Pendiente exacta de una curva en alguno de sus puntos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pendiente exacta de una curva en alguno de sus puntos"

Transcripción

1 Pendiente eacta de una curva en alguno de sus puntos Para calcular la pendiente de una curva representada mediante la unción y ( en un punto es necesario que el punto considerado pertenezca a esa unción. El dato eacto de la pendiente de la curva en un punto debe encontrarse haciendo uso de la derivada m ( la cual es objeto de estudio del Cálculo Dierencial conocido también como Cálculo ininitesimal. El concepto de derivada es semejante al concepto que ya se tiene para la pendiente de la línea recta en el sentido que también es una razón de cambio; pero ahora se considera que tanto como se han reducido ininitamente de tamaño hasta convertirse en los dierenciales y. Por deinición si ( es una unción continua su derivada es el límite de la razón de cambio de y respecto a cuando el cambio de tiende a cero siempre y cuando el límite eista. Lim ( 0 Para ilustrar el concepto de derivada desde el punto de vista de su deinición a continuación se deduce la órmula para calcular la pendiente de una curva en un punto utilizando límites. y la cual es eactamente igual a la pendiente de la recta tangente que se apoya especíicamente en ese punto de la gráica. Se pretende calcular la pendiente de una curva en el punto ( Figura. Recta tangente apoyada en el punto ( y Catalina Inés Aguirre de Aguirre Page

2 Por otro lado sabemos que la pendiente de una línea recta se calcula haciendo uso de las coordenadas de dos puntos que pertenezcan a la recta en cuestión m y en donde ( y ( y considerada. son puntos ubicados en el lugar geométrico de la línea recta y Si se toman dos puntos en una curva para calcular la pendiente de una recta secante realmente se está encontrando la pendiente aproimada de un segmento de la curva que nos interesa. Figura. Recta secante que pasa por dos puntos de una curva. Asimismo se pueden tomar los dos puntos cada vez mas cerca uno de otro a in de que el segmento considerado de la curva sea cada vez más pequeño. El procedimiento se inicia considerando que la pendiente de un segmento de una curva situado entre dos puntos es igual a la pendiente de la recta secante que pasa por esos puntos. Se continúa calculando la pendiente de rectas secantes que tocan puntos cada vez mas cercanos entre sí. El procedimiento inaliza cuando la distancia entre los dos puntos desaparece quedando la recta apoyada en un solo punto por lo que la recta secante que se consideró al inicio se ha transormado en una recta tangente. Los puntos a considerar son: ( y ( y ( los cuales se muestran en la gráica de la igura en donde se ha utilizado la gráica de la unción y + Catalina Inés Aguirre de Aguirre Page

3 La distancia en el eje entre las coordenadas horizontales de ambos puntos es. Asimismo y es la distancia en el eje y entre las coordenadas verticales de los mismos puntos. Al igual que en cualquier línea recta la pendiente de la recta secante es: y Figura (a. Vista ampliada de la recta secante que pasa por dos puntos de una curva. A medida que la distancia entre los dos puntos se hace mas pequeña se reducen las dimensiones tanto de como de y. El proceso mediante el cual se transorma en y en equivale a decir que los puntos considerados para trazar la secante se acercan cada vez más hasta llegar a ser un solo punto por lo cual la recta considerada deja de ser secante para transormarse a tangente. Este proceso es lo que está implícito cuando se evalúa el límite cuando tiende a cero. Cuando se dice que Lim 0 tiende a cero se pretende que el punto ( se acerque al punto ( puntos en los cuales es discontinua por lo cual ( y y buscándolo como meta. Deinitivamente una unción no puede derivarse en aquellos debe pertenecer a la unción. y se planteó en la Figura con un que debe reducirse a su mínima epresión. El resultado es la Figura en donde se La recta secante para el cálculo de la pendiente en ( muestra una recta tangente que se apoya en el punto ( y Para eectos de ilustrar de una orma numérica el procedimiento descrito a continuación se toman especíicamente los puntos que corresponden a. 5 y Catalina Inés Aguirre de Aguirre Page y

