3 /3+3x 2 /2 10x. Resp.: Crece en (, 5) y en (2, ); decrece en ( 5, 2). (b) f(x) =x 3

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

Integrales impropias. Integrales dependientes de un parámetro

Integrales impropias. Integrales dependientes de un parámetro Capítulo 12 Integrales impropias. Integrales dependientes de un parámetro Integrales impropias. Paso al límite bajo la integral. Continuidad y derivabilidad de las integrales dependientes de un parámetro

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

Curso de conjuntos y números. Apuntes. Juan Jacobo Simón Pinero

Curso de conjuntos y números. Apuntes. Juan Jacobo Simón Pinero Curso de conjuntos y números. Apuntes Juan Jacobo Simón Pinero Curso 2013/2014 2 Índice general I Conjuntos 5 1. Conjuntos y elementos 7 1.1. Sobre el concepto de conjunto y elemento.............. 7 1.2.

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

Teoría de la Empresa. La Tecnología de Producción

Teoría de la Empresa. La Tecnología de Producción Teoría de la Empresa La Tecnología de Producción La Empresa Qué es una Empresa? En la práctica, el concepto de empresa, y el papel que las empresa desempeñan en la economía, son extraordinariamente complejos.

Más detalles

Números algebraicos. Cuerpos de números. Grado.

Números algebraicos. Cuerpos de números. Grado. < Tema 5.- Números algebraicos. Cuerpos de números. Grado. 5.1 Cuerpo de fracciones de un dominio. Tratamos de generalizar la construcción de Q, a partir de Z. Sea A un dominio de integridad. En A (A \

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

Tema 2 Resolución de Ecuaciones No Lineales

Tema 2 Resolución de Ecuaciones No Lineales Tema 2 Resolución de Ecuaciones No Lineales Índice 1. Introducción 2. Método de Bisección 2.1 Algoritmo del Método de Bisección 2.2 Análisis de Método de Bisección 3. Método de Regula-Falsi 3.1 Algoritmo

Más detalles

Funciones de varias variables

Funciones de varias variables Tema 5 Funciones de varias variables Supongamos que tenemos una placa rectangular R y determinamos la temperatura T en cada uno de sus puntos. Fijado un sistema de referencia, T es una función que depende

Más detalles

Series de Fourier, Transformadas de Fourier y Aplicaciones

Series de Fourier, Transformadas de Fourier y Aplicaciones Divulgaciones Matemáticas v. 5, No. /2 (997), 43 6 Series de Fourier, Transformadas de Fourier y Aplicaciones Fourier series, Fourier Transforms and Applications Genaro González Departamento de Matemática

Más detalles

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad)

Integral definida. 4. La integral definida de una suma de funciones es igual a la suma de integrales (Propiedad de linealidad) Integral definida Dada una función f(x) de variable real y un intervalo [a,b] R, la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y rectas x = a y x = b. bb

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles

Conceptos básicos de Matemática. Recopilación de materiales

Conceptos básicos de Matemática. Recopilación de materiales Conceptos básicos de Matemática de materiales 23 de abril de 202 Índice general. Conceptos elementales del lenguaje algebraico 7.. Conjuntos, elementos y pertenencia........................ 7... Operaciones

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles