El Teorema de Baire Rodrigo Vargas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Teorema de Baire Rodrigo Vargas"

Transcripción

1 El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico. (i) Decimos que E M es denso en ninguna parte si E C es denso. (ii) Decimos que F M es de primera categoria si se puede expresar como una unión numerable de conjuntos densos en ninguna parte. (iii) Decimos que un conjunto es de segunda categoria si no es de primera categoria. Proposición 1. Sea M un espacio métrico completo. Entonces no hay ningun subconjunto abierto no vacio que sea de primera categoría. Ejercicios 1. Pruebe que E es denso en ninguna parte si y sólo si su clausura tiene interior vacio. 2. Demuestre que ningún espacio métrico completo es de primera categoría. 3. Considere un espacio métrico numerable que sólo contiene elementos que son puntos límites. Demuestre que tal espacio no es completo. (Católica, Magister, 2005) 4. Demuestre que R no es numerable. 5. Sea X espacio métrico. Decimos que E X es perfecto si E = E. i) Muestre que un conjunto perfecto no vacio no puede ser numerable en un espacio métrico completo. ii) Muestre que [0, 1] no se puede escribir como una unión infinita y disjunta de intervalos cerrados de largo positivo. 1

2 iii) Demuestre que el cuadrado X = [0, 1] [0, 1] no puede expresesarse como una unión de dos o más cuadrados cerrados de interior no vacio disjuntos. 6. Sea M un espacio métrico completo. Todo conjunto de primera categoria en M tiene interior vacio. 7. i) Mostrar que Q no es un G δ. ii) Sea f : R R. Mostrar que el conjunto de los puntos de continuidad de f es un G δ. iii) Mostrar que no existe una función continua f : R R cuyos puntos de continuidad sea Q. iv) Muestre que existe una función g : R R que es continua en R \ Q y discontinua en Q. v) Sea Y el conjunto de los números irracionales. Muestre que no existe una función continua h : R R tal que h(y ) Q y h(q) = Y. 8. Demuestre que no existe una sucesión {f n } de funciones continuas de R en R tal que inf n f n(x) = 0 si y sólo si x es racional. 9. Sea M un espacio métrico completo. Si M = (Católica, Doctorado, 2003) F n, donde cada F n es cerrado en M, entonces existe por lo menos un n tal que int F n. 10. Sean M un espacio métrico completo, E espacio vectorial normado y E un conjunto de aplicaciones continuas f : M E. Suponga que E es puntualmente acotado. Demuestre que existe un abierto no vacio U tal que E es uniformente acotado en U. 11. Sea f : R R de clase C y suponga que para todo x R existe un natural n tal que f (n) (x) = 0. Demuestre que existe un abierto no vacio U de R donde f es un polinomio. 2

3 12. Sea C el espacio de todas las funciones reales continuas en I = [0, 1] con la norma del supremo. Sea X n el subconjunto de C formado por aquellas funciones f para las que existe un t I tal que f(s) f(t) n s t para todo s I. Fijese n y demuéstrese que todo conjunto abierto en C contiene un conjunto abierto que no corta a X n. Demuestre que esto implica la existencia de un conjunto G δ denso en C formado totalmente por funciones que no son diferenciables en ningún punto. 3

4 1. Pruebe que E es denso en ninguna parte si y sólo si su clausura tiene interior vacio. Solución: Queremos probar que: E C es denso int E = o equivalentemente E C es denso int E =. En efecto, basta notar que int E = x E, ε > 0 : B(x, ε) E x E, ε > 0 : y B(x, ε) con y E C x E, ε > 0 : B(x, ε) E C E C es denso 2. Demuestre que ningún espacio métrico completo es de primera categoría. Solución: Sea X un espacio métrico completo y supongamos que X es de primera categoria entonces X = donde cada F n es cerrado con complemento denso, entonces F n ( ) C = X C = F n = Note que Fn C es abierto denso, por el Teorema de Baire en particular, no vacio lo que es una contradicción. F C n F C n es denso, 3. Considere un espacio métrico numerable que sólo contiene elementos que son puntos límites. Demuestre que tal espacio no es completo. Solución: Sea X = {x n } espacio métrico numerable y supongamos que X es completo. Sabemos que int {x} = si y sólo si x no es aislado, entonces como cada x n es punto límite tenemos que int {x n } = int {x n } =. Entonces, X es un conjunto completo de primera categoria. Por problema anterior, esto es absurdo. 4

5 4. Demuestre que R no es numerable. Solución: Supongamos que R es numerable entonces R = todo punto de R no es aislado tenemos que int{x n } = int{x n } = {x n } como luego R es un conjunto completo de primera categoria, lo que es imposible por problema Sea X espacio métrico. Decimos que E X es perfecto si E = E. i) Muestre que un conjunto perfecto no vacio no puede ser numerable en un espacio métrico completo. ii) Muestre que [0, 1] no se puede escribir como una unión infinita y disjunta de intervalos cerrados de largo positivo. iii) Demuestre que el cuadrado X = [0, 1] [0, 1] no puede expresesarse como una unión de dos o más cuadrados cerrados de interior no vacio disjuntos. Solución: i) Primero probaremos que E es completo. Sea (x n ) E una sucesión de Cauchy, entonces (x n ) es sucesión de Cauchy en X, luego existe x tal que x n x E = E. Por lo tanto, E es completo. Ahora bien, supongamos que E es numerable entonces E = {e n }, como todos sus puntos son puntos límites entonces int{e n } = int{e n } = entonces E es completo de primera categoria, lo que es imposible por problema 2. ii) Supongamos que [0, 1] = α A[a α, b α ] es una unión disjunta con b α a α > 0. Notemos que la aplicación Q [0, 1] A q α tal que q [a α, b α ] 5

6 es sobre entonces A es numerable. Por lo tanto, [0, 1] = E = [a n, b n ] y {a n, b n } es un conjunto perfecto, por parte i) no puede ser numerable. iii) Ocupando la densidad de los puntos con coordenadas racionales en X podemos concluir que tal unión es numerable, tal como se hizo en ii), entonces X = C n. Consideremos el conjunto D = donde D n = C n. Tenemos que D es cerrado, al ser complemento de un abierto (la unión de los interiores de los cuadrados), luego es completo. Afirmamos que cada D n es cerrado con interior vacio. En efecto, cada D n es cerrado en X luego en D y además si x D n entonces para todo ε > 0 se tiene que B(x, ε) Dn C lo que implica que int D n = (ver problema 1). Es decir, D es un conjunto completo de primera categoria, lo que es imposible por problema 2. D n 6. Sea M un espacio métrico completo. Todo conjunto de primera categoria en M tiene interior vacio. Solución: Sea F = interior vacio, entonces F n, donde cada F n es cerrado en M y tiene F C = donde cada Fn C es abierto denso, por el Teorema de Baire tenemos que F C es denso en M, lo que implica por el problema 1 que int F =. 7. i) Mostrar que Q no es un G δ. ii) Sea f : R R. Mostrar que el conjunto de los puntos de continuidad de f es un G δ. iii) Mostrar que no existe una función continua f : R R cuyos puntos de continuidad sea Q. iv) Muestre que existe una función g : R R que es continua en R \ Q y discontinua en Q. F C n 6

7 v) Sea Y el conjunto de los números irracionales. Muestre que no existe una función continua h : R R tal que h(y ) Q y h(q) = Y. Solución: i) Supongamos que Q = A n con A n abierto, entonces para cada n N se tiene que Q A n lo que implica que A n es denso. Sea B n = R {q n } donde Q = {q 1,..., q n,...} entonces B n es abierto denso. Luego, por el Teorema de Baire el conjunto ( ) ( ) D = A n B n es denso en R, pero por construcción D =, lo que es una contradicción. Por lo tanto, Q no es un G δ. ii) Si f es continua en x entonces para todo ε > 0, existe una vecindad Vx ε de x tal que f(vx ε ) B(f(x), ε). Entonces, O ε = tenemos que es un G δ. O = x pto de cont. de f V ε x es abierto para todo ε > 0. Por lo tanto, O 1/n = {x R f es continua en x} iii) Supongamos que existe f : R R cuyos puntos de continuidad son Q sabemos por i) que Q no es un G δ, pero por ii) los puntos de continuidad son un G δ, lo que es una contradicción. iv) Basta ( ) considerar g : R R definida por g(x) = 0 si x R \ Q y g si (p, q) = 1 y g(0) = 1. p q = 1 q v) Supongamos que existe h : R R tal que h(y ) Q y h(q) Y y considere la función ϕ = g h donde g es la función definida en iv), entonces ϕ(q) = (g h)(q) g(y ) 7