4 ( y (.5.5 ( y ( 5 Figura (b Datos numéricos correspondientes a la gráica (a La pendiente de la recta secante que pasa por estos dos puntos de la curva es: y En las Figuras (b 4 y 5 se muestra varios acercamientos de la misma gráica de la Figura en la que se observa que cuando se hace más pequeño automáticamente y también se hace más pequeño. Para hacer el acercamiento que se presenta en la Figura (b se eligió una ventana cuyas dimensiones son: 0 0 y 0 Para trazar la Figura 4 se amplió una porción de la Figura (b. Esta ventana tiene las dimensiones 0 y 4 Los puntos considerados corresponden a. 5 y. 6 La pendiente de la recta secante que pasa por estos dos puntos de la curva es: y Catalina Inés Aguirre de Aguirre Page 4

5 Figura 4. Recta secante que pasa por los puntos: ( y (.5.5 ( y (.6.56 Finalmente se tomó una ventana con dimensiones y. 4 para trazar la Figura 5 Figura 5. Recta secante que pasa por los puntos: ( y (.5.5 ( y ( La pendiente de la recta secante que pasa por estos dos puntos de la curva es: y Como puede verse a medida que se hace más pequeño la recta secante se apoya en dos puntos cada vez más cercanos. Cuando ha disminuido suiciente para que su valor casi sea cero la recta secante prácticamente se está apoyando solamente en el punto ( y por lo que se considera que es la recta tangente mostrada en la Figura. Otro aspecto a avor de que se considere una línea recta como reerencia para calcular la pendiente de una curva en un punto es que a medida que se ampliica la ventana alrededor del punto ( y la curvatura de la gráica se hace menos perceptible hasta llegar a ser una línea recta cuando estamos llegando a valores sumamente pequeños de y de y. Catalina Inés Aguirre de Aguirre Page 5

6 El concepto de dierencial se ubica precisamente en la situación en que se ha reducido tanto que su valor es casi cero. Por tanto todo lo que se ha mencionado respecto a la pendiente de la recta secante calculada con límites es conceptualmente válido al reerirse a dierenciales. De acuerdo a la deinición de derivada la órmula para el cálculo de la pendiente de una recta tangente que se apoya en cualquier punto de una unción ya mencionada como ecuación ( es: m Lim 0 Si a los puntos ( y y ( y les llamamos respectivamente punto ( ( ( + ( + y se sustituyen en la ecuación anterior la ecuación toma la orma y punto Lim ( + ( ( + 0 (4 inalmente simpliicando los términos semejantes se llega a: Lim 0 ( + ( (5 la cual implica el cálculo de la pendiente de una recta secante en el límite cuando cero. tiende a Algunos autores utilizan h en lugar en lo absoluto el tema tratado. lo cual solo es un cambio de simbología y no altera Ejercicio resuelto Usando la deinición de derivada (en términos de límites a Encuentre la ecuación para el cálculo de la pendiente en cualquier punto para la unción y ( + la cual corresponde a la gráica de la Figura. b Calcule la pendiente eacta de la misma unción en.5 Resolviendo a Para empezar debe establecerse ( + para la unción planteada. Esto es: ( + ( + + ( + Catalina Inés Aguirre de Aguirre Page 6

7 Utilizando la ecuación (5 Lim 0 ( + ( sustituyendo los polinomios que corresponden a ( y a ( + Lim 0 ( + ( + + ( + desarrollando los binomios elevados a una potencia Lim 0 ( + + ( + ( ( + + ( + ( + simpliicando los términos semejantes y sacando un actor común se tiene simpliicando Lim 0 ( + + ( + en numerador y denominador Lim ( ( + evaluando el límite cuando 0 m Esta respuesta proporciona una órmula para calcular la pendiente de y ( + en cualquier punto. b Para.5 el valor de la pendiente se obtiene evaluando la derivada en ( ( El valor.75 obtenido para la derivada es el valor de la pendiente de la recta tangente que se apoya en el punto de la curva en donde.5 Catalina Inés Aguirre de Aguirre Page 7

Aplicaciones de la derivada.

