FUNCIONES RACIONALES. Sec. 3.5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIONES RACIONALES. Sec. 3.5"

Transcripción

1 FUNCIONES RACIONALES Sec. 3.5

2 DOMINIO DE FUNCIONES RACIONALES

3 Funciones racionales Una función racional es una función que se puede epresar de la forma p( ) f ( ) g( ) donde f() y g() son polinomios. Ejemplos: f () 3 g() q() 4 3 4

4 Ejemplos: 1 4 ) ( 1 1 ) ( g f Toda función polinómica es una función racional ya que se puede epresar con un denominador igual a ) ( 1 4 ) ( q p Funciones racionales

5 Dominio de funciones racionales Recuerde que el dominio de una función es el conjunto de todos los números reales para los cuales una función está definida. Una función, f(), está definida en un valor de si evaluar f() en ese valor produce un valor de y que es un número real. En el caso de las funciones racionales, debemos ecluir del conjunto de los números reales cualquier valor que hace que el denominador sea igual a cero.

6 1) Determinar el dominio de una función racional f ( ) 4 1 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador) cuando Por lo tanto el dominio es, el conjunto de los reales eceptuando = ¼. 1 4, 1 1 -,, Dom : 4 4

7 Determinar el dominio de una función racional 5 ) f ( ) 4 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador). 4 4 Dom : 0 4 Para encontrar los ceros, Por lo tanto el dominio de f() es, el conjunto de los reales eceptuando = y = -.,,, factorizamos.

8 Determinar el dominio de una función racional 9 3) f 10 1 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador) Por lo tanto el dominio es, el ( 5 6) 0 = b ± Dom : b 4ac a 3 -,-3-3,- -, conjunto de los reales eceptuando =-3 y = -. = 5 ± 5 4(1)(6)

9 INTERCEPTOS DE FUNCIONES RACIONALES

10 Interceptos Un intercepto en de f() coincide con los ceros reales de f(). Ambos se define como el (los) valor(es) de para el cual f() es igual a cero. Para una función racional, los ceros reales (o los interceptos en ) ocurren en el valor de que hace que el numerador de la función sea igual a cero. El intercepto en y ocurre cuando el valor de cero. Se puede encontrar evaluando la función para igual a cero.

11 Interceptos 1 Hallar los interceptos de la función f ( ). (a) intercepto y: b) intercepto - f (0) - El numerador de f() es 1. El intercepto en y es (0, - ½ ) Por lo tanto, f() NO tiene interceptos en.

12 Interceptos Hallar los interceptos de la función (a) intercepto y: f (0) El intercepto en y es (0, 0). ( ) b) intercepto - f 3 El numerador de f() es. = 0 cuando = 0. Por lo tanto, f() tiene intercepto en en el punto (0,0) Coincide con el int-y.

13 Interceptos 4 Hallar los interceptos de la función g( ). 3 9 (a) intercepto y: 0 g( 0) 3 (0) 4 9(0) 4 0 g(0) NO está definido. NO eiste int-y. b) intercepto - El numerador de g() es = 0 4 =, = - g() tiene dos int- en los puntos (,0) y (-, 0).

14 Interceptos Hallar los interceptos de la función 3 h( ) 5. (a) intercepto y: h(0) 0 (0) h( 0) 3(0) 5 5 El intercepto en y es (0, - ). 5 b) intercepto - El numerador de h() es +3-5 = 0 (Aplicar la fórmula cuadrática.) 5, 1 h() tiene intercepto en en los puntos 5,0) y (1,0 ) (

15 Práctica Hallar el dominio y los interceptos de cada una de las siguientes funciones. 8 8 ) ( 3 1 ) ( ) ( h g f

16 SOLUCIONES DE FUNCIONES RACIONALES

17 Soluciones de funciones racionales Un par ordenado (a,b) es solución para una función f() si f(a)=b. Dicho de otra forma, (a,b) es solución si al evaluar f para =a el resultado es y=b. Ej. Determinar si (6, 1) es una solución de (6) f (6) (6) f ( 6) 1 y 1 (6, 1) SI es una solución de la función. f ( ) Conclusión: Si =6, entonces y=1. Por lo tanto 1 5