8 como g es continua en Y entonces ϕ es continua en Q y ϕ(y ) = (g h)(y ) g(q) como g es discontinua en Q luego ϕ es discontinua en Y, lo que contradice iii). 8. Demuestre que no existe una sucesión {f n } de funciones continuas de R en R tal que inf n f n(x) = 0 si y sólo si x es racional. Solución: Supongamos que existe una sucesión f n : R R de funciones continuas tal que inf n f n(x) = 0 x Q. Para cada n N definimos el conjunto { A n = x R inf f m(x) < 1 } m n entonces cada A n es abierto y A n = {x R inf m f m(x) = 0} = Q luego Q es un G δ, lo que es una contradicción según problema 7 i) 9. Sea M un espacio métrico completo. Si M = F n, donde cada F n es cerrado en M, entonces existe por lo menos un n tal que int F n. Solución: Supongamos que int F n = para todo n N entonces M es espacio métrico completo de primera categoria, lo cual es imposible por problema Sean M un espacio métrico completo, E espacio vectorial normado y E un conjunto de aplicaciones continuas f : M E. Suponga que E es puntualmente acotado. Demuestre que existe un abierto no vacio U tal que E es uniformente acotado en U. 8

9 Solución: Como E es puntualmente acotado para todo x M existe c x > 0 tal que f(x) c x para toda f E. Consideremos para cada n N el conjunto F n = {x M f(x) n para toda f E} entonces cada F n es cerrado y como E es puntualmente acotado para cada x M existe algún n tal que x F n. Es decir, M = F n. Por problema 9 existe algún n 0 tal que intf n0, sea U = intf n0. Entonces para todo x U y toda f E tenemos que f(x) n 0, luego E es uniformemente acotado en en el abierto no vacio U. 11. Sea f : R R de clase C y suponga que para todo x R existe un natural n tal que f (n) (x) = 0. Demuestre que existe un abierto no vacio U de R donde f es un polinomio. Solución: Para cada n N consideremos el conjunto F n = {x R f (n) (x) = 0}. Cada F n es cerrado y como para cada x R existe n tal que f (n) (x) = 0 entonces x F n es decir, R = F n entonces por problema 9 existe algún n tal que U = int F n. Entonces, para cada x U se tiene que f (n) (x) = 0, es decir, f es un polinomio de grado n. 12. Sea C el espacio de todas las funciones reales continuas en I = [0, 1] con la norma del supremo. Sea X n el subconjunto de C formado por aquellas funciones f para las que existe un t I tal que f(s) f(t) n s t para todo s I. Fijese n y demuéstrese que todo conjunto abierto en C contiene un conjunto abierto que no corta a X n. Demuestre que esto implica la existencia de un conjunto G δ denso en C formado totalmente por funciones que no son diferenciables en ningún punto. Solución: Para cada n N consideremos el conjunto X n = {f C s I, t : f(s) f(t) n s t }. 9

10 Consideremos el completo de este conjunto A n = C \ X n = {f C s I, t : f(s) f(t) > n s t }. Probar que todo conjunto abierto en C contiene un conjunto abierto que no corta a X n es equivalente a probar que A n es denso en C. En efecto, dados ε > 0 y f C, probaremos que existe g A n tal que g f < ε. Por la continuidad unifrome de f, existe δ > 0 tal que x y < δ f(x) f(y) < ε. Por lo tanto, si subdividimos el intervalo [0, 1] en un número finito de subintervalos I 1,..., I r de largo menor que δ, el grafico de f en cada una de estos subintervalos cabe en un rectángulo de altura menor que ε. Construimos ahora una función continua g : [0, 1] R, cumnpliendo las condiciones g f < ε y g A n, haciendo que g coindida con f en los extremos de cada intervalo I j y en el interior de cada I j, el gráfico de g tiene la forma de una sierra cuyos dientes tienen aristas con inclinación mayor que n. ε g f 0 1 Por otro lado, Se sigue inmediatamente de la definición de derivada que si f A n para todo n N entonces f no posee derivada en ningún punto del intervalo I. Como cada A n es abierto denso en C y C es un espacio métrico completo entonces por el Teorema de Baire A = es denso en C y A es un G δ formado por funciones que no son diferenciable en ningún punto. A n I j 10