Aplicaciones de la derivada. Aplicaciones de la derivada. (Máimos y mínimos) MAXIMOS Y MINIMOS RELATIVOS Entre los valores q puede tener una unción ( ), puede haber uno que sea el más grande y otro que sea el más pequeño. A estos

Más detalles

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la

{( ) ( ) ( ) ( )} 4. FUNCIONES. B y f es una función de A en B definida por y = x 2 1, = x + 3, encuentra 5 pares que pertenezcan a la 4 FUNCIONES 4 Conceptos básicos Sean A y B dos conjuntos dados, una unción de A en B es una regla de correspondencia que asigna a cada elemento de A uno y solamente uno de B En una unción: A es el dominio

Más detalles

Asíntotas en una función.

Asíntotas en una función. Asíntotas en una unción. Las asíntotas son rectas a las cuales la unción se va aproimando indeinidamente, cuando por lo menos una de las variables ( o y) tienden al ininito. Deinición: Si un punto, y )

Más detalles

Rectas Secante y Tangente - Introducción

Rectas Secante y Tangente - Introducción Rectas Secante y Tangente - Introducción Nota: (x) es una unción cualquiera a, Xa y Xb son valores cualesquiera de x Δx es una distancia cualquiera entre dos valores del eje x Introducción Comenzaremos

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Función Derivada Función compuesta Derivada y f x y f x y f g x Tabla de derivadas Función Derivada Función compuesta Derivada k ' 0 ' ' n ' ' ' e ' n n n n ' n ' e a ' ln ln log a a a ' ' e a ln ln a Reglas de derivación log a ' ' ' ' ' ' ' ' ' ln ' ' ' ' e a a '

Más detalles

APUNTE: CONCEPTO DE DERIVADA

APUNTE: CONCEPTO DE DERIVADA APUNTE: CONCEPTO DE DERIVADA UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic en Economia Proesor: Pro Mabel Chrestia Semestre: ero Año: o Introducción al concepto de derivada de

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

y con la semiamplitud δ =1. 2.

y con la semiamplitud δ =1. 2. LÍMITE DE UNA FUNCIÓN UNIDAD II II. ENTORNOS Se denomina entorno de un punto a en, al intervalo abierto ( δ a δ ) semiamplitud del intervalo. a, donde δ es la El entorno de a, en notación de conjuntos

Más detalles

Matemática II Clase Nº 14-15

Matemática II Clase Nº 14-15 LA DERIVADA La derivación es una de las operaciones que el Análisis Matemático efectúa con las funciones, permite resolver numerosos problemas de Geometría, Economía, Física otras disciplinas. En matemáticas,

Más detalles

V. 2 DISCUSIÓN DE UNA CURVA

V. 2 DISCUSIÓN DE UNA CURVA DISCUSIÓN DE ECUACIONES ALGEBRAICAS UNIDAD V Eisten dos problemas fundamentales en la Geometría Analítica:. Dada una ecuación hallar el lugar geométrico que representa.. Dado un lugar geométrico definido

Más detalles

Componentes polinomiales de una función racional

Componentes polinomiales de una función racional Funciones racionales Componentes polinomiales de una función racional Son las funciones que están formadas por el cociente de dos funciones polinomiales, son de la forma: f x = P(x) donde P(x) y Q(x) son

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

14.1 Introducción. 14.2 Caso 1: Area bajo una curva.

14.1 Introducción. 14.2 Caso 1: Area bajo una curva. Temas. Capacidades Calcular áreas de regiones del plano. 14.1 Introducción Area bajo una curva En esta sesión se inicia una revisión de las principales aplicaciones de la integral definida. La primera

Más detalles

Funciones de dos variables

Funciones de dos variables Pro. Enrique Mateus Nieves Funciones de dos variables Una unción : z, (esta mezcla de notación z es común). Esta gráica es una supericie en : sobre cada punto, del plano dibujamos un punto,,z a altura

Más detalles

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio y razones de cambio y razones de cambio Tangentes Notas de clase Resumen Cálculo I - A1234 1/5 y razones de cambio y razones de cambio Tangentes Si una curva C tiene la ecuación y = f (x) y quiere hallar