18 Soluciones de funciones racionales Ej. Determinar si (-, -16) es una solución de 3 f ( ) 3 f f y ( ) ( ) 16 3( ) ( ) ( ) (-, - 16) NO es una solución de la función Conclusión: Si =-, entonces y=16. Por lo tanto

19 Soluciones de funciones racionales Ej. Determinar el valor de tal que y = 4 si (determinar tal que (, 4) es una solución de) f ( ) 5 3 Multiplicar en ambos lados por el denominador. Conclusión: Si y =4, entonces =14. Por lo tanto (14,4) es una solución de f ().

20 Soluciones de funciones racionales Ej. Determinar el valor de tal que y = -3 si (determinar tal que (, -3) es una solución de) f 7 ( ) 3 Multiplicar en ambos lados por el denominador Conclusión: Si y =-3, entonces =0.1. Por lo tanto (0.1, -3) es una solución de f ().

21 Práctica Para las siguientes funciones, hallar el valor de, si eiste, tal que (,1) es una solución de f(). (Hallar el valor de si y =1.) 3 4 ) ( ) ( g f

22 Soluciones 4 f ( ) = 9 (9,1) es una solución de f() (-3,1) y (1,1) son soluciones de f()

23 GRAFICAS DE FUNCIONES RACIONALES

24 Gráficas de funciones racionales Consideremos la función racional: 1 f ( ) Hasta ahora sabemos que: El dominio de f() es D: Intercepto en : Intercepto en y: NO tiene y = - ½. No podemos trazar la gráfica correctamente con un sólo punto.

25 f ( ) 1 Aunque = NO pertenece al dominio podemos observar lo que ocurre con valores que están muy cerca de = (un poco mayor o un poco menor).

26 Grafiquemos algunos puntos Estos puntos los podemos unir con curvas, separadas y suaves, que se etienden en direcciones opuestas.

27 Los puntos se acercan a esta línea vertical entrecortada, =, por ambos lados, pero etendiéndose en direcciones opuestas. La línea vertical, =, separa la gráfica en dos partes disyuntas. = se llama una asíntota vertical

28 f ( ) 1 Veamos que ocurre con los valores de la gráfica a medida que se hace muy grande o muy pequeño. (Comportamiento en los etremos) Cuando, y 0 Cuando, y 0

29 f ( ) 1 En este caso, la línea y=0 se llama una asíntota horizontal, porque los valores de la función se quedan bien cerca de esta línea a medida que aumenta o disminuye grandemente.

30 Hallar las asíntotas de funciones racionales Asíntotas Verticales Una función racional tiene una asíntota vertical cuando el denominador de la función simplificada es igual a 0. Una función racional está simplificada si NO eisten factores comunes, distintos de uno, entre el numerador y denominador.

31 Determinar la(s) asíntotas verticales f ( ) Igualar el denominador a = 0 Resolver para : = 5 (es la ecuación de la asíntota vertical) 1 g( ) 16 Igualar el denominador a = 0 Resolver para : = -4 y = 4 (son las ecuaciones de las asíntotas verticales)

32 Asíntotas horizontales Las asíntotas horizontales aparecen cuando ocurre una de las siguientes condiciones: Caso 1. El grado del numerador es menor que el grado del denominador. En este caso, la asíntota es la recta horizontal y = 0. Ej. f ( ) g( ) El eje de (y=0) es la asíntota horizontal de las gráficas de f() y g()

33 Asíntotas horizontales Ej. Caso. El grado del numerador es igual al grado del denominador. En este caso, la asíntota es la recta horizontal y = a, donde a es el coeficiente b principal del numerador y b es el del denominador. f ( ) g( ) La asíntota horizontal de la gráfica de f() es g() es 9 y y 1 4