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

1. La topología inducida.

1. La topología inducida. PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y

Más detalles

Problemas de TOPOLOGÍA Hoja 2

Problemas de TOPOLOGÍA Hoja 2 Problemas de TOPOLOGÍA Hoja 2 1. Sea X un conjunto, (Y, T Y ) un espacio topológico y f : X Y una aplicación. Probar que T = {f 1 (G) : G T Y } es una topología sobre X. Esta topología se llama topología

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Espacios conexos. 6.1 Conexos

Espacios conexos. 6.1 Conexos Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente

Más detalles

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Medida Cero y Contenido Cero

Medida Cero y Contenido Cero Medida Cero y Contenido Cero Ejemplo.- Sea f : [0, 1] [0, 1] definida como 1 si x o y Q f(x, y) = 0 si x y y / Q Mostrar que f Sea P cualquier partición de y i cualquier subrectángulo inducido por esta

Más detalles

Conjuntos Abiertos y Cerrados

Conjuntos Abiertos y Cerrados Conjuntos Abiertos y Cerrados 1. (a) En la prueba de que la intersección de una colección finita de conjuntos abiertos es un conjunto abierto, dónde se uso la hipótesis de que la colección es finita? 2.

Más detalles

Espacios conexos. Capítulo Conexidad

Espacios conexos. Capítulo Conexidad Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio

Más detalles

Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.)

Tarea 1. A j. A k. b) Ley Distributiva. c) Ley Distributiva. (A i B j ). B j = (Topología.) Tarea 1. (Teoría de Conjuntos.) Estos no son obligatorios, pero sería bueno que los hicieran, si es que son ciertos. a) Ley Asociativa. Sea I conjunto y {J i } familia de conjuntos. Si K := J i, entonces

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

1 Continuidad uniforme

1 Continuidad uniforme Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

5.1. Límite de una Función en un Punto

5.1. Límite de una Función en un Punto Capítulo 5 Continuidad 51 Límite de una Función en un Punto Definición 51 Sean (X, d) y (Y, ρ) espacios métricos, D X, f : D Y una función, a X un punto de acumulación de D y b Y Decimos que b es el límite

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n 1 Espacio vectorial R n Consideremos el conunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fio. Los elementos de R n, que llamamos

Más detalles

El espacio de funciones continuas

El espacio de funciones continuas Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.

Más detalles

Nociones topológicas elementales de R n

Nociones topológicas elementales de R n Nociones topológicas elementales de R n Cálculo II (2004) * 1. Espacio vectorial R n Consideremos el conjunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fijo. Los elementos

Más detalles

Dificultad [2] Solución 1. Sean A y B disjuntos y cerrados. Entonces A = adh(a) y B = adh(b), y por tanto, A adh(b) = adh(a) B = A B =.

Dificultad [2] Solución 1. Sean A y B disjuntos y cerrados. Entonces A = adh(a) y B = adh(b), y por tanto, A adh(b) = adh(a) B = A B =. 5.1 Sea (E, d) un espació métrico y A y B subconjuntos de E. Demuéstrese que 1. si A y B son disjuntos y ambos cerrados, entonces están separados. 2. si A y B son disjuntos y ambos abiertos, entonces están

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

El teorema de Lebesgue

El teorema de Lebesgue Capítulo 3 El teorema de Lebesgue En este capítulo estudiaremos un teorema que nos dice exactamente qué funciones son integrables y cuán grande puede ser la frontera de un conjunto para que éste tenga

Más detalles

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES

CÁLCULO DIFERENCIAL EN VARIAS VARIABLES UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Problemas con soluciones