Más detalles

Ecuación de la Recta

Ecuación de la Recta PreUnAB Clase # 10 Agosto 2014 Forma La ecuación de la recta tiene la forma: y = mx + n con m y n constantes reales, m 0 Elementos de la ecuación m se denomina pendiente de la recta. n se denomina intercepto

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

GEOMETRÍA ANALÍTICA EN EL PLANO

GEOMETRÍA ANALÍTICA EN EL PLANO GEOMETRÍA ANALÍTICA EN EL PLANO Coordenadas cartesianas Sistema de ejes Cartesianos: Dicho nombre se debe a Descartes, el cual tuvo la idea de expresar un objeto geométrico como un punto o una recta, mediante

Más detalles

Modelo Académico de Calidad para la Competitividad AIND-01 92/98

Modelo Académico de Calidad para la Competitividad AIND-01 92/98 9. Matriz de Valoración ó Rúbrica MATRIZ DE VALORACIÓN O RÚBRICA Siglema: AIND-01 Nombre del Módulo: Nombre del Alumno: PSP evaluador: Grupo: Fecha: Resultado de Aprendizaje: 1.1 Determina la gráfica,

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente:

El deslizamiento de un tobogán de Acuapolis, tiene la forma de un arco de. hipérbola de ecuación. como se puede apreciar en la figura siguiente: altura En la vida cotidiana las rectas tangentes a una curva u objeto podrán observar de muy diferentes maneras, como son el punto de contacto de la rueda de un automóvil, patineta. El deslizamiento de

Más detalles

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación

El problema de la recta tangente. 96 CAPÍTULO 2 Derivación 96 CAPÍTULO Derivación. La derivada el problema de la recta tangente Hallar la pendiente de la recta tangente a una curva en un punto. Usar la definición de ite para calcular la derivada de una función.

Más detalles

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición

Curso de Matemática. Unidad 2. Operaciones Elementales II: Potenciación. Profesora: Sofía Fuhrman. Definición Curso de Matemática Unidad 2 Profesora: Sofía Fuhrman Operaciones Elementales II: Potenciación Definición a n = a. a.a a multiplicado por sí mismo n veces. a) Regla de los signos Exponente Par Exponente

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

UNIDAD III Límites. Límites infinitos. En el límite de una función, cuando x a y resulta que f x crece sin límite, entonces se tendrá: lim

UNIDAD III Límites. Límites infinitos. En el límite de una función, cuando x a y resulta que f x crece sin límite, entonces se tendrá: lim UNIDAD III Límites Límites ininitos En el límite de una unción, cuando a resulta que crece sin límite, entonces se tendrá: lim a Mientras que cuando a resulta que decrece sin límite, entonces se tendrá:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

UNIDAD DE APRENDIZAJE V

UNIDAD DE APRENDIZAJE V UNIDAD DE APRENDIZAJE V Saberes procedimentales Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. Relaciona la ecuación de segundo grado en dos

Más detalles

CAPÍTULO. 1 Conceptos básicos

CAPÍTULO. 1 Conceptos básicos CAPÍTULO 1 Conceptos básicos 1.4.2 Curva solución de un PVI Como comentamos al hablar sobre las soluciones generales particulares de una ED, ocurre que las soluciones generales contienen una o más constantes

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAÍTULO 5 La derivada 5. La recta tangente Los griegos sabían que una recta en el mismo plano que una cónica (en el caso de la parábola o de la hipérbola, una recta no paralela a alguno de sus ejes) o

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO

DEPARTAMENTO DE CÁLCULO Y GEOMETRIA ANALITICA SEMESTRE 2017-1 SERIE CURVAS EN EL ESPACIO SEMESTRE 017-1 1. Obtener una ecuación vectorial de la curva que se obtiene por el desplazamiento de un punto tal que su abscisa es -5 mientras que su cota es el triple de la tangente de su ordenada..

