Conjuntos numéricos. Sucesiones. Funciones
|
|
|
- Mario Cano Serrano
- hace 9 años
- Vistas:
Transcripción
1 Conjuntos numéricos. Sucesiones. Funciones Conjuntos numéricos 1. Pertenece el número real 2.15 al entorno de centro 2.2 y radio 0.1? 2. Representa gráficamente el conjunto de puntos tales que (a) x+6 < 2 (b) x+4 < 0.5. Escribe tres cotas superiores del conjunto (2, 1). Escribe también tres cotas inferiores. El número 1 es cota superior de este conjunto? Existe alguna cota superior menor que 1? 4. Están acotados los siguientes conjuntos? (a) 1,1/2,1/,... (b) (4, ) (c) Si K es una cota superior de un conjunto de números reales lo es también K +1? y K 1? Cuántas cotas superiores tiene un conjunto acotado? 5. Determina, si existe, el ínfimo de los siguientes conjuntos (a) [1,5] (b) (,1) (4,5) (c) [,4] [1,5] (d) (,) 6. Sea E el conjunto de números de la forma +1/n, donde n es un número natural distinto de cero. Determina si tiene máximo o mínimo y si tiene supremo o ínfimo. 7. Sea E el conjunto de números del intervalo (2,) junto con los números del intervalo [4,5]. Determina el máximo y el mínimo de E, si existen, así como el supremo y el ínfimo, si existen. 8. Enuncia y dibuja los intervalos (a) < x < 5 (b) 2 x 6 (c) 4 < x 0 (d) x > 5 (e) x 2 9. Enuncia y dibuja los intervalos (a) x < 2 (b) x > (c) x < 1 1
2 (d) x 2 < d(d > 0) (e) 0 < x+ < d(d > 0) 10. Calcula a y b para que b 2ai 4 i sea real y tenga de módulo Calcular a para que 2ai 4 i (a) Sea un número imaginario puro (b) Sea un número real (c) Su afijo esté sobre la bisectriz del primer cuadrante 12. Demuestra que todo número complejo z 1, con módulo 1 se puede escribir de modo único en la forma 1 xi 1+xi 1. Calcula (1+4i), utilizando la fórmula del binomio de Newton y expresando el complejo en forma módulo argumental. 14. Resuelve la ecuación z 6 9z +8 = Halla, en cada caso, los números complejos que verifican (a) z = 1 z (b) z a = z b, siendo a,b C (c) z 1+i < Un triángulo equilátero tiene su centro en el punto (1,1) y uno de sus vértices es el punto (1,). Hallar los otros dos vértices. 17. Calcula las raíces de: (a) 1 (b) 4 1 (c) 6 8 (d) 5 i 18. Describir geométricamente los conjuntos de puntos z C tal que: (a) Rez 1 Imz 1 (b) z 1 σ 1 arg(z) σ 2, con π < σ 1 < σ 2 π 19. Calcula 1 i expresando los resultados en forma trigonométrica. 20. Determina el conjunto de números complejos z que verifican: z + z = z. 21. Determina el conjunto de números complejos z que verifican: z z = 1. (Idea: utiliza la forma módulo-argumento.) 22. Calcula: 2
3 (a) 6 8 y presenta el resultado en forma binómica, módulo-argumento y trigonométrica; (b) el valor de x tal que = 1 xi 1+xi 2. Sea el número complejo (en forma módulo-argumento) z = (2 2)π 4 : (a) Calcula z. (b) Transforma uno de los resultados anteriores a forma binómica y forma trigonométrica. 24. Obtén la forma binómica de los números complejos que verifican la ecuación: z 6 +19z 216 = Dado el número complejo en forma módulo-argumento z = 16 2π, calcula la forma cartesiana y trigonométrica de z y la forma cartesiana de los diferentes valores de 4 z. Presenta los resultados exactos (sin hacer uso de expresiones decimales.) 26. Dado el número complejo en forma módulo-argumento z = 8 π, calcula la forma cartesiana y 4 trigonométrica de z. Presenta los resultados exactos (sin expresiones decimales). 27. Obtén en forma binómica y módulo-argumento los números complejos que verifican la ecuación: z 2 +z +1 = (a) Obtén la forma cartesiana de los números complejos que verifican la ecuación z 6 +9z +8 = 0. (b) Siendo w 1,w 2,w,w 4,w 5,w 6 los números complejos obtenidos en el apartado anterior, obtén detalladamente la forma cartesiana del número complejo: ( w 2 w = 1 w2 )( w 4 w 2 ) 5. w w Encuentra los números complejos z tales que π 2 es el argumento de z+1 z Obtén la forma cartesiana, el módulo y el argumento de los números complejos z que verifican la ecuación: z 2 z +1 = Obtén el módulo y el argumento de los números complejos z tales que z +1 es un número real z +2 positivo 2. Calcula las soluciones de la ecuación Si z 1 y z 2 son las soluciones, z 2 2z +2 = 0. (a) Calcula forma módulo argumento, trigonométrica y exponencial de z 1. (b) Calcula las raíces cuartas de z 1. Haz los cálculos sin usar expresiones decimales.. Calcula expresando los resultados en forma trigonométrica de 1+i