Problemas con soluciones Departamento de Matemática, Universidad Técnica Federico Santa María, MAT-223. Problemas con soluciones 1) Muestre que si A es una base de una toplogía en X, entonces la topología generada por A es iqual

Más detalles

Ejercicios de Análisis I

Ejercicios de Análisis I UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Ejercicios de Análisis I Ramón Bruzual Marisela Domínguez Caracas, Venezuela Febrero 2005 Ramón

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos

Práctica 2: Cardinalidad. Propiedades básicas de los conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2014 Práctica 2: Cardinalidad Propiedades básicas de los conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ). ii)

Más detalles

Espacios Métricos. 25 de octubre de 2011

Espacios Métricos. 25 de octubre de 2011 Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente

Más detalles

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:

Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas: 4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones

Más detalles

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez.

Medidas. Problemas para examen. Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Medidas Problemas para examen Estos problemas están redactados por Egor Maximenko y Breitner Arley Ocampo Gómez. Sigma-álgebras 1. Propiedades elementales de σ-álgebras. Demuestre que una σ-álgebra es

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

Semana04[1/17] Funciones. 21 de marzo de Funciones

Semana04[1/17] Funciones. 21 de marzo de Funciones Semana04[1/17] 21 de marzo de 2007 Composición de funciones Semana04[2/17] Pensemos que tenemos tres conjuntos no vacíos A, B, C, y dos funciones, f : A B y g : B C, como en el siguiente diagrama: Figura:

Más detalles

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad);

Una norma en un espacio lineal (o vectorial) X es una función. : X R con las siguientes propiedades: (a) x 0, para todo x X (no negatividad); MATEMÁTICA APLICADA II Segundo cuatrimestre 20 Licenciatura en Física, Universidad Nacional de Rosario Espacios de Banach. Introducción Frecuentemente estamos interesados en qué tan grande. es una función.

Más detalles

TOPOLOGÍA. Curso 2011/2012

TOPOLOGÍA. Curso 2011/2012 TOPOLOGÍA Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia sobre

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.

Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................

Más detalles

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5.

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5. Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07- Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

Índice general. 2. Diferenciación Transformaciones lineales Diferenciales Teorema de la función inversa...

Índice general. 2. Diferenciación Transformaciones lineales Diferenciales Teorema de la función inversa... Cálculo Avanzado 2 Índice general 1. Espacios Métricos 5 1.1. Métricas......................................... 5 1.2. Abiertos......................................... 6 1.3. Conceptos básicos de Topología............................

Más detalles

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas

Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio.1.- Relación. Espacios topológicos. Operadores Sea X un conjunto y x 0 X. Queremos probar que la familia T x0 = {X} {A X;x 0 / A} es una topología

Más detalles

Apuntes sobre la integral de Lebesgue

Apuntes sobre la integral de Lebesgue Apuntes sobre la integral de Lebesgue Miguel Lacruz Martín Universidad de Sevilla 1. Medida de Lebesgue 1.1. Introducción La longitud l(i) de un intervalo I R se define habitualmente como la distancia

Más detalles

CALCULO DIFERENCIAL. GRUPO D

CALCULO DIFERENCIAL. GRUPO D CALCULO DIFERENCIAL. GRUPO D HOJA DE PROBLEMAS 1 1. En este ejercicio se trata de dibujar el siguiente subconjunto de R 3 llamado hiperboloide de una hoja (a, b, c > 0): } V = (x, y, z) R 3 : x a + y b

Más detalles

Reconocer y utilizar las propiedades sencillas de la topología métrica.

Reconocer y utilizar las propiedades sencillas de la topología métrica. 3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,

Más detalles

El espacio de funciones continuas

El espacio de funciones continuas Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.

Más detalles

1. Funciones Medibles

1. Funciones Medibles 1. Medibles Medibles simples... Hasta ahora hemos estudiado la medida de Lebesgue definida sobre los conjuntos de R n y sus propiedades. Vamos a aplicar ahora esta teoría al estudio de las funciones escalares

Más detalles

Benemérita Universidad Autónoma de Puebla. Funciones continuas en el sentido de Cauchy.