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

MATEMÁTICAS BÁSICAS CIRCUNFERENCIA DEFINICIÓN DE CIRCUNFERENCIA

MATEMÁTICAS BÁSICAS CIRCUNFERENCIA DEFINICIÓN DE CIRCUNFERENCIA MATEMÁTICAS BÁSICAS CIRCUNFERENCIA DEFINICIÓN DE CIRCUNFERENCIA Una circunferencia se define como el lugar geométrico de los puntos que equidistan de un punto fijo en el plano llamado centro. La distancia

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

VIII. CIRCUNFERENCIA

VIII. CIRCUNFERENCIA VIII. IRUNFERENI 8.. L IRUNFERENI OMO LUGR GEOMÉTRIO Definición: Una circunferencia es el lugar geométrico de un punto ( ) P, cualquiera, que se mueve sobre el plano, de tal manera que su distancia a un

Más detalles

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( ) Modelo. Problema B.- Caliicación máima: puntos) La igura representa la gráica de una unción : [ 6; 5] R. Contéstese razonadamente a las preguntas planteadas.? a) Para qué valores de es > b) En qué puntos

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada El matemático francés ierre de Fermat (60 665) al estudiar máimos mínimos de ciertas funciones observó que en aquellos puntos en los que la curva presenta un máimo

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

FUNCIONES LINEALES Y AFINES

FUNCIONES LINEALES Y AFINES www.matesronda.net José A. Jiménez Nieto FUNCIONES LINEALES Y AFINES. LA FUNCIÓN LINEAL = m El tren AVE lleva una velocidad media de 40 km/h. La siguiente tabla nos da el espacio que recorre en función

Más detalles

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H.

Producto cartesiano. X Y = {(x, y) : x X, y Y }. Ejemplo En el tablero de ajedrez, X = números del 1-8, Y = letras de A-H. Producto cartesiano Motivación: Has oido hablar sobre gente que juega ajedrez sin tener que mirar nunca el tablero?. Esto es posible, y se debe a una herramienta llamada coordenadas de un punto. En un

Más detalles

VOLUMENES DE SÓLIDOS DE REVOLUCION

VOLUMENES DE SÓLIDOS DE REVOLUCION OLUMENES DE SÓLIDOS DE REOLUCION Los sólidos de revolución son sólidos que se generan al girar una región plana alrededor de un eje. Por ejemplo: el cono es un sólido que resulta al girar un triángulo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

UNIDAD 9 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b]

UNIDAD 9 DERIVADAS Y APLICACIONES. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] IES Padre Poveda (Guadi UNIDAD 9 DERIVADAS Y APLICACIONES. TASA DE VARIACIÓN MEDIA. Se deine la tasa de variación media de una unción y en un intervalo [ b] T. V. M. [ a, b] a, como: ( ( a b a ( a, a,

Más detalles

Tema 8. Geometría de la Circunferencia

Tema 8. Geometría de la Circunferencia Tema 8. Geometría de la Circunferencia 1. Definición la circunferencia. Ecuación de la circunferencia 1.1 Ecuación de la circunferencia centrada en el origen 1. Ecuación de la circunferencia con centro

Más detalles

Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a -

Representación gráfica de funciones. Un ejemplo resuelto. Para comprobar si tiene asíntotas oblicuas, calculamos el límite cuando x tiende a - Representación gráica de unciones. Un ejemplo resuelto Consideremos la unción deinida por la epresión + =. Dominio Debemos ecluir del dominio los valores de que anulan el denominador. Así, el dominio Dom

Más detalles

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables.

Derivadas. Contenido Introducción. ( α) Definición de Derivada. (α) Pendiente de la recta tangente. (α) Funciones diferenciables. Derivadas. Contenido 1. Introducción. (α) 2. Definición de Derivada. (α) 3. Pendiente de la recta tangente. (α) 4. Funciones diferenciables. (α) 5. Función derivada. (α) 6. Propiedades de la derivada.

Más detalles

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones

Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas II.- Factorización y Operaciones con las Fracciones III.- Funciones y Relaciones Anexo 1 ÁLGEBRA I.- Operaciones en las Expresiones Algebraicas 1.- Adición y sustracción 2.- Multiplicación 3.- División 4.- Productos especiales 5.- Triángulo de Pascal II.- Factorización y Operaciones

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4.

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 9-OCTUBRE-199 1) 3 > 4. +1 ) Sea la función 3 si 1 a + b si 1 . Encontrar los valores de a, b, c para que la función

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 9 MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos

Más detalles

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:

4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones: 4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Teoría 3_10 Gráficos!

Teoría 3_10 Gráficos! Teoría 3_10 Gráficos! Gráficos de columnas Ideal para mostrar cambios de datos en un período de tiempo o para ilustrar comparaciones entre elementos. En los gráficos de columnas, las categorías normalmente

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

Ejemplo. Función parte entera de " x " que se denota como. Se denomina así la función en la que a cada

Ejemplo. Función parte entera de  x  que se denota como. Se denomina así la función en la que a cada (Apuntes en revisión para orientar el aprendizaje) FUNCIONES DEFINIDAS EN VARIOS INTERVALOS En problemas de ingeniería es común trabajar con enómenos que se modelan con unciones que consideran más de una

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2013 MATEMÁTICAS II. CÓDIGO 158 OBSERVACIONES IMPORTANTES: El alumno deberá responder a todas las cuestiones de una de las opciones

Más detalles

ECUACIÓN GENERAL DE SEGUNDO GRADO

ECUACIÓN GENERAL DE SEGUNDO GRADO ECUACIÓN GENERAL DE SEGUNDO GRADO CONTENIDO 1. Definición de cónica y cono de revolución. Determinación de las cónicas por medio de sus coeficientes.1 Determinación del tipo de curva considerando los coeficientes

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

UNIDAD DIDÁCTICA 10: Derivadas

UNIDAD DIDÁCTICA 10: Derivadas accés a la universitat dels majors de 5 anys acceso a la universidad de los mayores de 5 años UNIDAD DIDÁCTICA 0: Derivadas ÍNDICE DESARROLLO DE LOS CONTENIDOS Visualización del concepto de derivada de

Más detalles

FUNCIONES LINEALES Y CUADRÁTICAS

FUNCIONES LINEALES Y CUADRÁTICAS . FUNCIONES LINEALES FUNCIONES LINEALES CUADRÁTICAS Aquéllas cua fórmula es un polinomio de grado. = + 9ºESO Se corresponden con los fenómenos de proporcionalidad; es decir, que la variación de la '' sea

Más detalles

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp.

UNIDAD II FUNCIONES. Ing. Ronny Altuve Esp. República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD II FUNCIONES Ing. Ronny Altuve Esp. Ciudad Ojeda, Septiembre de 2015 Función Universidad

Más detalles

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.»

83 ESO. 6x 4. «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 83 ESO «La clave de todo es la paciencia. Un pollo se obtiene empollando el huevo, no rompiéndolo.» 6 4 10 ÍNDICE: 1. DIVISIÓN DE POLINOMIOS POR MONOMIOS. DIVISIÓN ENTERA DE POLINOMIOS 3. REGLA DE RUFFINI

Más detalles

#Desarrollo. Evaluación Actividad:2 Producto: Investigación. Puntaje: Saberes. Investiga la aplicación de la parábola en su entorno.

#Desarrollo. Evaluación Actividad:2 Producto: Investigación. Puntaje: Saberes. Investiga la aplicación de la parábola en su entorno. #Desarrollo Actividad: En equipo, investiga cinco aplicaciones de la parábola, describe cada una de ellas, añade las imágenes correspondientes y entrega un reporte escrito a tu profesor. El reporte deberá

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

EJERCICIOS RESUELTOS DE ECUACIONES

EJERCICIOS RESUELTOS DE ECUACIONES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones EJERCICIOS RESUELTOS DE ECUACIONES 1. Determinar si cada una de las siguientes igualdades es una ecuación o una identidad:

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

MATEMATICAS GRADO DECIMO

MATEMATICAS GRADO DECIMO MATEMATICAS GRADO DECIMO TERCER PERIODO TEMAS Funciones Trigonométricas. Funciones trigonométricas. Son relaciones angulares; guardan relación con el estudio de la geometría de los triángulos y son de

Más detalles