34 Asíntotas horizontales Caso 3: Cuando el grado del numerador es mayor que el grado del denominador la función NO tiene asíntota horizontal. Ej. f ( ) g( ) Las gráficas de f() y g() NO tienen asíntota horizontal

35 Gráficas de funciones racionales Para trazar gráficas de funciones racionales podemos seguir los siguientes pasos: Determinar asíntotas verticales. Determinar asíntotas horizontales. Determinar interceptos. Determinar comportamiento alrededor de las asíntotas. Tal vez necesites determinar algunos puntos adicionales. Unir puntos con curvas suaves que se acercan a las asíntotas y se etienden hacia el infinito.

36 Hallar la(s) ecuación(es) de la(s) asíntota(s) vertical(es) si eiste(n). 1. f 5 Calculamos el valor de que hace el denominador igual a cero: + = 0 = -1 La recta = -1 es la única asíntota vertical de la función.

37 Hallar la(s) ecuación(es) de la(s) asíntota(s) horizontal(es) si eiste(n). 1. f 5 El grado del numerador y del denominador es 1, así que estamos en el caso. an 5 bn La asíntota horizontal de la f() es la recta y 5

38 Trazar la gráfica de funciones racionales f 5

39 f Gráficas de funciones racionales 5 Los interceptos quedan en un mismo pedazo de la gráfica. Podemos unir esto dos puntos con una curva suave que se acerca a las asíntotas.

40 Gráficas de funciones racionales Debemos evaluar la función en algunos otros puntos para localizar la otra parte de la gráfica. 5 f 5 f 1 6

41 Gráficas de funciones racionales Debemos evaluar la función en algunos otros puntos para localizar la otra parte de la gráfica. f 5 (, 6)

42 Trazar la gráfica de: f ( ) 3 Intercepto - y: 0 0 f ( 0) Intercepto - 3 (0,0) Asíntota vertical: Calculamos los valores de que hacen el denominador igual a cero: 3 = 0 = 3 (ecuación de la asíntota) Asíntota horizontal(caso ) a y n b 1 y n (ecuación de la asíntota)

43 Puntos adicionales y 3-10/8 = /.5 = 10 No está definido 7/-.5 = /- = -5 0/-7 = /-47= -.13

44 Trazar la gráfica de: f( ) 3 Intercepto - y: f (0) 0 ( 0, 1.5) Intercepto (3,0) 1.5 Asíntota vertical: Calculamos el valor de que hace el denominador igual a cero: 3 = 0 = 3 (ecuación de la asíntota) Asíntota horizontal: y y 1 a b n n (ecuación de la asíntota)

45 Trazar la gráfica de f( ) 3 1. Vertical Asymptote =. Horizontal Asymptote y = intercept (3, 0) 4. y-intercept (0, 3/) 5. f(-4)= 7 = 3.5

Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA

Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

EXPRESIONES RACIONALES

EXPRESIONES RACIONALES EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

Matemáticas 1º Bachillerato ASÍNTOTAS Colegio La Presentación

Matemáticas 1º Bachillerato ASÍNTOTAS Colegio La Presentación ASÍNTOTA Es una recta imaginaria que nosotros calculamos y representamos con una línea discontinua. Esta recta tiene la propiedad de que en el infinito no puede ser traspasada por la gráfica de la función,

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

LÍMITES DE FUNCIONES GBG

LÍMITES DE FUNCIONES GBG LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si

Más detalles

Límite de una Función

Límite de una Función Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

3 Polinomios y funciones racionales

3 Polinomios y funciones racionales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #19: viernes, 24 de junio de 2016. 3 Polinomios y funciones racionales

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

PARÁBOLA IX.

PARÁBOLA IX. IX. PARÁBOLA Lugar geométrico de todos los puntos tales que la distancia de éstos a un punto fijo (foco) es siempre la misma a una recta fija (directriz). p = distancia del vértice al foco o del vértice

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Funciones polinómicas

Funciones polinómicas Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio.