Benemérita Universidad Autónoma de Puebla. Funciones continuas en el sentido de Cauchy. Benemérita Universidad Autónoma de Puebla Facultad de Ciencias Físico-Matemáticas Funciones continuas en el sentido de Cauchy. Tesis presentada al Colegio de Matemáticas como requisito para obtener el

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid

CÁLCULO DIFERENCIAL. Víctor Manuel Sánchez de los Reyes. Departamento de Análisis Matemático Universidad Complutense de Madrid CÁLCULO DIFERENCIAL Víctor Manuel Sánchez de los Reyes Departamento de Análisis Matemático Universidad Complutense de Madrid Índice 1. Conceptos topológicos y métricos 5 1.1. Métricas, normas y productos

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

Axiomas de separación

Axiomas de separación CAPíTULO 6 Axiomas de separación Tema 1. Axiomas de separación: conceptos básicos El objetivo de este capítulo es considerar ciertas propiedades topológicas que comparten algunos espacios topológicos y

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Integrales múltiples

Integrales múltiples ntegrales múltiples Cálculo (2003) El objetivo de este capítulo es definir y aprender a calcular integrales de funciones reales de varias variables, que llamamos integrales múltiples. Las motivación más

Más detalles

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1],

y valores extremos. En esta sección estudiaremos los conjuntos convexos. Recordemos que un conjunto K R n es convexo si, para todo x,y K y t [0,1], Capítulo 4 Convexidad 1. Conjuntos convexos En este capítulo estudiaremos el concepto de convexidad, el cual es sumamente importante en el análisis. Estudiaremos conjuntos convexos y funcionesconvexas

Más detalles

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli-

Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli- Tema 1 EL TEOREMA DE PEANO En este tema vamos a probar que bajo la hipótesis de ser f continua en un entorno del punto (, y 0 ), se puede garantizar la existencia, aunque no necesariamente la unicidad,

Más detalles

Cambio de variables en la integral múltiple.

Cambio de variables en la integral múltiple. Cambio de variables en la integral múltiple. En este apartado vamos a generalizar la fórmula g(b) g(a) f(x) dx = b a f(g(t)) g (t) dt al caso de funciones de n variables. Como la región de integración

Más detalles

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos Semana02[1/23] 9 de marzo de 2007 Introducción Semana02[2/23] La teoría de conjuntos gira en torno a la función proposicional x A. Los valores que hacen verdadera la función proposicional x A son aquellos

Más detalles

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.

Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia

Más detalles

EL CUERPO ORDENADO REALES

EL CUERPO ORDENADO REALES CAPÍTULO I. EL CUERPO ORDENADO DE LOS NÚMEROS REALES SECCIONES A. Elementos notables en R. B. Congruencias. Conjuntos numerables. C. Método de inducción completa. D. Desigualdades y valor absoluto. E.

Más detalles

6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado.

6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado. 6.1 Pruébese que la unión de un número finito de conjuntos acotados es un conjunto acotado. Dificultad [2] Supongamos que A 1, A 2,..., A n son conjuntos acotados y tomemos un punto cualquiera del espacio,

Más detalles

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R} Proposición. Sea un rectángulo en R n, y sea f : R una función continua. Entonces f es integrable en. Conjuntos de Demostración: Como f es continua en, y es compacto, f es acotada en, y uniformemente continua.

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

Espacios Metricos, Compacidad y Completez

Espacios Metricos, Compacidad y Completez 46 CAPÍTULO 3. Espacios Metricos, Compacidad y Completez Una sucesión en un conjunto X es una función N X. Si la función se llama f entonces para sucesiones acostumbra denotarse {f(n)} n N en cambio de

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Cálculo diferencial e integral 4

Cálculo diferencial e integral 4 Cálculo diferencial e integral 4 http://academicos.fciencias.unam.mx/nataliajonard/calculo-4 menos que indiquemos lo contrario, R siempre denotará un rectángulo de la forma con a i < b i. R = [a 1, b 1

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Continuidad. 5.1 Continuidad en un punto

Continuidad. 5.1 Continuidad en un punto Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos

Más detalles

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS

TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS TOPOLOGÍA SOLUCIONES A LAS RELACIONES DE PROBLEMAS Ejercicio 4.1.- Relación 4. Compacidad. Conexión Supongamos que A es compacto y sea A α Λ B α un recubrimiento de A por bolas abiertas. Entonces, como