4 Sucesiones de números reales 4. Demuestra que la sucesiones a n = 1 n + 1 n n son ambas convergentes y al mismo límite. b n = 1 n n n 5. La sucesión a n está definida por la ley a n+1 = n(n+2) (n+1) 2 a n siendo a 1 = 2. Demuestra que es decreciente, está acotada y razona que es convergente. 6. Dada la sucesión definida por recurrencia en la forma a 1 = 1 a n+1 = k +a n. Se pide demostrar que si es o no convergente y calcular su límite para los diferentes valores de k > Demuestra que la sucesión a n = n n n n n n 2 +n tiene por límite 1, acotando la sucesión entre otras dos que tengan el mismo límite. 8. Calcula lim n ( n2 +2n n2 1 ) n 9. Pon un ejemplo de una sucesión a n convergente a un número real b y tal que a n+1 lim 1. n + a n a n Se sabe que si lim = 1, a n 0 n N, entonces n + a n lim n an = 1. n + Pon un ejemplo para demostrar que el recíproco no es cierto. n 41. Calcula lim n + L( n n 1 ). 42. Sea la sucesión a 1 =,a n = 2+a n 1 si n 2 Demuestra que es convergente y calcula su límite. 4
5 4. Calcula lim n + [1+L(n2 5n+8) L(n 2 +n 9)] 2n Escribe una sucesión que contenga todos los números racionales. 45. Considera la sucesión de números reales definida por: x n+1 = 1 4 +x2 n n N;x 1 > 0 (a) Suponiendo que x n tiene como límite un número real, halla éste. (b) Demuestra que x n es una sucesión creciente. (c) Determina para qué valores positivos de x 1 la sucesión x n resulta convergente. 46. Considera la sucesión a n definida por recurrencia: a n+1 = a n a n, n N, a 1 > 0 (a) Demuestra que la sucesión está acotada inferiormente por 2. (b) Demuestra que la sucesión es decreciente. (c) Justifica que la sucesión a n es convergente y calcula su límite. 47. Calcula detalladamente el siguiente límite: ( lim n n n+2n 2 ) ( 1+n 2 1+n ) 48. Calcula detalladamente el valor del siguiente límite caso de que exista: ( n+1 ) n ncos 2 lim n 2 +1 n ( n 2 1 ). 2+ln n Estudia el límite de la sucesión x n = an n k en función de los valores de los parámetros a y k reales. 50. Calcular los 10 primeros términos y el límite de la sucesión siguiente ( ) 4n+ nl 4n 51. Calcula razonadamente el límite de la sucesión a n = ( nl n n 1 ) 5
6 Funciones 52. Estudia la paridad de las siguientes funciones senx+x+x x 2 +cosx+4 senx+sen(x) cos(2x)+1 5. Estudia si las siguientes funciones son periódicas. En caso afirmativo calcular su período. f(x) = sinx+cosx g(x) = senx+e x h(x) = sen(2x)+senx+sen(x/2) 54. Se consideran las funciones f(x) = x 2 g(x) = e x h(x) = Lnx k(x) = tgx Calcula (h f k)(x) (g k)(x) (k f g)(x) 55. Estudia la relación entre la gráfica de f(x) y las de f(x + β) y βf(x), siendo β R. Aplícalo al caso de f(x) = x Responde razonadamente las siguientes cuestiones: (a) Sean f(x) y g(x) dos funciones pares. Son pares las funciones f(x)+g(x) y f(x)g(x)? (b) Sean f(x) y g(x) dos funciones impares. Cómo son las funciones f(x)+g(x) y f(x)g(x)? (c) Sea una función par y una función impar. Qué se puede decir de las funciones f(x)+g(x) y f(x)g(x)? 57. Sean f(x) y g(x) dos funciones periódicas. Son periódicas las funciones f(x)+g(x) y f(x)g(x)? 58. Halla el dominio de las siguientes funciones x 2 +x+1 x ) x+ x4 1 cos( x 2 +1 ( ) x arcsen x+1 6
Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos
Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +
1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.
1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2
ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.
Problemas tipo examen
Problemas tipo examen La división en temas no es exhaustiva. Las referencias (H n- m) indican el problema m de la hoja n y las referencias (A- cd), con A en números romanos indican un examen del mes A
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES
EJERCICIOS DE REPASO DE MATEMÁTICAS I PENDIENTES 1 er PARCIAL 1. Obtén los valores reales que cumplen las siguientes condiciones: x+ x 3 5 x 1/ =1. Opera y expresa el resultado en notación científic (5,
EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable
EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..
EJERCICIO 2. (1 punto) Reduce a un ángulo del primer cuadrante y calcula las razones trigonométricas de los ángulos siguientes:
Segunda Evaluación Grupo: 1ºBTCN Fecha: 1 enero 010 1 er Control EJERCICIO 1 (1 puntos) Sabiendo que está en el primer cuadrante y sen =1/, calcula (sin calcular previamente el ángulo ): a) cos b) sen
******* Enunciados de Problemas *******
******* Enunciados de Problemas ******* CÁLCULO ESCUELA SUPERIOR DE LA MARINA CIVIL DIPLOMADO EN MÁQUINAS NAVALES DIPLOMADO EN NAVEGACIÓN MARÍTIMA ISIDORO PONTE ESMC EL NÚMERO REAL Sea o un número racional
Funciones reales de variable real
84 Matemáticas I : Cálculo diferencial en IR Tema 8 Funciones reales de variable real 8. Los números reales Los números reales son de sobra conocidos, sus operaciones básicas así como su identificación
1. Conjuntos de números
1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =
1. Método de bisección
Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.
EJERCICIOS PROPUESTOS: Interpolación
EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona
NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z
UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 201 Capítulo 4 Año 200 4.1. Modelo 200 - Opción A Problema 4.1.1 2 puntos Determinar los valores
Funciones reales de variable real
Tema Funciones reales de variable real Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real.. Conceptos Generales Definición.
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º. 1) Simplifica todo lo posible racionalizando los denominadores:
EVALUACION: 1ª CURSO: 1º B.C.T. FECHA: 8/11/13 EXAMEN: 1º 1) Simplifica todo lo posible racionalizando los denominadores: + 2) Simplifica todo lo posible la siguiente operación con fracciones algebraicas:
Los números complejos
7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
1. Contesta: función sea creciente? 2. Representa la función: ( ) = Representa la siguiente función definida a trozos:
IES SAULO TORÓN Matemáticas 4º ESO RECUPERACIÓN 3ª Evaluación 1. Contesta: a) Pon un ejemplo de una función de proporcionalidad directa. b) En la función () = +, explica el significado de m. Cómo debe
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
Funciones de Variable Real
Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales
Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3).
TEOREMA DE BOLZANO: Probar que la ecuación x 3-4x - 2 = 0 tiene alguna raíz real, aproximando su valor hasta las décimas. Consideramos la función f(x) = x 3-4x - 2 la cual es continua por ser polinómica.
NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:
NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)
a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y =
Y [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = a sea la siguiente: 2 +b+c 3 2-2 3 4 X 2 [ARAG] [20] [JUN-A] Sea la función f() = 2 +2 a) Calcular su dominio b) Obtener sus asíntotas c)
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS PARA EMPEZAR, REFLEXIONA Y RESUELVE 1. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos
Matemáticas I Tema 6. Números Complejos
Matemáticas I Tema 6. Números Complejos Índice 1. Introducción 2 2. Números 2 2.1. Unidad imaginaria............................... 3 2.2. Soluciones de ecuaciones de segundo grado.................. 3
El subconjunto en el que se define la función se llama dominio o campo existencia de la función. Se designa por D.
Concepto de función Función real de variable real es toda correspondencia f que asocia a cada elemento de un determinado subconjunto de números reales, llamado dominio, otro número real (uno y sólo uno).
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
FUNCIONES REALES 1º DE BACHILLERATO CURSO
FUNCIONES REALES 1º DE BACHILLERATO CURSO 2007-2008 Funciones reales Definición Clasificación Igual de funciones Dominio Propiedades Monotonía Extremos relativos Acotación. Extremos absolutos Simetría
CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos:
CURSO: 1º bachillerato GRUPO: A Nº: FECHA: CALIF. 1. (1 puno) Representa sobre la recta real los siguientes conjuntos: a) {x/ -5
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado
Ejercicios de recopilación de complejos
Ejercicios de recopilación de complejos Conjugado, opuesto, representaciones gráficas. Tipos de complejos 1. Clasificar los siguientes números complejos en reales e imaginarios. Para cada uno, cuál es
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1
Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1 Ejercicio 1: Estudiar el dominio, asíntotas, signo, crecimiento, decrecimiento, máximos y mínimos relativos de la función f(x) = e 2x
Funciones reales de variable real
Tema Funciones reales de variable real Introducción En este primer tema del Bloque de Cálculo tendremos como objetivo fundamental el recordar conceptos ya conocidos acerca de las funciones reales de variable
UD 1: NÚMEROS REALES Y COMPLEJOS
UD 1: NÚMEROS REALES Y COMPLEJOS 1. Qué es un número? Para qué sirve? 2. Haz una breve historia de los conjuntos numéricos, por qué surgen cada uno. 3. Cómo clasificarías todos los números que conoces?
DERIVADAS. TÉCNICAS DE DERIVACIÓN
9 DERIVADAS. TÉCNICAS DE DERIVACIÓN REFLEXIONA Y RESUELVE Tangentes a una curva y = f (x) 5 3 5 3 9 14 Halla, mirando la gráfica y las rectas trazadas, f'(3), f'(9) y f'(14). Di otros tres puntos en los
Funciones Parte 1. Prof. Derwis Rivas Olivo
Universidad de Los ndes Facultad de Ingeniería Escuela ásica de Ingeniería Departamento de Cálculo Funciones Parte 1 Prof. Derwis Rivas Olivo 1.- Dadas las funciones f : R R / f(x) = x 3 + x 3 y g : R
a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)
Ejercicios de integración
1. Calcular las siguientes integrales: 1) ) 8) + 1 d ) + 6 6 + 1 d 5) + + 1 + 1 7) d 8) + Ejercicios de integración d ) + + 1 d 6) ( + 1) + + d + d 9) ( + + 1) ln d + 1 + + 1) d 11) d 1) + + 1 d + 1 1)
Colegio Internacional Torrequebrada. Departamento de Matemáticas
Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene
DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x):
1 FUNCIONES ELEMENTALES CONCEPTO DE FUNCIÓN DEFINICIÓN : f es una función de R en R si a cada número real, x Dom, le hace corresponder un único número real, f(x): Lo denotamos por : f : Dom -----> R x
ACTIVIDADES SELECTIVIDAD MATRICES
ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden
Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: 1. Teoremas sobre funciones derivables
Cálculo 20. Semestre B-2015 Prof. José Prieto Correo: [email protected] 1. Teoremas sobre funciones derivables Problema 1 Determine si la función dada satisface las hipótesis del Teorema de Bolzano sobre el
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS
LA CLASE VIRTUAL LOS NUMEROS COMPLEJOS La ecuación x 2 +1=0 carece de soluciones en el campo de los números reales. log e (-2) no es un número real. Tampoco es un número real (-2) π Un número complejo
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-) = f
Continuidad de funciones
Apuntes Tema 3 Continuidad de funciones 3.1 Continuidad de funciones Def.: Dada una función f(x), diremos que es continua en x = a, si cumple la siguiente condición: En caso de que no cumpla esta condición,
CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas
CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(
Matemáticas Empresariales I. Funciones y concepto de ĺımite
Matemáticas Empresariales I Lección 3 Funciones y concepto de ĺımite Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 22 Concepto de función Función de
Los números complejos
Los números complejos 1. Necesidad de los números complejos Resolución de la ecuación x -6x+1=0 Cuando resolvemos esta ecuación queda:.x = 6± 6 5 = 6± 16 = 6± 16 1 = 6±4 1 = ± 1. Es evidente que no hay
IES RAFAEL PUGA RAMÓN DERIVADA Y APLICACIONES Calcula el valor de a para que la gráfica de la función y= x a cumpla que la recta
BOLETÍN DE DERIVADAS Y RECTA TANGENTE 1. Aplicando la definición, calcula la derivada de f(x)=2x 2 -x en x=1 2. Pon tres ejemplos de funciones cuya derivada sea x 2. Cuántas existen?. Existe alguna función
Actividades. de verano º Bachillerato Matemáticas Ciencias. Nombre y apellidos:
Actividades de verano 017 Nombre y apellidos: Curso: Grupo: 1º Bachillerato Matemáticas Ciencias 1.- Representa los siguientes conjuntos: TRABAJO DE VERANO.- Suma y simplifica: 3.- Racionaliza denominadores
Funciones, Límites y Continuidad
Tema Funciones, Límites y Continuidad Introducción El objetivo fundamental de este tema es recordar conceptos ya conocidos acerca de las funciones reales de variable real, así como de los límites en dichas
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.
Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones
5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES
Tema 5 : Funciones elementales - Matemáticas B 4º E.S.O. 1 TEMA 5 FUNCIONES ELEMENTALES 5.1 DISTINTOS TIPOS DE FUNCIONES LINEALES 3º 5.1.1 - FUNCIONES DE PROPORCIONALIDAD: y = mx Las funciones de proporcionalidad
APELLIDOS Y NOMBRE:...
1º BACHILLERATO Fecha: 6-09-011 PRUEBA INICIAL APELLIDOS Y NOMBRE:... NORMAS El eamen se realizará con tinta de un solo color: azul ó negro No se puede usar corrector Se valorará potivamente: ortografía,
01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial.
2.6 Criterios específicos de evaluación. 01. Dados varios números, los clasifica en los distintos campos numéricos. 02. Interpreta raíces y las relaciona con su notación exponencial. 03. Conoce la definición
FUNCIONES DE PROPORCIONALIDAD: y = mx. Su pendiente es 0. La recta y = 0 coincide con el eje
Funciones elementales - Matemáticas B 4º E.S.O. FUNCIONES ELEMENTALES DISTINTOS TIPOS DE FUNCIONES LINEALES FUNCIONES DE PROPORCIONALIDAD: y = mx FUNCIÓN CONSTANTE: y = n Las funciones de proporcionalidad
Escuela Politécnica Superior de Málaga. CÁLCULO
Escuela Politécnica Superior de Málaga. CÁLCULO. Cálculo en una variable.. Prueba que y 3 no son números racionales. En los números que se describen a continuación, Cuáles son racionales y cuales no? Encontrar
N Ú M E R O S C O M P L E J O S
N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =
Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales
5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer
FUNCIONES REALES DE VARIABLE REAL
Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones
Números Complejos Matemáticas Básicas 2004
Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.
Derivadas. Derivabilidad
Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.
RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I
RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo
2.2.1 Límites y continuidad
. Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)
APLICACIONES DE LAS DERIVADAS
APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS
TALLER DE MATEMÁTICAS 1 ECUACIONES POLINÓMICAS NOTAS Toda expresión algebraica del tipo a n x n + a n 1 x n 1 + + a 1 x + a 0 es un polinomio de grado n, si a n 0. Es bien conocida la fórmula que da las
ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares
ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,
TERCER TRABAJO EN GRUPO Grupo 10
TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 6: Funciones Polinomiales y Racionales Teorema del residuo y del factor. Hallar los valores que se piden
PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II
PENDIENTES DE 1º BACH MATEMÁTICAS I EJERCICIOS BLOQUE II 5. Geometría analítica 1.- Calcula el módulo y el argumento del vector v ( 3, 4) v = 5, a = 33 7 48.- Dados los puntos A( 5, 3) y B(, 7), calcula
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A
Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1
Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla1 Tema 2: Interpolación. Ejercicios y Problemas 1. Ejercicios Ejercicio 1. 1. Dar, sin desarrollar, los polinomios
Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:
Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar
Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares
1 Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Preliminares Prof. Adán Salas Gutiérrez Álgebra 1. El factorial de un número n N es el producto de todos
ACTIVIDADES ANÁLISIS 1 ACTIVIDADES DE FUNCIONES REALES DE VARIABLE REAL
ACTIVIDADES ANÁLISIS 1 ACTIVIDADES DE FUNCIONES REALES DE VARIABLE REAL 1.- La figura adjunta representa la gráfica de una función y=f(x) en el intervalo [0,2). Dibujar la gráfica de dicha función en el
IES Francico Ayala Examen modelo 1 del Libro 1996_97 con soluciones Germán Jesús Rubio luna. Opción A
Opción A Ejercicio n 1 de la opción A del modelo 1 del libro 96_97 De una función continua f : R R se sabe que si F : R R es una primitiva suya, entonces también lo es la función G dada por G(x) 3 - F(x).
TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 8: FUNCIONES. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 1º E.S.O. TEMA 08: Funciones. TEMA 08: FUNCIONES. 1. Correspondencia.
FUNCIÓN REAL DE VARIABLE REAL
Ejercicios de Repaso 2 de mayo de 2011 Ejercicio Halla el dominio de las siguientes funciones. (a) 7 x 2 5 (b) 1 x 3 +1 (c) x 1 x 4 3x 2 4 (d) x3 6x 2 +4x+8 x 3 x 2 9x+9 (g) 1 3 x (j) ln(x) 1 (e) x2 4
Ejercicios de Funciones: derivadas y derivabilidad
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Derivadas, derivabilidad. Pág 1/15 Ejercicios de Funciones: derivadas y derivabilidad 1. Calcular las derivadas en los puntos que se indica: 1., en x = 5.
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.
TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones
Por extensión, también se puede hablar de la preimagen de un conjunto. Si B 0 B, la preimagen de B 0 es
Definiciones A La idea de función aparece por todas partes: cada persona tiene una edad o un número de hijos o una cantidad de dinero en el bolsillo. No necesariamente tenemos que referirnos a números,
1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.
ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente
(1-mx)(2x+3) x 2 +4 = 6. x > -1
. [04] [EXT-A] Sea la función f(x) = e x +ax+b a) Calcular a y b para que f(x) tenga un extremo en el punto (,). b) Calcular los extremos de la función f(x) cuando a = 0 y b = 0.. [04] [EXT-B] En la figura
a) 1,5 1,3:
1. Dados los siguientes números: 3,2 3 1 81 1,... Sitúa cada uno de ellos en su lugar correspondiente dentro del diagrama. Si alguno es racional indica de qué tipo es. 2. Efectúa las operaciones siguientes,
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
Cálculo I. Índice Continuidad. Julio C. Carrillo E. * 1. Introducción Continuidad puntual Continuidad en un intervalo 8
2.4. Continuidad Julio C. Carrillo E. * Índice 1. Introducción 1 2. Continuidad puntual 2 3. Continuidad en un intervalo 8 4. Conclusiones 18 * Profesor Escuela de Matemáticas, UIS. 1. Introducción Las
COLEGIO INTERNACIONAL TORREQUEBRAD.
CUADERNO DE VERANO MATEMÁTICAS 1º Bachillerato ALUMNO: Problema 1: Dado el sistema de ecuaciones con un parámetro real λ e incógnitas x, y, z se pide: a) Calcular para qué valores de λ el sistema sólo
ejerciciosyexamenes.com
ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]