1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio. GRÁFICA Y RANGO DE UNA FUNCIÓN RACIONAL Sugerencia para quien imparte el curso. Antes de abordar esta parte del curso, se sugiere comentar con los estudiantes algunos aspectos como los siguientes: Se esperan

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad LÍMITES El concepto de límite es la base fundamental con la que se construye el cálculo infinitesimal (diferencial e integral). Informalmente hablando se dice que el límite es el

Más detalles

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades: Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES

CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES 9. Funciones polinomiales. Algunas funciones básicas que ye hemos encontrado son : función constante : función lineal : función cuadrática : f ()

Más detalles

Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista

Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término

Más detalles

Una función arroja un valor (y sólo uno) por cada valor que se le introduce. En otras palabras, para cada valor de x, hay un solo valor de y.

Una función arroja un valor (y sólo uno) por cada valor que se le introduce. En otras palabras, para cada valor de x, hay un solo valor de y. Qué es una función? Una función es una relación entre dos variables: la variable independiente, y la variable dependiente y. Sin embargo, no toda relación es una función. Una función arroja un valor (y

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

Límite de una función

Límite de una función Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

LECTURA N 6: TIPOS DE EXPRESIONES ALGEBRAICAS

LECTURA N 6: TIPOS DE EXPRESIONES ALGEBRAICAS LECTURA N 6: TIPOS DE EXPRESIONES ALGEBRAICAS Tomado con fines instruccionales de: Gómez, B., Gómez, T., González, N., Moreno, E., Rojas M., (6). Epresiones Algebraicas, Caracas: UNEFA. Las epresiones

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Más sobre Funciones

Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Más sobre Funciones FUNCIÓN DEFINIDAS POR PARTES Los valores que toma una función pueden estar definidos por medio de una fórmula pero también por varias fórmulas. En este último caso se dice que está definida por partes

Más detalles

Las desigualdades involucran los símbolos: < menor que, >,

Las desigualdades involucran los símbolos: < menor que, >, . Noción de intervalo en la recta real Un intervalo es un conjunto de números reales que satisfacen una desigualdad, por lo que un intervalo puede ser cerrado, abierto o semiabierto, lo podemos representar

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1 1.1 Gráficas de Ecuaciones en dos variables MATE 3002 Presentación 1 Sistema de coordenadas cartesianas Se basa en dos líneas perpendiculares llamadas eje de x y eje de y. Dividen el plano en cuatro cuadrantes

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Aproximación intuitiva al concepto de límite de una función en un punto

Aproximación intuitiva al concepto de límite de una función en un punto Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los

Más detalles

, de nuevo aplico 𝑦! 𝑦! = 36,0 𝑚 al resolver el tiempo 𝑡 = 1,49 𝑠 la distancia para la segunda piedra con este tiempo es: 𝑦!

, de nuevo aplico 𝑦! 𝑦! = 36,0 𝑚 al resolver el tiempo 𝑡 = 1,49 𝑠 la distancia para la segunda piedra con este tiempo es: 𝑦! Problemas propuestos y resueltos cinemática unidimensional Preparado por: Profesora Pilar Cristina Barrera Silva Propuesto por: profesora Pilar Cristina Barrera Silva Una partícula se mueve en una dimensión

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES Al inicio del Capítulo, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones como a

Más detalles

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta

Ax + By + C = 0. Que también puede escribirse como. ax + by + c = 0 y que se conoce como: la ecuación general de la línea recta ECUACIÒN DE LA RECTA La idea de línea recta es uno de los conceptos intuitivos de la Geometría (como son también el punto y el plano). La recta se puede entender como un conjunto infinito de puntos alineados

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

LÍMITES. REGLA DE L HOPITAL

LÍMITES. REGLA DE L HOPITAL LÍMITES. REGLA DE L HOPITAL EJERCICIOS RESUELTOS Calcula los valores de k de modo que sean ciertas las siguientes igualdades: k 7 5 k k a) b) 4 7 3 3 a) El límite de una función racional, cuando tiende

Más detalles

Guía de Materia Matemáticas Funciones

Guía de Materia Matemáticas Funciones Guía de Materia Matemáticas Funciones Funciones Definición: Una función de en es una relación de en en la que cada elemento del conjunto se relaciona con uno solo un elemento de Ejemplo f a m n b q r c

Más detalles

el blog de mate de aida CS II: Representación de funciones y optimización.

el blog de mate de aida CS II: Representación de funciones y optimización. Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

1 of 16 10/25/2011 6:36 AM

1 of 16 10/25/2011 6:36 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn este módulo se estudiarán las expresiones racionales. Estudiaremos cómo: simplificar evaluar sumar restar multiplicar

Más detalles

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD

CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos

Más detalles

Límites y continuidad de funciones

Límites y continuidad de funciones Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Pobre del estudiante que no aventaje a su maestro. LA LÍNEA RECTA Leonardo da Vinci DESEMPEÑOS Identificar, interpretar, graficar

Más detalles

TEMA 0: REPASO DE FUNCIONES

TEMA 0: REPASO DE FUNCIONES TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

Práctica 4 Límites, continuidad y derivación

Práctica 4 Límites, continuidad y derivación Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas

Más detalles

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1

1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1 1.1 Gráficas de Ecuaciones en dos variables MATE 3002 Presentación 1 Sistema de coordenadas cartesianas Se basa en dos líneas perpendiculares llamadas eje de x y eje de y. Dividen el plano en cuatro cuadrantes

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

Tema 7: Aplicaciones de la derivada, Representación de Funciones

Tema 7: Aplicaciones de la derivada, Representación de Funciones Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

CAPÍTULO. Funciones. y D f.x/ f.x/ Œx; f.x/ x x

CAPÍTULO. Funciones. y D f.x/ f.x/ Œx; f.x/ x x PÍTULO Funciones. Gráfica de una función real de variable real Definimos la gráfica G f de una función f real de una variable real como: G f def D {.; / R R D R Df & D f./ } : La epresión anterior se lee:

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

1. GENERALIDADES SOBRE LOS POLINOMIOS.

1. GENERALIDADES SOBRE LOS POLINOMIOS. GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2

Más detalles

Manual de teoría: Funciones Matemática Bachillerato

Manual de teoría: Funciones Matemática Bachillerato Manual de teoría: Funciones Matemática Bachillerato Realizado por José Pablo Flores Zúñiga Funciones: José Pablo Flores Zúñiga Página 1 Contenido: ) Funciones.1 Conceptos Básicos de Funciones. Función

Más detalles

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA

APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA Matemáticas º Bachillerato APLICACIONES DE LA DERIVADA: MONOTONIA Y CURVATURA CRECIMIENTO DECRECIMIENTO, CONCAVIDAD CONVEXIDAD Sea y = f() una función continua cuya gráfica es la de la figura. DEFINICIÓN

Más detalles

1. Información básica

1. Información básica Información básica PRÁCTICA : RESOLUCIÓN DE ECUACIONES POLIO INÓMICAS Comenzamos recordando de forma resumida las ideas y propiedades básicas de las ecuaciones polinómicas y sus soluciones En esta sección

Más detalles

APUNTES. Obtención del dominio de las funciones:

APUNTES. Obtención del dominio de las funciones: Materia: Tema: Curso: APUNTES Obtención del dominio de las funciones: - Si f(x) es una constante, la función no presentará problema alguno, el dominio será todos los puntos pertenecientes al conjunto de

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

Límite de una función en una variable

Límite de una función en una variable MATERIA : MATEMÁTICA I CURSO: Ier AÑO EJE ESTRUCTURA : III - ÍMITE Y CONTINUIDAD GRUPOS CONCEPTUAES: ro ímite funcional do Continuidad TEMARIO: - TEMA : ímite - TEMA : Asíntotas - TEMA : Continuidad. Introducción

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.

MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto. MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación

Más detalles