Más detalles

Unidad 1: Espacios métricos

Unidad 1: Espacios métricos Unidad 1: Espacios métricos 1.1 Definición y Ejemplos. (1) Explicar que una métrica permite introducir una noción de cercanía entre los elementos de un conjunto. (2) Explicar que sobre un conjunto determinado

Más detalles

Ejercicios de Análisis Funcional. Curso

Ejercicios de Análisis Funcional. Curso Ejercicios de Análisis Funcional Curso 2010-2011 1 1 Preliminares de espacios normados Problema 1.1. Demostrar que para 1 < p < la norma. p en R 2 verifica la siguiente propiedad: Si x, y R 2 con x y y

Más detalles

IV. LOS CUATRO PILARES DEL ANÁLISIS FUNCIONAL

IV. LOS CUATRO PILARES DEL ANÁLISIS FUNCIONAL IV. LOS CUATRO PILARES DEL ANÁLISIS FUNCIONAL El sugestivo título que proponemos para este capítulo, y utilizado por varios autores, quiere indicar que toda la estructura del Análisis Funcional está basada

Más detalles

Funciones multivaluadas y sus aplicaciones

Funciones multivaluadas y sus aplicaciones Miscelánea Matemática 44 (2007) 101 116 SMM Funciones multivaluadas y sus aplicaciones Juan Carlos Macías Romero Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autónoma de Puebla Av. San

Más detalles

Parte III. Medida e Integración en R n

Parte III. Medida e Integración en R n Parte III Medida e Integración en R n Capítulo 17 La Medida Exterior de Lebesgue en R n El cálculo de longitudes, áreas y volúmenes es uno de los asuntos matemáticos con más larga tradición histórica,

Más detalles

INTRODUCCION A LA TEORIA DE LOS CONTINUOS. Sergio Macías Alvarez. Instituto de Matemáticas, UNAM

INTRODUCCION A LA TEORIA DE LOS CONTINUOS. Sergio Macías Alvarez. Instituto de Matemáticas, UNAM INTRODUCCION A LA TEORIA DE LOS CONTINUOS Sergio Macías Alvarez Instituto de Matemáticas, UNAM 1 Espacios Métricos 1.1 Definición. Un espacio métrico es un conjunto no vacío X junto con una función d:

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia

1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia 1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia

Más detalles

Axiomas de recubrimiento

Axiomas de recubrimiento CAPíTULO 8 Axiomas de recubrimiento Dedicaremos este capítulo a un nuevo tipo de propiedades topológicas: aquellas que se refieren a la posibilidad de extraer subrecubrimientos de cardinal finito o numerable

Más detalles

Introducción a la topología

Introducción a la topología Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.

Más detalles

11.1. Funciones uniformemente continuas

11.1. Funciones uniformemente continuas Lección 11 Continuidad uniforme Completando el análisis de los principales teoremas que conocemos sobre continuidad de funciones reales de variable real, estudiamos ahora la versión general para espacios

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

Primeras nociones topológicas

Primeras nociones topológicas Lección 5 Primeras nociones topológicas Vamos a estudiar ahora algunas nociones topológicas elementales, trabajando en un espacio métrico arbitrario. Empezamos estudiando el interior de un conjunto y los

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

1 Números reales. Funciones y continuidad.

1 Números reales. Funciones y continuidad. 1 Números reales. Funciones y continuidad. En este tema nos centraremos en el estudio de la continuidad de funciones reales, es decir, funciones de variable real y valor real. Por ello es esencial en primer

Más detalles

Conexión Motivación. Lección 10

Conexión Motivación. Lección 10 Lección 10 Conexión Estudiamos la propiedad topológica que nos va a permitir obtener una versión general para espacios métricos del teorema del valor intermedio que conocemos para funciones reales de variable

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Integral de Lebesgue

Integral de Lebesgue Integral de Lebesgue Problemas para examen n todos los problemas se supone que (, F, µ) es un espacio de medida. Integración de funciones simples positivas. La representación canónica de una función simple

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles